
FMI Go! A simulation runtime environment with a client server
architecture over multiple protocols

Claude Lacoursière, claude@hpc2n.umu.se

Tomas Härdin, tomas.hardin@umu.se
HPC2N/UMIT, Umeå University

SE-901 87, Umeå, Sweden

Abstract
We present a distributed software infrastructure to perform
distributed simulations with Functional Mockup Interface
(FMI) compatible components. The current implementa-
tion supports both TCP/IP and MPI. This is a client-server
design where the client is the global simulation stepper
and the servers are the simulation modules. Features on
the master time stepping algorithm currently include sev-
eral time stepping algorithms including one which can
handle algebraic constraints, root finding for cases involv-
ing loops, and support for asynchronous data exchange
with “monitors” and “observers” which only consume
data. The servers provide support for numerical direc-
tional derivatives, filtering, and interpolation. Support is
provided for the System Specification and Parameteriza-
tion (SSP), an emerging standard aimed at supporting the
FMI.

The software is open source with a permissive license
and designed to be used inside simulation environments
and platforms with user interfaces. The focus being on
the mathematical and runtime aspect of FMI based simu-
lations.

1 Introduction
No one simulation tool can satisfy everyone’s needs and
yet, full system simulation is the order of the day. Mod-
els created using different tools must be made compati-
ble with each other for data transfer at least, and by force
of reality, a lowest common denominator must be found
for numerical time integration of modular, heterogeneous
systems. In this model, subsystems are black boxes con-
nected with simple elements representing boundary condi-
tions. The (FMI)(MODELISAR, 2014) standard specifies
an API which answers the first question of data formats as
well as fundamental functionality to initialize and termi-
nate modules, and defines semantics to handle events etc.
However, this standard does not specify the requirements
on the runtime environment or the master stepper.

We consider both these issues with the aim of providing
a minimal runtime infrastructure which is fully standards
compliant as well as open. We also intend to develop a
number of numerical methods for time integration. This
should allow academics to test their new numerical meth-

ods on nontrivial examples. The hub based design should
also allow people to write their own interfaces to connect
with the data analysis and visualization tools they prefer,
and can serve as a foundation for commercial integration
tools with sophisticated user interfaces.

In what follows we describe the nature of the problem
we are trying to resolve in Sec. 2, then cover some previ-
ous work in Sec. 3. We then describe some details of our
architecture in Sec. 4. Force based model coupling and is
described in Sec. 5 and a kinematic coupling as well as a
differential algebraic stepper is found in Sec. 6. Experi-
ments and discussions are in Sec. 7,8,9 and in Sec. 10.

2 Problem statement and objectives
Software tool interoperability requires a standardized in-
terface to be implemented by vendors, as well as a stan-
dard format to describe and exchange source or binary
code implementing a Functional Mockup Unit (FMU).
Also needed mathematical model which corresponds to
the interface, a configuration format and editor for pro-
ducing configuration files. Then comes a runtime envi-
ronment which can read these, load the FMUs and per-
form time integration. One also needs data collection from
the runtime environment, data formats and communica-
tion protocols. Of course, one also needs one needs nu-
merical methods for time integration. When all this is in
place, one can create simulations, run them, gather data,
and analyze it with the tools of their choice.

The FMI specifies only the first three items: interface,
exchange formats, and high level mathematical formula-
tion. The emerging standard System Specification and
Parametrization (SSP) (Köler et al., 2016) aims at defin-
ing the structure of a simulation – which FMU connects
to which and on what port – as well as parameterization,
including unit conversion etc. This is in the process to be
adopted by the FMI committee. Editors for SSP are under
development by vendors. There is also a Software Devel-
opment toolKit (SDK)(QTronic, 2017) which is a refer-
ence implementation of the FMI API and can serve as a
foundation for writing runtime environments.

We decided to develop components of the runtime en-
vironment including SSP, protocols and formats for data
communication and handling, as well as stepping meth-
ods. We believe that these are the components missing to

DOI
10.3384/ecp17132653

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

653

achieve a genuinely modular solution which avoids ven-
dor lock-in, as well as a sufficiently complete environ-
ment for researchers to test their numerical methods and
simulation master algorithms. We are also considering IP
and secrecy issues which can be supported with our client
server design. Of course, we believe that performance is a
fundamental aspect.

Loading many shared libraries as is suggested by the
FMI documentation always leads to problems. This is
why we chose a client server architecture which we imple-
mented over TCP/IP for LAN and WAN configurations,
and MPI for standalone of cluster ones.

User interfaces we leave for others.
The objective is to provide a robust runtime environ-

ment with good numerical methods which goes from SSP
to data files, based on standards and protocols so that visu-
alization and analysis software of choice can be plugged
in easily.

3 Previous work
Nearly twenty FMI import tools are listed on the FMI
website (MODELISAR, 2014) and these fall unevenly
into two categories. First come the well established simu-
lation packages which support import functionality in or-
der to connect to third party tools. Second come integra-
tion tools only designed to couple simulation and analysis
tools, which is close to our own work. These divide fur-
ther into commercial and open source ones. Of the latter,
DACCOSIM (Galtier et al., 2015) is the closest to our
effort.

Yet all integration tools we know of aim at providing a
full environment and it appears that the issue of the quality
of time integration is secondary at best, yet the numerical
methods are locked down which isn’t good if one has a
particularly recalcitrant and difficult model. We don’t see
the need to keep numerical methods secrets. And this pre-
vents experimentation on real-life problems by academics.
One of our motivations.

Distributed and modular simulations isn’t new and
predecessors include the High Level Architecture
(HLA) (IEEE, 2010) for instance, which has even been
adapted to FMI (Awais et al., 2013). Focusing on FMI
compatible efforts, Ptolemy (Ptolemaeus, 2014) is an
object oriented peer-to-peer agent based simulation envi-
ronment and has now FMI (Broman et al., 2013; Cremona
et al., 2016) capabilities with an eye on meeting the re-
quirements for discrete-continuous simulations (Zeigler,
Praehofer, and Kim, 2000), and DACCOSIM (Galtier et al.,
2015) which is most similar to ours. There are others yet
but too numerous to list here.

Why a new effort? First because there is a need for a
test environment for new time integration methods which
is not possible with commercial tools. The open source
projects did not seem to have this as a focus.

Then comes a more contentious issue: software license.
The commercial dimension here weights heavily so we

chose the permissive MIT (MIT, nodate) license to avoid
any problem.

It is clear from the literature about time integration for
cosimulations methods (Fiedler and Arnold, 2014; Martin,
Christoph, and Tom, 2013; Schierz, Arnold, and Clauss,
2012; Schierz and Arnold, 2012; Arnold, 2010; Bern-
hard Schweizer, Li, and Daixing Lu, 2015; Bernhard
Schweizer, Daixing Lu, and Li, 2015; B. Schweizer and
D. Lu, 2015) that it is hardly possible to control errors or
reach stability without having access to directional deriva-
tives or at least the ability to rollback which isn’t available
in too many cases. However, both of these features can
be provided by the runtime environment with numerical
differentiation and various brute force techniques. This is
clearly not addressed in any of the tools we looked at. One
can provide these features when wrapping a ME FMU into
a CS FMU, since one, which means that it might be advan-
tageous to export as ME when possible and let a wrapper
take care of more advanced features.

The DAE stepper presented in Sec. 6 is different from
that of Schweizer (Bernhard Schweizer, Daixing Lu, and
Li, 2015) in that we are using a previously published re-
laxation and regularization technique (Lacoursière, 2007)
which is provably linearly stable, unlike the variants
Schweizer analyzed (Ascher and Petzold, 1993). Expe-
rience has proved that our method does not require the so-
lution of nonlinear systems of equations as the linearized
approximation is sufficiently stable and produces no sys-
tematic drift.

Therefore, we believe that our work has much orthog-
onality with what already exists, enough to add yet one
more FMI runtime environment to the list.

4 Software design
We opted for a client-server architecture in which each
server process hosts an individual FMU. The global step-
per is then a client, consuming results produced by the
FMUs, and serves also as a data hub. It is also a server
to monitors which are read-only applications for interac-
tive, online visualization and data analysis, as well as data
storage. See Fig. 2. We decided against peer-to-peer com-
munication

We used Protobuf (Protocol Buffers 2017) to map the
twenty or so functions in the FMI API to messages
which can be passed via ZeroMQ (iMatrix, 2017). The
servers dynamically load an FMU and using the QTronix
SDK (QTronic, 2017). The same was repeated to use the
Message Passing Interface (MPI) (MPI, 2017) which has
the benefit of not needing to pack and unpack data. We
chose to use (MPICH, 2017) because it is better than other
implementations at handling oversubscription, i.e., when
there are more processes than cores available. On Win-
dows, we use the native library (Microsoft, 2017).

The numerical Jacobians were implemented in the
servers using simple first order finite differences. These
computations are done in the servers which can exploit

FMI Go! A simulation runtime environment with a client server architecture over multiple protocols

654 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132653

parallelism to perform this task. This requires the ability
to rollback a simulation one or several times, and if pos-
sible, to clone it for parallelism. In the best case, FMUs
provide rollback functionality. The second best case is a
functional serialization and deserialization. We are inves-
tigating other methods, as well as the trade off between
doing much more work per step vs step size and accuracy.

Support for Model Exchange (ME) FMUs is in develop-
ment on two fronts. One is a global stepper capable of han-
dling ME FMUs or combinations of ME and CS FMUs,
i.e., integrating discrete and continuous systems(Zeigler,
Praehofer, and Kim, 2000). The other is to include a lo-
cal ME stepper inside the servers so that ME FMUs can
be transformed to be CS ones. The advantage here is that
even though CS export tools make a choice of numerical
time integration which cannot be changed, yet is critical
for stability and application dependent. Therefore, delay-
ing the decision until runtime is appealing. In addition,
ME FMUs are required to be able to cancel a step as long
as no event is crossed which makes it easier to compute
numerical derivatives and rollback. Access to the ME
FMU also allows the support of extrapolation and inter-
polation methods (Bernhard Schweizer, Li, and Daixing
Lu, 2015) after the model has been exported, and to intro-
duce other types of filters on the inputs (M. Benedikt et
al., 2013; Drenth, 2016). We have already automated the
latter. Briefly, assuming a module has continuous states
x, inputs u and outputs y = g(x,u), the dynamics is aug-
mented so that

ẋ = f (x,u,t)
ż = x,

(1)

and then the reported output is

y = ⟨g(⟪x⟫,⟪u⟫)⟩ (2)

instead of g(x,u) at the end of the communication step.
The averages can be, e.g.,

y = g(
1

2H
(z0+ z1),⟪u⟫)⟩) , (3)

where H is the communication step, and z0,z1 are the val-
ues of z at the beginning and end of the communication
step (Drenth, 2016). The advantage of such filters is to
offset the noise produced by the discontinuous inputs at
each communication point. Such functionality is clearly
not possible when using a CS FMU, and we believe that it
is good to leave the choice open. We have automated the
augmentation of the equations of motion. Other types of
filters are straight forward to implement.

The overall design is shown in Fig. 1. Here, one goes
from a FMU via the Qtronix library to the FMI API. At
this point, depending on whether the FMU is ME or CS,
support libraries are used to deliver additional functional-
ity to the global stepper. This funnels through the FMI/X
communication library towards the global stepper, and
said returns results to be processed by the FMU.

numerical
integration

x = ∫ ds f (x,u)

filtering
y = ⟨g(⟪x⟫,⟪u⟫)⟩

numerical
derivatives

∂y
∂u ≈

∆y
∆u

m
od

el
ex

ch
an

ge

co
m

m
on

co
si

m
ul

at
io

n

numerical
derivatives

∂y
∂u ≈

∆y
∆u

FMI/X API
FMI/MPIFMI/TCP

t,u,y, ∂y
∂u

FMU server

FMU
FMI API

Figure 1. Server architecture

The global stepper program has a barebone, command
line interface to describe the connections, as well as sup-
port for SSP files which is much more convenient.

The global stepper can also resolve loops at initializa-
tion using Newton-Raphson’s method, and we intend to
use this feature for the ME stepper so that it can process
DAEs.

As the kinematic stepper requires the solution of linear
problems, we currently use UMFPACK (Davis, 2004).

The overall design of the system appears diagrammati-
cally in Fig. 2.

For TCP/IP, there are a number of issues related to the
GRID computing concept of “network weather service”,
which is about resource discovery and allocation. This is
not implemented yet but there are simple tools for this.

Hardware in the Loop (HIL) functionality has not been
developed at this time though the architecture is compati-
ble with this.

The software runs on Linux, Mac OS X and Windows.
To emphasize, this type of design is not entirely novel as

mentioned in Sec. 3. What is different however is the re-
striction we imposed ourselves to the runtime environment
and not the user environment. In addition, the existing
functionality and what is in planning will hopefully pro-
vide building blocks for the development of new numeri-
cal time integrators, since typical restrictions of FMUs –
absence of directional derivatives or rollback functionality
– will be compensated for by the support modules, as de-
scribed above, i.e., wrappers for ME FMUs to transform
them into CS FMUs.

We follow the UNIX philosophy here: “Do one thing
and do it well”. For our case, the pipe model is “initial
conditions in, data out”. Clearly, there is more than one
thing going on here, but we are aiming at being atomic
and modular: all that’s needed to perform time integration
of systems made of FMUs, but only that.

To confirm that this is a position statement, we be-
lieve that numerical algorithms have little if anything to
do with trade secrets, yet should be tested extensively in
real situations. When an engineer runs a simulation, the
same wants to have confidence that the results make sense.
For that reason, the numerical time integration software
should open. If successful, the best methods will be avail-
able for all to use.

Session 10A: FMI II

DOI
10.3384/ecp17132653

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

655

Time stepper

FMU FMU . . . FMU

FMI/X
Simple Stepper

step control
DoStep(. . .)

(parallel/serial)
y = getReal(. . .)
u = L(y)
setReal(. . . ,u)

Kinematic stepper

s = saveState(. . .)
DoStep(. . ., False)
y = getReal(. . .)
J = getDerivatives(. . .)
Solve: GJ∆u = a
u = L(y,∆u)
SetState(. . .,s)
setReal(. . . ,u)
DoStep(. . ., True)

Command line
Python parsing
System Specification and Parametrization

Monitors

Visualization

Figure 2. Overall architecture

5 Force subsystem couplings
Splitting a system leads to having one variable, x, say,
which appear in two subsystems. For instance, the out-
put shaft of an engine is the very same as the input shaft
of a clutch so the angle of said should be the same in each
module.

As the systems are integrated independently, the dupli-
cates, x(1),x(2) cannot remain in sync. One strategy for
physical systems at least is to introduce a generally stiff
spring-damper in one or both subsystems. There are sev-
eral choices as described previously (Bernhard Schweizer,
Li, and Daixing Lu, 2015) namely, force-displacement
or force-velocity in which one of the units contains a
spring-damper but not the other. These we call “holo-
nomic” and “non-holonomic”, respectively. Then there is
displacement-displacement coupling in which case there
are spring and dampers on both sides. Finally, there
is the “spring free” case described in Sec. 6 which re-
quires a global solver to computes the force required so
that x(1) = x(2) at each communication step, an algebraic
condition. The latter requires both rollback and direc-
tional derivatives which is not often supported. Rollback
is also required for “iterative” methods which are essen-
tially fixed point iterations (Bernhard Schweizer, Li, and
Daixing Lu, 2015) and have good stability properties. As
mentioned, we aim at making our software capable of ap-
plying these methods for any FMU, whether it has these
features natively or not.

We chose force-velocity in our examples.
Whenever there is a spring-damper at the input of a sys-

tem, system 1, say, there is an input signal

u(1) = x(2), or u(1) = v(2) or both (with abuse of notation).
(4)

But this signal is not available continuously, only at the
beginning once per communication step. This values are
denoted as x̄(2) and v̄(2). The coupling force, given spring
and damping constants k(c), γ

(c), respectively, is then

f (c) = −k(c)(x(1)− x̄(2))− γ
(c)

(x(1)− v̄(2)). (5)

The reaction force − f̄ (c) at the end of the reported to the

coupled element. When x̄(2) is not reported, the approxi-
mation

x(t)− x̄ ≈ −∫
0

ds(v− v̄) (6)

is used and x(t)− x̄ is reset to 0 at the beginning of each
communication step.

A variety of methods can be used to improve on the
Zero Order Hold (ZOH) including extrapolation, or com-
bination of extrapolation and interpolations, often called
iterative methods (Bernhard Schweizer, Li, and Daixing
Lu, 2015, and references therein).

One thing remains though, the spring-dampers
k(c),γ (c) are not in the original model and introduce
artificial dynamics. One needs to keep the frequencies
due to the couplings much higher than the design fre-
quencies, i.e., time scales involved by the couplings
should me much smaller than those of interest in order to
not interfere with the results as we show in Sec. 9, and
this leads to communication steps which are orders of
magnitude smaller than the time scales of interest, and
introduces stiffness in the individual modules as they fight
against the spring force in Eqn. (5). As we show below in
Sec. 9, coupling frequencies need to be at least one order
of magnitude above the design frequencies, meaning that
coupling springs must be two order of magnitude above
the stiffness of the internal force derivatives.

There are alternatives to this which do not involve a
global solver as the one in Sec. 6, such as bilateral de-
lay lines (TLM) (Dag Fritzson, 2007; Krus, 1995). This
is still a spring-damper coupling but motivated by the fact
that a force takes finite time to traverse any form of physi-
cal coupling, interactions are interpolated between the two
previous steps. The main issue here is that this only works
with intermediate steps within the DoStep calls. Some-
thing which can only be addressed with ME FMI using
state machines without continuous states, one of our next
steps. An effort similar to ours but based on TLM is in
the process of being released to the public (Sjölund et al.,
2010).

As far as trying to damp the high frequencies due
to coupling and avoid oversampling the system, an an-
tialiasling technique as been presented recently (Drenth,
2016) which is promising. We have introduced it into our
software though we are not including this in our results as
explained below in Sec. 11.

6 A differential algebraic stepper
As mentioned in Sec. 5, a split model involves algebraic
conditions, and these can be taken care of directly by a
DAE method (Bernhard Schweizer, Daixing Lu, and Li,
2015; Bernhard Schweizer, Li, Daixing Lu, and Meyer,
2015; Bernhard Schweizer and Li, 2015; B. Schweizer
and D. Lu, 2015), though that requires rollback and di-
rectional derivatives. There are no spring-dampers in this
model and therefore, no parasitic dynamics. Also, the
problems related to choosing suitable spring and damping
constants for the couplings is now entirely avoided, so are

FMI Go! A simulation runtime environment with a client server architecture over multiple protocols

656 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132653

artifacts introduced by the numerical integration methods
because of stiffness, or unnaturally small time steps.

We reuse ideas from multibody dynamics (Lacoursière,
2007) to design a stepper which computes the interaction
forces required to maintain the constraints at least linearly,
and uses damping to stabilize the symmetric average of the
algebraic conditions.

Consider two systems with output variables y(1),y(2)

as well as time derivatives ẏ(1), ẏ(2). These variables are
constrained either holonomically or nonholonomically, re-
spectively, meaning that in discrete time we should have

g(y(1)k ,y(2)k) = 0 or q(y(1)k ,y(2)k) =G(1)ẏ(1)k +G(2)ẏ(2)k = 0,
(7)

respectively, where k is the discrete time index. We also
write G = ∂g/∂y so that Gẏ = 0 holds for both cases, abus-
ing notation. First we make the assumption that

y(j)
k+1 ≈ y(j)

k +hẏ(j)
k+1, (8)

where H is the communication step is a reasonable ap-
proximation. This is the case for the SHAKE (Hairer, Lu-
bich, and Wanner, 2001) stepper and a variant of ours (La-
coursière, 2007). Note that k+1 is used on the time deriva-
tives. Next we write a time translation operators as

y(j)
k+1 =Φ

(j)
k (u(j)

k) and ẏ(j)
k+1 =Ψ

(j)
k (u(j)

k). (9)

The aim now is to compute u(j)
k in such a way that

Eqn. (7) is satisfied at k+ 1. Assuming that all modules
can rollback, we start with a guess ū(j)

k and from this we
expand the constraint equations in Eqn. (7) to compute
u(j)

k = ū(j)
k + δu(j)

k such that the constraints are satisfied.
This requires the directional derivatives

∂ ẏ(j)
k

∂u(j)
k

=
∂Ψ
(j)
k

∂u(j)
k

, (10)

which are mobilities in the case of multibody dynamics, or
admittance for electrical circuits. Dropping superscripts
on all variables and writing G for the agglomerated Jaco-
bian of the constraint equations and gk for the value of the
constraint equation at discrete time k, δu should satisfy

gk+1 ≈ gk +hGẏk+1

= gk +hGΨk(ūk +δu)

≈ gk +hG ˙̄yk +h[G
∂Ψk

∂uk
]δu.

(11)

This linear approximation can be stabilized as shown in
our previous work (Lacoursière, 2007), which is uncondi-
tionally stable, unlike more popular methods (Ascher and
Petzold, 1993) variants of which have been studied also in
the context of cosimulation (Bernhard Schweizer, Daixing
Lu, and Li, 2015). However, methods mentioned above all
based on spring-damper ideas and introduce second order

dynamics on the algebraic condition. Our method is of
first order only and this is what provides stability. We also
use a symmetric form of the constraint so that in fact, we
are enforcing

1
4
(gk+1+2gk +gk−1)+

τ

h
Gkvk+1+

ε

h
uk+1 = 0, (12)

where τ is a relaxation time and serves as stabilization.
This is clearly of first order in and of itself, but of course,
the averaging does introduce oscillations, damped by the
τ term. Such symmetric projections have been shown to
have good energy preservation properties (Hairer, 2000)
when τ = 0 and the nonlinear equations are solved ex-
actly. The parameter ε has the same unit of the inverse
of a spring constant if we assume that u has units of force,
and is there only to prevent against constraint degeneracy
but can be shown to introduce physical compliance when
τ is sufficiently small. However, τ serves as a low pass
filter and when τ = 2h, the oscillations are just below crit-
ical damping. This is needed to stabilize on the constraint
manifold. This analysis is found in part in our own work
cited above. With this parameterization, τ/h is the rate of
exponential decay of the constraint violation. There is no
such guarantee of stability with the standard scheme (As-
cher and Petzold, 1993). A more thorough stability analy-
sis is in preparation. We linearize Eqn. (12) to avoid hav-
ing to solve the nonlinear system of equations. Introduc-
ing the parameter

γ =
1

1+4τ/h
(13)

we need to solve the following linear system of equations
for δu

[G
∂Ψ

∂u
+

4γε

h
]δu = −

4γ

h
gk + γGẏ(k)−G ˙̄y(k+1) (14)

In practice, one performs a step with some guess for in-
puts ūk to obtain a preliminary estimate on the velocities
˙̄yk+1, rollback, compute δu, and then step forward again
with uk = ūk +δu. This has been shown to work very well
even for nonsmooth, event driven systems (Lacoursière
and Sjöström, 2014) dozens of units simulated in paral-
lel.

Note here that if there are n observables y ∈ Rn and m
control inputs u ∈ Rm, the system is underactuated if m <

n, overactuated if m > n and fully actuated when m = n.
The matrix G∂Ψ/∂u has full row rank when m ≤ n but is
degenerate otherwise, and this is where ε ≥ 0 comes in to
regularize the system.

The control flow is described in the following. In this
notation, each statement is understood to be applied to all
FMUs in parallel and all superscripts are removed.

s = GetState(. . .)
SetXXX(. . .), ū
DoStep(. . . ,t,t +h, False)
GetReal(. . . , ȳ)
GetDirectionalDerivative(. . . ,∂Ψ/∂u)

Session 10A: FMI II

DOI
10.3384/ecp17132653

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

657

Assemble system matrix G∂Ψ/∂u
Solve for inputs δu from Eqn. (14)
SetState(. . . ,s)
SetRealXXX(. . . , ū+δu)
DoStep(. . . ,t, h, True)

7 Experimental methodology
In evaluating the performance of FMIGo! we focused
on the latency introduced by the FMI/X communication
layer. We looked at scalability here and worked strictly
with the best case scenario using loopback ports. Over-
head due to TCP/IP routers or switches varies greatly, but
are in the millisecond range.

For the rest, we compare both the accuracy of cosim-
ulated systems with respect to reference or analytic solu-
tions, and pay attention to the small time scales introduced
by the spring-damper couplings.

Two examples are considered, chains of spring damper
systems with uniform masses, and a simple truck model
often used for elementary analysis (Eriksen and Nielsen,
2014). The latter example contains large mass ratios.

In all cases, we choose our time steps using dimensional
analysis and compare them the periods of oscillations in
the systems, the rationale being that accurate solutions
should require around twenty steps per period of oscilla-
tion – the smallest in the system – , as is the case for most
good numerical time integration methods as easily veri-
fied. For instance, an embedded Runge Kutta method of
order 4/5 requires 15 steps per period for the simple har-
monic oscillator to reach local tolerance of 10−4, involving
90 function evaluations, though forward Euler requires at
least 50 function evaluations (steps) to produce a reason-
able solution, though more than 200 to deliver any form of
accuracy. And because ZOH techniques are very akin to
forward Euler, this is the best one can expect.

8 Timing
Measurements on 4 cores i7 2.8GHz, sufficient memory
and a vanilla Linux installation. We had 4GB available,
but the footprint of the program was small enough as to
be irrelevant for common hardware. Results will vary for
different systems but this should give a good idea of the
overhead involved.

Using /usr/bin/time utility we extracted user,
system and wall time. The user time is spent in com-
putation and signal routing and communication packaging
and a part of the time spent in moving data via sockets.

For TCP/IP version, system includes time for polling,
waiting and going through the TCP/IP stack. For the
MPI version, system includes interprocess communica-
tion which depending on the MPI library, might also go via
sockets and TCP/IP. So, this time has to be considered in
the present case as it is used by the application. There are
other unrelated processes counted in system but that was
made negligible by stopping all irrelevant applications.

The wall time is larger than the sum of user and

1 20 40

50

100

150

computations

communication
idle

N FMUs

Ti
m

e
[µ

s]

Per process timing on single computer

wall
system+user

user

Figure 3. Timing measurements in loopback configuration

m1 m2 m3 m4 m5 m6

m̄2 m̄3m̄1 m̄4

v2

f3

v4

f5

Figure 4. A chain of mass spring-dampers split into subunits

system because the CPU is not fully utilized and spends
cycles waiting for packets and communication.

Note that this timing is sensitive to the choice of MPI
library for the case of oversubscribing, i.e., when there are
more processes than cores. OpenMPI performs badly in
this case and seems to have quadratic complexity. MPICH
however is well behaved and delivers linear performance
as shown in Fig. 3. The Microsoft MPI library did perform
well also.

Our experiment consisted of minimal FMUs which con-
tained a point mass and a spring-damper. Computations
were minimal and represent a lower bound on any practi-
cal simulation. What is therefore included here is all the
time needed to perform time integration on said physical
model, communication to the master stepper, routing of
signals and communication back to the individual FMUs.

The conclusion is that a distributed design, at least
when using MPI, is negligibly slower than one based
purely on dynamic loading. The benefits of MPI how-
ever are immense as one can simulate on clusters, and as
for the TCP/IP version, enables IP protection by hosting
FMUs on secured computers.

9 Chains of mass-spring-dampers
The purpose of this experiment is to see at which point
the time scales of the models and those of the couplings
are sufficiently far apart that the dynamics of interest is
negligibly disturbed and from there, made an estimate of
the kind of time step required, in proportion to that one
would use for the individual systems.

We consider a chain of N elements with ideal springs as

FMI Go! A simulation runtime environment with a client server architecture over multiple protocols

658 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132653

seen in Fig. 4

m̄(j) ¨̄x(j)
= −k(j−1)

(x̄(j)
− x̄(j−1)

)−k(j)
(x̄(j)

−¯(j+1)
),
(15)

with j = 2,3, . . . ,N −1, and

m̄(1) ¨̄x(1) = −k(1)(x̄(1)− x̄(2)) and

m̄(N) ¨̄x(N) = −k(N−1)
(x̄(N)− x̄(N−1)

).
(16)

We call these spring constants the design variables as they
are the ones included in the original model. The un-
damped case is the only irrelevant one for this analysis
as it is the worst case scenario for testing the schemes.
This considerably reduces the dimension of the parameter
space. Then we split each mass except the first and last so
that for j = 2,3, . . . ,N −2

m(i) = m̄(1),m(2N−2)
= m̄(N), and

m(2 j)
+m(2 j+1)

= m̄(j+1).

(17)

The interaction between m(2 j−1) and m(2 j) is the same
as that between m(j) and m(j+1), but we now intro-
duce spring-damper coupling k(c),γ (c) between m(2 j)

and m(2 j+1) so that

m(2 j)ẍ(2 j)
= −k(j)

(x(2 j)
−x(2 j−1)

)+ f (2 j,2 j+1), and

m(2 j+1)ẍ(2 j+1)
= −k(j)

(x(2 j+1)
−x(2 j+2)

)− f (2 j,2 j+1),

m(1)ẍ(1) = −k(1)(x(1)−x(2)),

m(N)ẍ(N) = −k(N)(x(N)−x(N−1)
), and

f (2 j,2 j+1)
= −k(c)(x(2 j)

−x(2 j+1)
)

− γ
(c)

(ẋ(2 j)
− ẋ(2 j+1)

), j = 1,2, . . .N −1.
(18)

and therefore, we should have

x(2 j)
→k(c)→∞ x(2 j+1). (19)

if the damping is correctly adjusted. We chose the non-
dimensional damping parameter such that

ζ =
γ
(d)

2
√

µk(c)
= 0.7 where µ =

m(2 j)m(2 j+1)

m(2 j)+m(2 j+1)
. (20)

This means that γ
(c) →∞ as k(c) →∞ as required for

convergence. The effect of this is also that in the stability
analysis, we are at the same location in the complex plane
as long as

h1ω
(c)
1 = h2ω

(c)
2 , where ω

(c)
i =

¿
Á
ÁÀk(c)i

µ
. (21)

Note that it is not generally possible to pick the damp-
ing constant γ optimally since internal inertiae and fre-
quencies of any given FMU cannot be assumed to be

−1.0

0.0

1.0

0 5 10
10−6

10−4

10−2

100

x

Position of Second mass

Time [s]

lo
g 1

0(
∣x
−

x r
ef
∣)

Differences with reference

r1 = 4 r2 = 32
r3 = 320 reference

Figure 5. Influence of coupling springs on natural dynamics

known. We expect the time step to decreases linearly
with the smallest period of the system, which should be
O(k(c)) unless an implicit integration strategy can be im-
plemented.

We now look at ratio ρ between the coupling frequen-
cies ω

(c) and those of the original system ω
(d), and es-

timate how large ρ must be to minimize interference. In
our experiments, we set x(1)(0) = 1 so as to inject energy
in the natural modes. As expected for a linear system, the
modes are separated and do not interact very much so the
overall dynamics is similar. What is worrisome however
that it takes a ratio of coupling of more than 100 before
the errors go below 10−3.

As seen in Fig. 4, one needs frequency ratios of around
30 to start recovering the correct solution and from Fig. 5
there is quadratic convergence towards the original solu-
tion. But given that this is a forward Euler technique, we
get less. We found that we needed at least 50 times more
step per coupling period than the minimum required by an
good numerical integrator to have stability and some sta-
bility. This means 30 ⋅50 = 1,500 more steps per unit time
than for the isolated models. That’s three orders of mag-
nitude more work. The DAE stepper of Sec. 6 produced
very good solutions with a step commensurate with the
design frequencies. We used a holonomic coupling here
and included the positions in the model.

10 Experiments with a truck model
Here we investigate a simple truck model with an engine
modeled with a point mass – the flywheel –, a PI control
which aims at reaching a given speed, a clutch, a gearbox
and a shaft, each represented with a pair of masses cou-
pled with spring-dampers – piecewise linear for the clutch
as in Fig. 7–, and a trailer modeled as a point mass but in-
teracting with a road with variable slope following a sine

Session 10A: FMI II

DOI
10.3384/ecp17132653

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

659

−1.0

0.0

1.0

0 5 10
10−4

10−2

100

x
Position of Second mass

Time [s]

lo
g 1

0(
∣x
−

x r
ef
∣)

Differences with reference

npp = 50 npp = 450
npp = 4500 kin, npp = 20
reference

Figure 6. Simulation results for chains

−0.1 0 0.1 0.2

−2

0

2

4
⋅103

δφ [Rad]

[N
⋅m

]

Clutch model

Figure 7. A piecewise linear clutch model

wave, and subject to gravity, rolling and dry friction, as
well as air resistance. This is a textbook model (Eriksen
and Nielsen, 2014).

The engine delivers 1,350 Nm max torque, the target
speed is 100 km/h, and the trailer has a mass of 10,000 kg.
The slope of the road was made sinusoidal. The interest-
ing aspects here are the mass ratio and the large torques
involved. The kinematically coupled model simply con-
straints velocities and coordinates between the compo-
nents, i.e., the flywheel angle should match that of the in
plate of the clutch, etc.

Each FMU has it’s own time integration and we chose
the GSL for that. We used the fourth order Runge Kutta
method rkf45 for our experiments with 10−6 tolerance.
For the kinematic stepper, we computed the effective mo-
bility by integrating and rollback and then using finite dif-
ferences.

Here we compare our kinematic stepper of Sec. 6 with
a step of 1/20 and 1/120 of the smallest period in the de-
sign. In this case, this is in the clutch and gearbox dynam-

0

20

40

0

1

2

3

0 5 10
10−6

10−4

10−2

100

ω
[r

ad
/s

]

Angular velocity at engine

ω
[r

ad
/s

]

Angular velocity at trailer

Time [s]

ω
[r

ad
/s

]

Clutch engine δω

kin 20 spp
kin 120spp
fv 350spp
fv 640spp

Figure 8. Cosimulation of a truck model. The “spp” key stands
for steps per period.

ics. The case of 120 steps per period offers good results,
though as low as 10 steps per period as stable. However,
for the force-velocity coupling using either sequential or
parallel simulation required more than 350 steps per pe-
riod before stability. Good results come after 640 steps
per period. Things were worse yet when we used holo-
nomic coupling, i.e., including spring dampers for posi-
tions as well as velocities. We needed more than 10 times
as many steps for the force-velocity versions, though with
kinematic coupling, we had high accuracy at 20 steps per
period already (results not shown). To be considered here
is that the mass of the trailer is so much larger than the
driveline that very stiff springs would be needed to reach
the correct result. Considering the previous experiment in
Sec. 9 we used coupling springs 30 times larger those in
the design. This leads to 30 ⋅350/20 ≈ 500 more steps than
necessary just for stability. The DAE stepper does perform
more work per step: solving a small system of linear equa-
tions, computing directional derivatives, and performing
two sub-steps per step. But even that’s not a fair compar-
ison since the FMUs in the kinematic coupling setup do
not contain stiff coupling springs and therefore, they also
perform an order of magnitude less work. In this case, the
best result from the DAE stepper used four times fewer in-
tegration steps overall, and that’s despite the fact that we
used numerical directional derivatives, which takes four
times as many steps.

FMI Go! A simulation runtime environment with a client server architecture over multiple protocols

660 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132653

11 Discussion
The main lesson here is that when it comes to force-
velocity couplings at least, but this applies to the other
cases of spring-damper type couplings, one needs at least
30:1 ratio of frequencies and as far as ZOH techniques
goes, this introduces orders of magnitude more work than
an all-at-once method, or a DAE based one. Though
the frequency ratio appears inevitable, there is recent
work (Drenth, 2016) indicating that the communication
step size can be kept modest by filtering the high oscilla-
tions. We have not been able to use this technique or re-
produce the results in our experiments, something which
the author relates to admittance or mobility ratio between
the FMUs.

Kinematic coupling offers very good solutions at rel-
atively large steps and were able to use holonomic cou-
plings as well at moderate steps. Of course, this requires
functionality that is not often seen in CS FMUs, namely,
rollback and directional derivatives.

12 Conclusion
The software we introduce should be of interest for being
minimalistic and offering a good foundation to build inte-
gration environments for cosimulation. It offers very good
performance for a standalone computer yet can be dis-
tributed over WAN. We hope that the functionality we are
developing will open the door to more advanced time in-
tegration methods. We will soon start collaborations with
the OpenModelica and OpenCPS groups, which will pro-
vide user interfaces.

Our kinematic stepper can produce very good results in
keeping time steps commensurate with the model frequen-
cies and offers parallelism, at least on simple models. Fur-
ther investigation is needed clearly, but the benefit in com-
parison to force-velocity coupling is significant and we be-
lieve that, despite the difficulties associated with roll-back
and computation of directional derivatives, is worth much
attention.

As part of future work, we intend to support TLM as
it is popular, provide a fully functional ME simulation
master, and improve the numerical directional derivatives
functionality to be fully parallel. Other features such as
extrapolation and interpolation in the ME FMU wrapper,
as well as iterative and implicit time integration methods,
or various types of filtering are under consideration.

The software is available on a request basis at this
time at git clone at https://mimmi.math.umu.se/
users/sign_in. Anonymous access is forthcoming.

Acknowledgments
This work is a part of the project "Virtual Truck and Bus"
supported by the Swedish Energy Authority, and is a col-
laboration between Scania CV AB, Algoryx Simulation
AB, Modelon AB, Umeå University and Volvo Car Cor-
poration. Previous contributions to the software develop-
ment were made by Stefan Hedman and Adeel Ashgar.

Bibliographic References
References
Arnold, Martin (2010). “Stability of Sequential Modular

Time Integration Methods for Coupled Multibody Sys-
tem Models”. In: Journal of Computational and Non-
linear Dynamics 5.3, pp. 031003–031003.

Ascher, Uri M. and Linda R. Petzold (1993). “Stability
of Computational Methods for Constrained Dynamics
Systems”. In: SIAM J. Sci. Computing 14.1, pp. 95–120.

Awais, M. U. et al. (2013). “Distributed hybrid simulation
using the HLA and the Functional Mock-up Interface”.
In: Industrial Electronics Society, IECON 2013 - 39th
Annual Conference of the IEEE, pp. 7564–7569.

Broman, D. et al. (2013). “Determinate composition of
FMUs for co-simulation”. In: 2013 Proceedings of the
International Conference on Embedded Software EM-
SOFT, pp. 1–12.

Cremona, F. et al. (2016). “Step revision in hybrid Co-
simulation with FMI”. In: 2016 ACM/IEEE Interna-
tional Conference on Formal Methods and Models for
System Design (MEMOCODE), pp. 173–183.

Dag Fritzson Johas Ståhl, Iakov Nakimovski (2007).
“Transmission line co-simulation of rolling bearing ap-
plications”. In: The 48th Scandinavian Conference on
Simulation and Modeling. Ed. by Claus Führer Peter
Bunus Dag Fritzson, pp. 24–39.

Davis, Timothy A. (2004). “Algorithm 832: UMFPACK
— an Unsymmetric-Pattern Multifrontal Method”. In:
ACM Transactions on Mathematical Software 30.2,
pp. 196–199.

Drenth, Edo (2016). “Robust Co-Simulation Methodology
of Physical Systems”. In: 9th Graz Symposium Virtual
Vehicle.

Eriksen, Lars and Lars Nielsen (2014). Modeling and con-
trol of engines and drivelines. John Wiley & Sons.

Fiedler, Robert and Martin Arnold (2014). “Coupled dif-
ferential algebraic equations in the simulation of flex-
ible multibody systems with hydrodynamic force ele-
ments”. In: PAMM 14.1, pp. 523–524.

Galtier, Virginie et al. (2015). “FMI-based Distributed
Multi-simulation with DACCOSIM”. In: Proceedings
of the Symposium on Theory of Modeling & Simula-
tion: DEVS Integrative M&S Symposium. DEVS ’15.
Alexandria, Virginia: Society for Computer Simulation
International, pp. 39–46.

Protocol Buffers (2017). https://github.com/
google/protobuf.

Hairer, E. (2000). “Symmetric Projection Methods for
Differential Equations on Manifolds”. In: BIT Numer-
ical Mathematics 40 (4), pp. 726–734.

Hairer, E., C. Lubich, and G. Wanner (2001). Geomet-
ric Numerical Integration. Vol. 31. Springer Series in
Computational Mathematics. Berlin: Springer-Verlag.

Session 10A: FMI II

DOI
10.3384/ecp17132653

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

661

IEEE (2010). “IEEE Standard for Modeling and Simula-
tion (M&S) High Level Architecture (HLA)– Frame-
work and Rules”. In: IEEE Std 1516-2010, pp. 1–38.

iMatrix (2017). ZeroMQ. http://zeromq.org/.
Köler, Jochen et al. (2016). “Modelica-Association-

Project “System Structure and Parametrization" – Early
Insights”. In: Proceedings of the 1st Japanese Modelica
Conference. Modelica Association. Linköping Univer-
sity Electronic Press, pp. 35–42.

Krus, Petter (1995). “Modelling of Mechanical Systems
using Rigid Bodies and Transmission Line Joints”. In:
ASME J. Dyn. Sys., Meas., Control 121.4, pp. 606–611.

Lacoursière, Claude (2007). “Ghosts and Machines: Reg-
ularized Variational Methods for Interactive Simula-
tions of Multibodies with Dry Frictional Contacts”.
PhD thesis. Dept. of Computing Science, Umeå Uni-
versity.

Lacoursière, Claude and Sjöström (2014). A non-smooth
event-driven, accurate, adaptive time stepper for simu-
lating switching electronic circuits. Tech. rep. UMINF
16.15. Dept. of Computing Science, Umeå University.

M. Benedikt et al. (2013). “NEPCE - A nearly energy-
preserving coupling element for weak-coupled prob-
lems and co-simulations”. In: V International Confer-
ence on Computational Methods for Coupled Problems
in Science and Engineering. Ed. by S. Idelsohn, M. Pa-
padrakakis, and B. Schrefler, pp. 1021–1032.

Martin, Arnold, Clauss Christoph, and Schierz Tom
(2013). “Error Analysis and Error Estimates for Co-
Simulation in FMI for Model Exchange and Co-
Simulation V2.0”. In: Archives of Mechanical Engi-
neering 60. 1, pp. 75–94.

Microsoft (2017). Microsoft MPI. http://tinyurl.
com/mpilib-microsoftv85.

MIT (n.d.). MIT license.
MODELISAR (2014). FMI website. last retrieved 2017-

01-22. URL: https://www.fmi- standard.
org.

MPI (2017). A Message Passing Interface Standard.
http://mpi-forum.org/.

MPICH (2017). High performance, widely portable im-
plementation of the Message Passing Interface. http:
//mpi-forum.org/.

Ptolemaeus, Claudius, ed. (2014). System Design, Mod-
eling, and Simulation using Ptolemy II. Ptolemy.org.
URL: http://ptolemy.org/books/Systems.

QTronic (2017). QTronic FMI SDK. http://www.
qtronic.de/en/fmusdk.html.

Schierz, Tom and Martin Arnold (2012). “Stabi-
lized overlapping modular time integration of cou-
pled differential-algebraic equations”. In: Applied Nu-
merical Mathematics 62.10. Selected Papers from
NUMDIFF-12, pp. 1491–1502.

Schierz, Tom, Martin Arnold, and Cristoph Clauss (2012).
“Co-simulation with communication step size control
in an FMI compatible master algorithm”. In: Proceed-
ings of the 9th International MODELICA Conference.

Schweizer, B. and D. Lu (2015). “Predictor/corrector co-
simulation approaches for solver coupling with alge-
braic constraints”. In: ZAMM 95 (9), pp. 911–938.

Schweizer, Bernhard and Pu Li (2015). “Solving
Differential-Algebraic Equation Systems: Alternative
Index-2 and Index-1 Approaches for Constrained Me-
chanical Systems”. In: Journal of Computational and
Nonlinear Dynamics 11.4, pp. 044501–044501.

Schweizer, Bernhard, Pu Li, and Daixing Lu (2015). “Ex-
plicit and Implicit Cosimulation Methods: Stability and
Convergence Analysis for Different Solver Coupling
Approaches”. In: Journal of Computational and Non-
linear Dynamics 10.5, pp. 051007–051007.

Schweizer, Bernhard, Pu Li, Daixing Lu, and To-
bias Meyer (2015). “Stabilized Implicit Cosimulation
Method: Solver Coupling With Algebraic Constraints
for Multibody Systems”. In: Journal of Computational
and Nonlinear Dynamics 11.2, pp. 021002–021002.

Schweizer, Bernhard, Daixing Lu, and Pu Li (2015). “Co-
simulation method for solver coupling with algebraic
constraints incorporating relaxation techniques”. En-
glish. In: Multibody System Dynamics, pp. 1–36.

Sjölund, Martin et al. (2010). “Towards Efficient Dis-
tributed Simulation in Modelica using Transmission
Line Modeling”. In: Proceedings of the 3rd Interna-
tional Workshop on Equation-Based Object-Oriented
Languages and tools. Ed. by Peter Fritzson et al.,
pp. 71–80.

Zeigler, Bernard P., Herbert Praehofer, and Tag G. Kim
(2000). Theory of Modeling and Simulation. 2nd ed.
Academic Press.

FMI Go! A simulation runtime environment with a client server architecture over multiple protocols

662 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132653

