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Abstract

A time-discrete formulation of the variational principle of mechanics is used to

provide a consistent theoretical framework for the construction and analysis of

low order integration methods. These are applied to mechanical systems subject

to mixed constraints and dry frictional contacts and impacts—machines. The

framework includes physics motivated constraint regularization and stabilization

schemes. This is done by adding potential energy and Rayleigh dissipation terms

in the Lagrangian formulation used throughout. These terms explicitly depend

on the value of the Lagrange multipliers enforcing constraints. Having finite

energy, the multipliers are thus massless ghost particles. The main numerical

stepping method produced with the framework is called SPOOK.

Variational integrators preserve physical invariants globally, exactly in some

cases, approximately but within fixed global bounds for others. This allows to

product realistic physical trajectories even with the low order methods. These are

needed in the solution of nonsmooth problems such as dry frictional contacts and

in addition, they are computationally inexpensive. The combination of strong

stability, low order, and the global preservation of invariants allows for large

integration time steps, but without loosing accuracy on the important and visible

physical quantities. SPOOK is thus well-suited for interactive simulations, such

as those commonly used in virtual environment applications, because it is fast,

stable, and faithful to the physics.

New results include a stable discretization of highly oscillatory terms of con-

straint regularization; a linearly stable constraint stabilization scheme based on

ghost potential and Rayleigh dissipation terms; a single-step, strictly dissipa-

tive, approximate impact model; a quasi-linear complementarity formulation of

dry friction that is isotropic and solvable for any nonnegative value of friction

coefficients; an analysis of a splitting scheme to solve frictional contact com-

plementarity problems; a stable, quaternion-based rigid body stepping scheme

and a stable linear approximation thereof. SPOOK includes all these elements.

It is linearly implicit and linearly stable, it requires the solution of either one

linear system of equations of one mixed linear complementarity problem per

regular time step, and two of the same when an impact condition is detected.

The changes in energy caused by constraints, impacts, and dry friction, are all

shown to be strictly dissipative in comparison with the free system. Since all

regularization and stabilization parameters are introduced in the physics, they

map directly onto physical properties and thus allow modeling of a variety of

phenomena, such as constraint compliance, for instance.

Tutorial material is included for continuous and discrete-time analytic me-

chanics, quaternion algebra, complementarity problems, rigid body dynamics,
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Abstract

constraint kinematics, and special topics in numerical linear algebra needed in

the solution of the stepping equations of SPOOK.

The qualitative and quantitative aspects of SPOOK are demonstrated by com-

parison with a variety of standard techniques on well known test cases which are

analyzed in details. SPOOK compares favorably for all these examples. In partic-

ular, it handles ill-posed and degenerate problems seamlessly and systematically.

An implementation suitable for large scale performance and accuracy testing is

left for future work.
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Preface

Some years ago while working at a physics simulation company based in Mont-

réal, I visited Prof. Michael M. Kostreva in Clemson where he explained an

algorithm [82] for solving linear complementarity problems. This was needed to

compute frictional contact forces in a real-time physics engine I was developing.

The method processed a difficult problem, !#" , say, by solving a sequence easier

problems, !%$�& , differing from the original one by a small perturbation 
('*),+.-/ � )�+10324'5) +6�879�:�;� �<�>=>=>= . The solution produced at stage 7:?@� was then

used to warm start the solver for stage 7 and this saved considerable work. One

would then check whether the solution at stage 7 differed only by a small amount

from that of stage 7A?B� . This often happened after two or three stages and one

could then construct the solution of !%" without worrying about degeneracy or

singularity.

My implementation of this numerical method yielded nice results but was too

slow. A colleague of mine who had a knack for economy of means decided that it

was not worth going through the sequence and fixed a value of )DCE
 in his own

implementation. Using the solution of !#$ instead of !�" removed all degeneracy—

which was well understood—but also introduced contact compliance, i.e., small

amplitude, low frequency damped oscillations in the contact physics. It turned

out that this was a desirable feature since these oscillations were stable. Indeed,

we could now tune ) to model tires of wheeled vehicles or the ground compliance

in our simulations. It was quickly realized that this perturbation corresponded

to replacing hard contacts with springs of stiffness FHGJIK� �L�;),� though we could

not quite understand the exact relationship yet. But the curiosity was that

the oscillations were stable, despite the potentially high frequencies. We could

often manage to use a very small value for ) , about �M
ONQP or less, while using

large time steps for integration, approximately RBG �L�;ST
 s. By contrast, other

techniques based on strong penalty forces which we had tried before were always

numerically unstable for this set of parameters. Not only did this perturbation

allow to approximately solve the original problem, it provided a useful physical

model. This was a free lunch with beer included!

This curious result got me to think long and hard about the physical signifi-

cance of this ) parameter and the connection to the integration methods. Would

it be possible that given a physical system U6" that is hard to solve, a perturbed

physical system of the form UK$ � U("WV )�X would be solvable quickly, efficiently,

and reliably? If so, then, the first question is how to solve UY$ numerically and

then, how to reconstruct the solution to UK" if necessary. The second set of ques-

ix



Preface

tions to address concern the nature of the perturbation problem X . What form

is sufficient to guarantee easy solution of the perturbed problem? What range

of physical phenomena can be modeled with UK"ZV )�X ?

Alternately, it is common in numerical analysis to consider the finite precision

solution [\ to problem ! as computed by algorithm ] to be the exact solution

of a nearby problem !%$ . It is well known that the Cholesky algorithm (see

Ref. [107], chapter 4 for instance) to compute the lower triangular factors ^ of

a symmetric, positive definite matrix _ � ^`^ba , produces the factors [^ of a

nearby symmetric and positive definite matrix _	V	c where matrix c is small,

as long as _ is positive definite enough(see [126] Chapter 10 for instance). By

contrast, Gaussian elimination applied to matrix d which is not positive definite

does not enjoy such stability as the Cholesky algorithm, which is also faster and

simpler to code. With this in mind, given a physics problem U6" , it might be a

good idea to look for a perturbation of the form UY$ � U("eV )�X so that UK$ can be

attacked with stable methods, such as the Cholesky algorithm, since it is better

to make small errors on the perturbed problems than potentially large errors on

the exact problem. Not only that but if the method is well chosen, the perturbed

numerical solution is the exact solution of a slightly different physical problem.

If efficiency and speed are also gained in the process, this is marvelous!

This points to a cunning paradigm. Since it is not possible to solve any problem

exactly, given the finite precision of the machine, one might as well introduce

perturbations in the physical model itself if they allow the use of stable numerical

methods which are both accurate and efficient. Thus we get better performance

and better stability by simulating more physics, as long as we keep away from the

singular cases. Instead of formulating the idealized physical problem, U6" , say,
and passively expecting a numerical method to produce accurate results, an ex-

plicitly physical, small perturbation is added first making it possible to compute

solutions of the nearby problem, UK"3V )�X , say, quickly, reliably, and with known

error bounds. As will be shown in the various examples presented throughout the

thesis, mathematical idealizations of physical problems often present numerical

difficulties, and these are removed by relaxing the idealizations. For instance, the

simple pendulum is a difficult problem when it is assumed that the rod holding

it is perfectly rigid. But making it only as rigid as diamond makes the numerical

difficulties go away! Since there is nothing that is much harder than diamond,

solving the exact problem is pointless.

Prior to this, working at the same company and trying to construct numerical

methods to simulate Coulomb friction [232, 34], I was struck by the difficulty of

the problem. I could not get around the fact that Coulomb friction was essentially

a min max principle, namely, that it maximized dissipation when bodies were

sliding, and that it corresponded to the standard minimum constraint principle

otherwise. Being fresh out of graduate school at McGill University where I

had studied physics, I was convinced that some discretized Lagrangian could be

constructed on which one could apply Hamilton’s principle of least action, the

theory I loved best. My reflection then went as follows. Some classical integration

formulae are constructed starting from the assumption that the function being

x



sought, \ �gf � , satisfying the differential equation h\i��j � \k� , say, is approximated

locally polynomial in f , say [\ �gf �6�mlonpTq "#r p f p . Using this fact, one identifies

the best fit for \ �sf � by expanding j � \ �gfkV�RQF p �8� as a Taylor polynomial for some

coefficients F p and matching the result with the presumed form [\ �gf � so as to

minimize the error (see Ref. [113] for a more precise definition of this statement).

I figured that one could perform the same trick to approximately evaluate the

action integral � �utwv"yx{zM| � � � z �,� h� � z �8�>� where } is the Lagrangian of the physical

system and � �gf �~� h� �sf � are generalized coordinates and velocities, respectively, and

then, choose the coefficients r p so that � is minimized, satisfying Hamilton’s

principle. I thought then that the discrete trajectory computed this way was

bound to reproduce the physics as closely as the approximation allowed and since

the method would consist of solving minimization problems, it would certainly

be stable and efficient.

But I did not know how to formulate dissipative terms properly then and, due

to commercial obligations and lack of resources, it was not possible to investigate

this further. Little did I know that Moser and Veselov [208], Gillian and Wil-

son [100] as well as Wendlandt and Marsden [277] had developed this idea just

a few years before it had crossed my mind. It was with some trepidation that

I read the extensive literature by Marsden and colleagues [196, 225], with some

of the papers even covering Coulomb friction applications. This was the missing

piece of the puzzle.

The present work is a synthesis of these two ideas. All told, it took almost ten

years split between commercial work at the company and studies at the university

to build satisfactory answers to these questions. In a sense, the form of the new

numerical methods I constructed are anticlimactic since it was clear from the

start that a discrete variational principle coupled with physically regularized

numerical methods would simply work. All that was wanting was my ability to

stitch the argument together properly to build the desired techniques. On the

other hand though, the results are better than I ever dreamed. Indeed, I have

implemented and tested a large number of numerical methods over the years

hoping that I would finally resolve one long standing issue or another, only to

be profoundly disappointed in realizing that in most cases, a given method only

performs well for the specific test problems discussed in the paper in which it

was presented, i.e., not on those of relevance to my work. Watching the new

methods pass one test after another was tremendously exciting. The voice of

sweet reason had been heard and there she was, in person. I hope now that I

made the presentation clear enough for others to reap the benefits of these new

techniques in their work.
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Notation

The main elements of the notation used throughout the thesis are described be-

low. Though attempt was made at being systematic, there are clashes between

different meanings of the same symbol in a few places. However, the text sur-

rounding a given equation does contain brief description of each symbol used and

its current meaning to avoid confusion.

Sets, groups, and

algebras] ���D�8�3�>=M=>= Point sets.�<��� ��] � The dimensionality of set ] ./
The real numbers./ 0 The non-negative reals, \y- / 01��\y�E
 ./ 0�0 The positive reals, \y- / 0D��\yCE
 .[/ The extended reals,

/����T�`���
.�

The complex numbers.�
Hamilton’s quaternion algebra.�
The configuration space of a mechanical systems,

with dimension � � �<��� � � � .� �
The tangent bundle of

�
.�

The natural integers �;� �<�>=>=>= .�
The integers =M=>=>�>?D�<�>?��;��
O�M�;� �O�>=>=M= .� 0 The nonzero integers,

� 0�� �y��� 
 � .�wIK��� � The special orthogonal group in � dimensions, i.e.,

the set of orthonormal ����� matrices � with �Da3� �� p
,
���,� ��� �w� V � .^ A Lie group. See also the use of ^K� ��� as the Jacobian

of the function �¡  / +£¢¤ / p
.

g A Lie algebra. Given a Lie group ^ , the Lie algebra

of the infinitesimal generators is written g, and has

elements ¥>¦ �8§w����� �O�>=M=>=~� � , where � � �¨��� � g � .¥~¦ The basis of the Lie algebra g of a Lie group ^ , for§w�£�;� �<�>=>=>=>� �<��� ��^ � . The Lie algebra g is defined by

the structure constraints, © ¥>¦ � ¥ ªM« �ul�¬3 ¦®ª ¬ ¥ ¬ , where© r ��¯ « is the anticommuting Lie bracket for g.°>± ��] � The convex hull of elements in set ] .[] The closure of set ] .²
The empty set.
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Notation³
An integration domain.´ ] The boundary of set ] .� p The class of � -fold differentiable functions.µ
A smooth, differentiable manifold.^`} p � / � The general linear group over

/ p
, the set of all ���(�

real matrices.¶b· � \Q� The normal cone to the set _ at the point \y- _ .� · � \Q� The tangent cone to the set _ at the point \y- _ .�¸��� Index sets, �¸���º¹ � ��� �O�M=>=>=~� � �
.

Vectors\ General � -dimensional real column vector.\ a General � -dimensional real row vector.\Q» The � -dimensional real row vector whose entries are

the complex conjugates of those in \ , i.e., � \ » � ¦ �º\�¼¦ .\ ¦ The § th elements of vector \ . As an exception to this

rule, see the definition for \ ¬ below.\1½ ¦¿¾ The § th block component of an � -dimensional vec-

tor partitioned into 7 blocks of dimensions �#¦ withl +¦ q 2 �%¦ � � . If �%¦ �:� for §Y�À�;� �<�>=>=>=>� � , this is

equivalent to \ ¦ .\ ¬ For a time dependent � -dimensional vector \ �gf � , \ ¬
is the value of the vector at discrete time F , \ ¬ �\ �gf ¬ �W�º\ ��RkF � , for fixed time step R . Index F is used

specifically and systematically for discrete time.\ ½ ¦¿¾¬ For a time dependent � -dimensional vector \   / ¢¤/ p
, the value of the § th block \ ½ ¦¿¾¬ �Á\ ½ ¦¿¾ �sf ¬ �	�\ ½ ¦¿¾ ��F¨R � , for fixed time step R CE
 .\ � A subvector of an � -dimensional vector \ correspond-

ing to the index set �B¹ � �;���O�>=>=M=,� � �
with entries \ ¦ÃÂ ,§ ª -y� for Ä ����� �O�M=>=>=~� �<��� � �3� .�Å� � �>ÆL� � aÇ � a The partitioning of the vector representation of a qua-

ternion �È- �
into the scalar part �Æ1- /

, and a vector

part � Ç - /¸É
.� ¼ For a quaternion �6- �

, � ¼ is the complex conjugate

quaternion, � ¼ � � �MÆW?B� aÇ � a .Ê � � �sË~�ÍÌ The four basic elements of the quaternion algebra
�
.
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Notation

Special vectors�¸���Î� Ï<� Ð�� Ñ<��Ò�� Ó � -dimensional column vector coordinates for ghost

variables, i.e., the Lagrange multipliers for corre-

sponding constraints.Ô1�ÍÔwÕ The angular velocity vector of a time dependent ro-

tation matrix ���sf � in the inertial or body frame, re-

spectively, h���sf �È�5ÖÔ � � � ÖÔwÕ . See definition below

for ÖÔ .
Matrices_ � � r ¦®ª � General 7 �¡� real matrix with elements_ � ×ØØØØÙ r

2�2 r 2�Ú =>=>= r 2 pr Ú~2 r Ú�Ú =>=>= r Ú p
...

...
. . .

...r +Å2 r +1ÚÛ=>=>= r + p
ÜÞÝÝÝÝß ._�a � � r ª�¦ � The transpose of a general 7 ��� real matrix with

elements © _�a%«Ã¦®ª � r ª ¦ .© _�«Ã¦®ª � r ¦®ª The element r ¦®ª corresponding to the entry at row §
and column Ä in matrix _ ._1à�ª The Ä th column of 7 �á� matrix _ , i.e., the column

vector with entries r ¦®ª ��§â����� �O�M=>=>=>�87 ._ã¦¿à The § th row of 7 �y� matrix _ , i.e., the row vector

with entries r ¦®ª � Ä ����� �O�M=>=>=~� � ._1�{� Principal submatrix of the ���á� matrix _ for index

set �A¹ � �;� �<�>=>=>=~� � �
, so that _1�{� is the

�<��� � �3� ��<��� � �3� square matrix with elements r ¦¿ä�ªÍå ��§ ¬ � Äæ -�� ,
and F ��ç����;� �<�>=>=>=>� �<��� � �3� ._1�è Submatrix of the �K�D� matrix _ for index sets �¸���º¹� �;���O�>=>=M=~� � �

, so that _D�Mè is the
�<��� � �3� � �<��� � ���

matrix with elements r ¦¿ä�ª8å , where § ¬ -£� , for F ��;� ��=>=M=~� �¨��� � �3� , and Äæ -6� , for ç������ ��=>=>=>� �<��� � ��� ._ � ��_ã¦®ª � General block matrix _ with matrix elements_ � ×ØØØØÙ _
2 2 _ 2�Ú =>=M= _ 2�é_ Ú>2 _ Ú Ú =>=M= _ Ú é
...

...
. . .

..._Îê 2 _Îê ÚÛ=>=M= _Dê é
Ü ÝÝÝÝß where the _1¦ëª are

sub-blocks or matrix entries.�¨�~� ��_ � For a square ����� matrix _ , the determinant of _ ,
also written as

���,� ��_ �W� ìììììììììì
r 2 2 r 2�Ú =>=>= r 2 pr Ú>2 r Ú Ú =>=>= r Ú p
...

...
. . .

...r p 2 r p Úí=>=>= r pTp
ìììììììììì .
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Notation

Special matrices
 An arbitrary size matrix with all zero elements, as-

sumed to conform in size with respect to its context.� p
The ���á� identity matrix.Ö r For any vector r - /ZÉ

, with elements r �� r 2� r Ú;� r É � a , the î��*î antisymmetric matrix Ö r is

defined as Ö r � ×ØÙ 
 ? r É r Úr É 
 ? r 2? r Ú r 2 
 Ü Ýß . For a vector¯D- /ZÉ
, the result ï �oÖ r ¯���? Ö ¯ r is the cross product,

also written as ï � r � ¯���?D¯ � r .ð � ��� For a quaternion � , ð � ��� is the î6�áñ matrixð � ���W�mò ?D� Ç �>Æ � É V Ö � Çó .ô � ��� For a quaternion � , ô � ��� is the î6�áñ matrixô � ���¸� ò ?D� Ç �MÆ � É ?�Ö� Ç ó .õ � ��� For a quaternion �E- �
,

õ � ��� is the ñi�Bñ matrixõ � ���W�Àö �>Æ ?D� aÇ� Ç �>Æ � É V Ö � Ç÷ .ø � �;� For a quaternion �E- �
,
ø � �;� is the ñi�Bñ matrixø � ���W� ö �MÆ ?D� aÇ� Ç �>Æ � É ?�Ö� Ç÷ .�È� ��� For a quaternion �E- �

, ��� ��� is the îi��î special

orthogonal matrix, �È� ����- �wIK��î � , with��� �;�w� ð � ��� ô a � ���W� � É V �T�>Æ Ö� Ç V �;Ö� Ç Ö � Ç =ù � ù " The î��Hî inertia tensor of a body in the inertial and

body frames, respectively, with
ù � ��� ��� ù "��ãaW� ��� ,

where ��� ��� is the rotation matrix transforming from

the body fixed frame to the inertial frame for a given

orientation quaternion �È- �
.ú " The extended ñH�áñ inertia tensor of a body in body

frame
ú 
H�ûö 
 

 ù " ÷ , where the zeros are block ma-

trices of appropriate sizes.

Functions,

derivatives,

and operators
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Notationü  �] ¢¤ � A general map between sets ] and � . Given an ele-

ment r - ] ,
ü � r � is the (unique) element of � asso-

ciated to r by
ü
.

1-1 A bijective mapping
ü  �] ¢¤ � .ü N 2  {d ¢¤ _ For a 1-1 map

ü  3_ ¢¤ d ,
ü N 2

is the inverse mapü N 2  {d ¢¤ _ such that
ü N 2 � ü � r ���W� r .ý�þ�ü

Given sets _ � d �  and the maps
ü  ã_ ¢¤ d andý   d ¢¤  , the map

ýJþ(ü   _ ¢¤  associatesï � ý � ü � r �8� to each element r - _ .�Q� \Q� A general multivariate function, �á  / p ¢¤ / +
, which

is the column vector with elements �T¦ � \Q� , �;¦1  / p ¢¤/
.�

The standard derivative operator.

d The external derivative.ÿ
The variation operator.h\¡�������� The total time derivative of the mapping \   / ¤ _ ,
where _ is any set. The form h\ is preferred. Chain

rule always applies. See below for the special defini-

tion of
� Õ .��� ½ � ¾� � The gradient of the scalar function

�   / p ¢¤ /
, evalu-

ated at \ . This is a row vector with entries
´ � � \Q��� ´ \ ¦

so that
�	� � \k�Z� � ´ � � \k� � ´ \Q� � \ is a scalar as well for

any given differential column vector
� \ - / p

, fol-

lowing the standard matrix multiplication rule. It

is more convenient to reserve 
 � � \k� to represent the

column vector equivalent. See 
 � � \k� below.� Õ ��� �W� � � ½� ¾�  For the scalar function of scalar argument,
�   / ¢¤ � ,� Õ ��� � is the derivative evaluated at � . For this specific

notation, the chain rule never applies. Note that ��� �8Õ
has other meanings defined below.��� ½ � ¾� ��� � 
 � � \Q� For a scalar function

�   / p ¢¤ /
, the transpose

of the gradient, i.e., the column vector with entries´ � � \k� � ´ \ ¦ .^ � ���� � For the multivariate function, �i  / p ¢¤ / +
and the

argument column vector \�- / p
, the Jacobian matrix^ has the entries © ^Î«�¦®ª � ´ �;¦ � ´ \ ª .� ¦ � � \ã½ 2 ¾ �>=>=>=M��\1½ + ¾ � For a function of 7 �%¦ -dimensional argu-

ments,
�  �� p¦ q 2 � / p�� ¢¤ /

, the gradient

with respect to the § th argument, namely,

the row vector
� ¦ � � \ ½ 2 ¾ ��\ ½ Ú ¾ �>=>=>=M��\ ½ + ¾ � �´ � � \1½ 2 ¾ � \ã½ Ú ¾ �>=>=>=M��\1½ + ¾ ��� ´ \ã½ ¦�¾ .� a¦ � � \ ½ 2 ¾ �>=M=>=>� \ ½ + ¾ � The transpose of the row vector� ¦ � � \ã½ 2 ¾ � \1½ Ú ¾ �>=>=M=>��\1½ + ¾ � , which is a column vector.
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Notation´ � � \Q� For a non-smooth function
�   / p ¢¤ /

, the general-

ized gradient at the point \y- / p
.����� The quaternion product of two quaternions �#� �È- �

.

Special functions°M±�� � ��_ � The condition of n n matrix A, the ratio of largest to

smallest singular values.h� A continuous path in configuration space
�

over the

finite time interval © f8" � f 2 « , so h�i- © fÍ" � f 2 «%� � �
.� � �{� h���8� or

� � ����� The kinetic energy function
�   � � ¢¤ /

, for a

given configuration space
�
. The standard form is� � �{� h�;�8��� � ��;�T� h� a� � ��� h� for a configuration depen-

dent mass matrix. The simpler case of a configura-

tion independent mass matrix, the standard form is

written as
� � �����Å� � ������ h� a  h� .! � ���8� Generic potential energy function

!   � ¢¤ /
. Veloc-

ity dependent potentials are not considered.| Generic Lagrangian of unspecified arguments.| � �{� h���8� Generic time independent Lagrangian for variable �  / ¢¤ �
, and � �{� h�;�Z- � �

.| � �{� h�O� ��� f Specifically time-dependent Lagrangian for variable�   / ¢¤ �
, � �{� h�;�Z- � �

, and f - /
.�ã©�h� « The action functional is the integral �ã© h� « �t �#"�%$ � zM| � � � z �~� h� � z �8� for the path h��� � � � �sf �,� h� �sf �8�'& f -© fÍ" � f 2 « � for given configuration space

�
, smooth tra-

jectory function � so that � � � h�;�  �© fÍ" � f 2 « ¢¤ � �
.

R � �{� h� � f � A dissipation function, R   � � � / ¢¤ /
producing

the generalized force já� ? ´
R � �{� h�O� f ��� ´ h� a .( �) The flow map

( �)   � � ¢¤ � �
associates the

initial conditions � � �gf8" �,� h� �sfÍ" �8�º- � �
to the point� � �gf �,� h� �sf �8��- � �

which is the result of integrating the

Euler-Lagrange equations of the Lagrangian | � �{� h�;���
from fÍ" up to time f .Ò ��_ � The spectral radius of �o��� matrix _ (real or com-

plex), Ò ��_ ��� �+*-, ª & Ð ª &��/. ��� ¬103254 _ ¬ 4 276 ¬
, where

the scalars Ð ª - � � Ä � �;� �<�>=>=>=>� � , are the eigenval-

ues of matrix _ .� 0 � \Q� The ramp function,
� 0 � \Q��� 
 when \ ' 
 , and� 0 � \k�W�º\ when \��*
 .´ � 0 � \k� The generalized derivative of the ramp function,´ � 0 � \Q�(� 
 when \�' 
 , ´ � 0 � \Q�(� � when \�� 
 ,

and
´ � 0 � 
��W� © 
<�M� « .8:9;� � \k� The signum function, 8�9�� � \Q�A� V � for \ÁC 
 ,8:9;� � \Q�w� ?�� for \y'E
 , and 8:9;� � 
T�Z- © ?��;�M� « .
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Notation

Special discrete

functions<>= � � " � ��2� z � R � The function <?=   � � � �	© 
<� R<« ¢¤ �
is the inter-

polation � � z ���@<>= � � " � �L2� z � R � for z - © 
O� R<« , with� " �A<>= � � " � ��2� 
O� R � , and ��2Z�A<>= � � " � �L2� R � R � .B = � � " � �L2� R � The discrete LagrangianB = � � " ���L2� R �W��t v" � zM| � �{� h�O� z �
for a fixed time step R .B = � � " � �L2� R 2,� The discrete LagrangianB = � � " ���L2� R 2,�W��tâv "" � z>| � �{� h�O� z �
for a variable time step R 2 .C = � � " �>=M=>=>���>éÅ� R � The discrete actionC = � � " �>=>=M=>� �MéÅ� R �(� l é N 2¬,q " B = ��} ¬ � } ¬ 032L� R � , for fixed

time step R C 
 . For variable time step,

this is written as
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1 Introduction

1.1 Context

Interactive physics is the combination of a numerical simulation with multimodal

input devices driving multisensory output devices with short response time. This

allows to see, hear, touch and steer a numerical simulation as it executes. In-

teractive applications parallel the development of off-line computational physics

applications in harnessing the monumental increase in computer hardware and

software capabilities over the last four decades but with different goals, and usu-

ally at different scales. Whereas off-line computations solve increasingly large and

complex problems at the very limit of available hardware, interactive physics ap-

plications address the needs of users, helping make sense of complex data, gaining

deeper intuitive understanding of physical phenomena, or providing for hands-on

experiences, be they virtual. In doing this, the requirements on hardware sys-

tems are balanced between computational, sensor, sensory, and communication

resources.

The range of applications covers virtual classroom experiments [124], virtual

prototyping of novel engineering designs [164], steering of large scale computa-

tions [279] to locate interesting parameter sets or identify problem cases, inter-

active experimentation on computational physics models, as well as the poster

child in this field, namely, virtual environment (VE) training systems which

have proved effective for both airline and military pilots [239], laparoscopic sur-

geons [257], heavy machinery operators [131] and car drivers [164]. Spectacular

applications are produced in entertainment industries as well, particularly in

computer graphics movies and computer games, though much artistic license

with regards to physical motion is the norm here.

Numerical time integration of the equations of motion of a given physical sys-

tem is the heart of interactive physics. Due to psychological factors, this task

must execute at high speed and fixed rates, and is subject to different accu-

racy and efficiency requirements than in the off-line counterpart. The software

implementing physics models and the time integrator is called a“physics engine”.

An interactive physics application is typically a distributed, soft real-time sys-

tem. Multimodal inputs from a user or a script are polled at various frequencies

and communicated to the physics engine. The physics engine integrates the sim-

ulated system forward in time by a fixed amount and the new state is then used

to generate output signals through a multisensory system. Soft real-time means

that the flow of time in the simulation is nearly identical to the flow of wall

clock time, and that response to inputs is quick and even, though not subject to

hard guaranteed bounds as in the case of hard real-time systems used in control
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engineering. Input devices can include tracking systems, microphones, switches,

pedals and joysticks, pointing devices, keyboards and other such. Output de-

vices generally include 3D graphics rendering hardware driving screens or head

mounted displays, sound generation modules driving speakers, as well as hap-

tic devices, motion platforms, and more. The soft real-time requirement stems

from the fact that humans are intolerant of dynamic response lags, especially

variations thereof. In particular, screen refresh rates above 20 Hz do provide

the impression of continuous motion and visual comfort is achieved near 60 Hz

which is the standard for game consoles in particular. Overall lags up to 100

ms or so in visual or motile response can be acceptable if constant, but smaller

lags of the order of 10–20 ms make an application easier to use. The prevalent

use of 3D computer graphics rendering to control all visual signals also means

that 3D graphics models must be used to define the geometry of the physical

objects simulated. The usual 3D graphics models are generally nonsmooth and

nonconvex, being defined as arbitrary collections of triangles and thus having

sharp edges and corners.

The demand for interactive physics engines is increasing in multiple domains.

In surgery applications, it is necessary to model soft tissue, fluids, and tools,

interactions including contacts, cutting, puncturing and stitching, as well as flows

within soft enclosing membranes or with open boundaries. Flight simulators work

well with lookup tables listing the drag force given attitude and speed for free

flight though landing and takeoff does require models of contacting multibodies—

collections of geometrically constrained physical bodies—as well as tires, power

plant, and even full fledged hydrodynamics in some cases where one is interested

in turbulence or precise drag and lift computations. In heavy machinery operator

training, the need is for modeling of rigid multibody systems with contacts and

friction, cables and flexible beams, power plants, drive train, tracks and tires, as

well as soil, mud, dust and water. Simulation of cranes, forest machines, lifters

and stackers of various kinds, as well as earth movers and other construction

machines are quickly being pushed on the market and are met with high demand.

Virtual prototyping requires the simulation of various types of robots and ground

vehicles and their control systems, which is another application of contacting

multibody systems. For all application domains mentioned above, there is a

need for validation of the models used to avoid false training of either operators

and intelligent control systems, which presents interesting challenges.

Given the variety of physical problems which could be useful in any given inter-

active physics application, it first seems difficult to decide where to start. What

is common between the simulation of water and a complicated forest machine?

Fortunately, reductionism, Occam’s razor, and serendipity come to help.

Reductionism suggests starting with the simplest case of systems of particles

interacting via central forces, following the deep footsteps of Newton. But 3D

computer graphics is specialized to render rigid models so this is the place to

start. By considering such graphics models as rigid bodies, connecting those

with mechanical joints, introducing joint drivers to control these, and imposing

nonpenetration constraints on the geometries, one is lead to the dynamics of
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generic rigid multibody systems. To add more realism, one must then introduce

constraint compliance, namely, the allowance of small amounts of constraint vi-

olations, which is a form of regularization easing the numerical solution process,

as well as joint limits, limits on driver forces, nonpenetration contact constraints,

and dry friction. The result is then a versatile and expressive physical model.

The present thesis considers each of these elements in isolation first, and then

conjointly and simultaneously in a unified framework.

The present thesis is a partial response to the demand for increasingly versatile

interactive physics engines, providing the theoretical ground work for and the

construction of original numerical methods which hopefully, suitably balance the

various requirements which are described in details in Section 1.2. The reference

problem is that of regularized, stabilized, contacting rigid multibodies subject to

dry friction in descriptor form, terms which are described shortly. The discrete

time-stepping schemes developed for this problem follow the principle of discrete

mechanical variational principle, or discrete mechanics for short [196], which is

described at greater length in Section 1.3 and Chapter 3.

Time integrating the equations of motion in descriptor form requires simul-

taneous solution of both velocity changes as well as the constraint forces—the

Lagrange multipliers enforcing the constraints—which, given suitable optimized

sparse matrix libraries, is generally not more expensive than the solution of the

reduced problem, though much more versatile. The saddle point problems aris-

ing in constrained multibody dynamics have been well-studied and good direct

codes are available for them [78, 71], as well as good sparse algorithms [74].

Indeed, direct computation of constraint forces allows to introduce constitutive

laws to restrict their magnitudes, damp high oscillations, or to model physical

phenomena such as dry friction.

In the analytic formulation of mechanics, the components of constraint force

vectors can be interpreted as the coordinates of ghost particles, namely, mass-

less, classical point particles. Ghost particles appear prominently in the chosen

formulation since constitutive laws applied to the constraint forces thus appear

as potential energy and dissipative forcing terms acting on the ghosts, and these

then enforce constraints through linear couplings with the real physical bodies.

Ghost fields are well established in quantum field theory where they play the

equivalent role as constraint enforcing fields, justifying the terminology, though

the term is rarely used in the classical mechanical context.

Regularization is the process of adding small perturbations to numerical prob-

lems to make them better behaved (well-posed) and easier to solve, though with-

out altering the solution significantly. Numerical regularization allows for much

savings in computational efforts as well as the robust construction of good ap-

proximate solutions to ill-posed or degenerate problems. In the present con-

text, such perturbations are added directly to the physical models in the form

of constraint compliance (or constraint relaxation), allowing small violations of

geometric constraints imposed on the system.

Because regularization terms are added directly in the physical model, where

they take the form of ghost potential energy, they correspond to physical phe-
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nomena and thus augment the modeling expressiveness of the framework. In

addition, the mechanical energy corresponding to regularization terms is fully

accounted for and the dynamics of the corresponding constraint violations follow

the laws of physics. Physics based regularization of constraints is similar to the

use of penalty forces, a well-known bad idea. However, as shown in Chapter 3 and

Chapter 4, discrete mechanics allows the construction of stable, linearly implicit,

discrete stepping schemes by considering only the average constraint enforcing

force over the time step, suppressing all high frequency components inherent of

penalty forces.

Oscillations of constraint violations, arising either from the explicit introduc-

tion of regularization or from other sources of numerical errors, are further sta-

bilized with the introduction of ghost dissipative forces. Yes, forces acting on

forces. Again, discrete mechanics allows the construction of a stable discretiza-

tion of such forces. When regularization is combined with stabilization, the

resulting stepping schemes are linearly implicit and strongly stable at least in

the case of linear constraints.

Various types of ghost dissipative forces can then be constructed to impose

constraints on constraint forces, to model stiff joint actuators with finite force

for instance, as well as dry friction.

Now, the descriptor form of the equations of motion of the generic multibody

system just described contains the essential ingredients of a very large class of

physical problems, differing only in details of the sparsity patterns of various

block matrices entering the definitions. Occam’s razor is the statement that “en-

tities should not be multiplied beyond necessity”. According to this principle,

one should first attempt to co-opt an established entity into a new role, and

given the similarity of the discretized form of various physical problems to that

of the rigid multibody problem, at least some generalizations are possible. In-

deed, the physical models and numerical methods described in this thesis have

been reused to simulate rigid multibodies describing heavy ground based vehicles

and machinery, virtual humans and robots, as well as cables, cloth, and flexible

beams. An application of the techniques described in this thesis to the simula-

tion of hydrodynamics using smoothed particles is also in development and looks

promising.

Thus, the careful analysis of suitable numerical methods for contacting rigid

multibodies subject to dry friction is the cornerstone of interactive physics.

Whatever methods can be developed for this case can apply mutatis mutandis to

contacting multiparticles,
¶
-body problems subject to strong forces (treated as

compliant constraints), and several instances of deformable multibodies or even

fluids subject to incompressibility and boundary conditions. The one significant

difference when treating new application domains is the design of an optimized

equation solver which must be tailored carefully for each specific instance. Such

changes however do not affect the basic stability and other qualitative properties

of the integration model developed henceforth.

The following Section 1.2 describes the requirements imposed on an interac-

tive physics simulation engine. Section 1.3 describes some of the feature of the
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techniques described at length in the rest of thesis. Section 1.5 presents a broad

overview of previous work in this field and Section 1.4 provides the thesis outline.

Finally, Section 1.7 provides a synthesis of the ideas presented in this chapter

and some general remarks.

1.2 Requirements for interactive physics simulation

The numerical integration of the differential equations of motion of classical

physics is far from new. Indeed, Issac Newton himself described a simple but re-

markably well-behaved numerical method in Book I, Theorem I, of Principia [215],

published first in 1687, as observed in Hairer [112]. Of course, the numerical so-

lution of systems of ordinary differential equations (ODE) enjoys an enormous

literature and a sound theoretical backbone, brilliantly presented in the mono-

graphs of Hairer, Wanner, and Nørsett [113, 114]. There are efficient methods

which can solve practically any special form of ODE to any desired level of ac-

curacy. However, the equations of motion of constrained mechanical systems are

differential algebraic equations (DAE) of index 3 (this is explained further in

Section 3.14 and described extensively in [114]). Numerical solution methods for

DAEs do not have the same maturity status as ODEs, as discussed later in this

chapter, and are still subject to much inquiry, reformulations, and elementary

experimentation [95]. Collisions, contacts and dry friction, are discontinuous

or nonsmooth phenomena, involving step discontinuities in velocities or in the

derivatives of forces at the length and time scales of interest in interactive physics.

Despite the existence of some sound numerical integration methods [258, 225] for

such nonsmooth problems, the literature is practically in its infancy and there is

also much elementary experimenting still going on. Yes, almost every individual

aspect of the numerical simulation of physical systems has been addressed pre-

viously, with varying degree of success, and with a few blind spots. One might

conclude that building an interactive physics engine is the simple process of se-

lecting the best among well-known methods and implementing them efficiently

in software, devising simple special techniques for the tricky parts.

However, this is not the case since the requirements for interactive physics

differ radically from those of standard numerical integration methods. Interactive

physics is a soft real-time, dynamic, nonsmooth, hybrid problem, which is often

ill-posed and degenerate as well. In this context also, overall stability and speed

have priority over local accuracy and even, paradoxically perhaps, efficiency. It

is thus necessary to build numerical integration methods fitting these specific

requirements, which are now described with illustrative examples and generic

observations on how to meet them. Similar arguments could presumably be

provided for any specific dynamical system, be it in molecular dynamics, chemical

kinetics, structural dynamics or other fields, where some overall symmetries take

precedence over the order of local accuracy guaranteed by generic integration

methods.

Real-time Because of the interactive context, given psychological factors, time
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must flow uniformly and updates must be predictable and fast. Typical

refresh rates for 3D graphics animations are 60 Hz and above and this

means that y – �
 ms is the available time for integrating the simulated

system by �SO=ëS�S{z ms. To be predictable, the integrator should only require

the solution of a few linear systems per step but not require solutions of

nonlinear systems to prescribed accuracy, or use adaptive time stepping

methods, except perhaps for small systems.

Speed The real-time context of 3D graphics imposes an update frequency of at

least S�
 Hz for fresh data, leaving at most �M
 ms of wall clock time for

computation, irrespective of what is going on in the simulation. Haptics

rendering imposes �M
T
�
 Hz update frequency, though interpolation can be

used here to some degree. The numerical analysis benchmark for integra-

tors is efficiency, the amount of computational work needed to achieve a

given accuracy. In turn, accuracy is a quantitative measure the reliability

of the data produced. Efficiency is not a good measure of performance

here since a method might be efficient but still too slow, and, conversely, a

method might be fast but inefficient with regards to achieving prescribed

accuracy goals. The exact amount of time taken in the worst case is what

matters here. Raw speed does come at the cost of decreased accuracy in

general. Since the scale is strongly tilted towards low order methods, raw

speed also comes at the cost of decreased overall efficiency. The final choice

then depends on a balanced error analysis so as to meet both speed and

validation requirements. Maximum speed is reached for fully explicit first

order integration but this being hopelessly unstable, best practical speed is

achieved for linearly implicit, strongly stable integrators of first and second

order which require only one linear system solve per step.

Stability The total integration time interval is usually undetermined and can be

of several hours, implying more than 200,000 integration steps per hour.

An unstable integrator will usually force premature termination of the ap-

plication, after sending objects flying to the Moon and beyond, and this is

not acceptable. Stability is therefore fundamental to interactive physics.

Since dealing with physical system, total energy is the natural measure of

stability. Integrators should be biased so that numerical energy is monoton-

ically non-increasing, or oscillatory within global bounds when the system

is conservative. When dissipative and nonsmooth forces are added to a

conservative system, the net change in numerical energy computed by the

integrator should be nonpositive, at least in comparison to the same system

not subjected to the additional forces.

Dynamic reconfiguration User inputs are neither known in advance nor boun-

ded in variations in any way, and can include arbitrary changes to the

physical problem under consideration at any time.

For instance, a forest machine simulation might include a command to

saw a virtual log in two parts. This discrete event deletes one body and
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creates two new ones while the simulation is running. Likewise, a bad

driver can crash a simulated vehicle into another one at any point in time,

thus dynamically adding several nonpenetration conditions to the simulated

system.

The engine must thus be nearly stateless and designed to handle addition

and deletion of bodies, constraints, and forces, or arbitrary changes in

physical parameters, at any point in the simulation, without requiring too

much computational effort. Some persistence and state information can be

useful in reducing average computational costs but this information should

be easy to reconstruct when it must be deleted, and not be essential for

the computation of the next configuration. This means in particular that

high order multistep integration methods such as the Adams family is not

suitable.

Nonsmooth geometry and nonpenetration conditions To match the observa-

tions of the real world, solids must not be allowed to interpenetrate and

this restriction must be imposed at the geometric level, on the visible 3D

models.

But the geometric models of 3D graphics are made of arbitrary collec-

tions of triangles, edges and vertices, and these are generally not convex.

Also because of the resulting sharp edges, kinks, and corners, the surface

normals of these models are not continuous functions. Thus, nonsmooth

analysis [66] is required to correctly determine contact regions and normals.

Impacts, contacts, friction Nonpenetration conditions lead to impacts—very

large and rapid changes in the velocities. These are instantaneous at time

and spatial resolutions used in interactive applications. The physics engine

must correctly process localized step discontinuities in velocities.

For instance, the collision between two billiard balls is an instantaneous

event at the time scales considered. During the actual impact, which might

last just a few microseconds, the velocities change abruptly but the posi-

tions of the balls are not altered significantly. Likewise, objects in contact

subject to dry friction are subject to discontinuous transitions between

static and kinetic friction. These two cases exemplify the fundamentally

nonsmooth nature of real-life physics. Indeed, dry friction and impacts are

ubiquitous and fundamental to every day life. It would be impossible to

walk or even sit without dry friction.

Such nonsmooth phenomena must necessarily be reproduced in interactive

physics and therefore, discontinuous velocities are expected and must be

processed correctly. A corollary to this is that accelerations are not well-

defined everywhere, since a finite instantaneous change in velocities implies

an infinite acceleration and thus, infinite forces as well. The physics engine

should therefore be based on discrete time-stepping involving positions,

velocities and impulses—time integrals of forces—but not directly on the

differential equations relating accelerations and forces.
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Ill-posedness and degeneracy Given the limited computational budget and the

real-time requirement, errors can be relatively large leading to slightly in-

consistent or ill-posed problems. For instance, numerical errors in comput-

ing contact forces between two solids can lead to penetration, and when

this happens, the determination of contact normals is an ill-posed prob-

lem, and contact forces computations become degenerate. Exact arith-

metic and large computational budgets could remove penetration but the

contact configuration could still be ill-poised and degenerate, though con-

sistent, as described for the case of a simple cube resting on a plane in the

next paragraph.

The connection between visible geometry and physics also produces ill-

posedness in itself. Consider for instance the determination of the contact

geometry between a simple cubic box initially at rest on an ideal flat plane.

Requiring the contacting face of the cube to be strictly coplanar with the

flat plane, it becomes impossible to raise the cube on one of its edges.

Enforcing nonpenetration conditions on each of the four corners of the

contacting face instead, the configuration is degenerate since mathemati-

cally, it is sufficient to require that (any) three of the corners be nonpene-

trating. When an external force not collinear with the plane normal acts

on the cube, the physics engine either selects which three nonpenetrating

conditions to activate, or computes reasonable contact forces at all four

(redundant) contact points to impose the desired constraint.

The physics engine must process ill-posed and degenerate problems rou-

tinely, applying systematic numerical regularization if necessary.

Accuracy Humans do not usually go around bearing stopwatches and meter

sticks to judge whether a given stone fell to the ground like any other

previously witnessed stone falling to the ground. No. Yet something fun-

damental and easily appreciated qualitatively in the motion allows humans

to perceive whether a stone fell as expected, or whether its natural motion

was altered in some way, irrespective of the exact millimetric detail of the

trajectory. Not granting license for deceit or disregard toward validation,

these observations imply that efforts toward accuracy should be concen-

trated on that which makes a visible difference. Of course, exactly which

quantitative validation criteria must be met to produce natural looking

motion is for the psychologists to determine [220] but an educated guess

that physical invariants should be preserved as much as possible, and that

geometric constraints should exhibit minimal violation is a good place to

start.

Modularity The simulation of a mobile crane, for instance, involves simulta-

neously solving for the dynamics of various subsystems, including power

plant, drive train, flexible booms and hoisting cables, as well arbitrary sets

of frictional contacts and collisions generated dynamically by a geometric

computation module. The physics engine should be designed to allow cou-
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pling between all different modules implementing each and every aspect of

the physical problem considered.

No tuning As much as possible, correct simulation should not depend on a user

or modeler spending hours finding suitable parameters such as masses, time

step, force strength, and so on. This either implies a detailed automated

local stability analysis, or a robust and strongly stable integrator capable

of solving badly scaled problems. This is especially in the case where the

physics engine is packaged as a software library to be used by modelers

who do not know about the details of the numerical methods, and may not

even know much about physics either.

Good tuning and reasonable scaling always improve performance and care

should be taken in the definition of the physical models of a given applica-

tion. Still, the engine should handle badly configured cases, perhaps with

decreased performance and accuracy.

Better numerics are needed to meet these requirements, especially to cover

more complex physical models. Several possible solutions have been proposed

described in the review in Section 1.5. However, based on the findings described

in the rest of the thesis, my personal view is that discrete variational physics, pre-

cisely defined in Chapter 3 and explained in broad terms in the next Section 1.3,

fits the bill of requirements to a T.

1.3 Discrete variational physics

A narrow view of classical mechanics starts and ends with Newton’s three laws

of motion of point particles which are second order nonlinear ODEs. It is true

that every single mechanical system can be first reduced to a system of point

masses and then summed up appropriately to yield the correct equations of

motion, as is done in textbooks for rigid or elastic bodies, fluids, gases, and so

on. The equations of motion of a variety of mechanical systems have been derived

long time ago and are well established starting point for computational physics.

Since numerical analysts have been busy constructing integration methods for

practically all types of differential equations occuring in physics, this is a good

place to start.

But there is an alternative view. Notwithstanding the theological motivations

at the origin of this quest, irrespective of the fact that it took more than 200

years and more than a dozen talented physicists and mathematicians to arrive

at the correct formulation, the laws of mechanical motion can be derived from a

variational principle, stating that a certain time integral defined over the physical

trajectories—the action—is stationary with respect to infinitesimal variations of

the trajectories respecting all imposed constraints. In short, physical motion

satisfies the least action principle. The notion that Nature was parsimonious

struck the imagination of a long series of physicists and mathematicians who
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had to conclude in the end that the suitably defined “action”was not necessarily

minimized on the physical trajectory but merely stationary.

There are several reasons to regard the variational principle as more funda-

mental than Newton’s three laws of motion. First, the variational formulation

leads to canonical equations of motions, the form of which is invariant under any

continuous change of coordinates. Second, the variational principle not only re-

produces the correct equations, but also gives a prescription to produce functions

of the coordinates which are constant along the physical trajectory, correspond-

ing one-to-one with symmetries of the system—the content of Emmy Noether’s

famous theorem. For instance, Galilean relativity states that the laws of physics

are invariant under a change of origin, or a fixed global rotation. Noether’s

theorem correctly identifies the linear and angular momentum vectors as the

corresponding constants of the motion. In Newtonian physics, conservation of

linear momentum must be added explicitly as the third law of motion stating that

action equals reaction. One must also define angular momentum in a slightly ad-

hoc way and then prove that it is conserved when only central forces are present.

For free, Noether’s theorem also provides the fact that central forces only are

compatible with Galilean relativity, which may not be so easy to deduce from

Newton’s laws. Likewise, it is in fact possible to construct the correct equations

of motion of simple constrained systems using Newton’s three laws but the varia-

tional principle produces the correct equations of motion for arbitrary geometric

constraints, in arbitrary coordinate systems, using a systematic procedure. In

addition, the variational formulation allows the clear identification of redundant

degrees of freedom and a detailed prescription for how to remove them from the

problem, correctly preserving the dynamics of the surviving, relevant variables,

the content of reduction theory.

The variational formulation also allows the analysis of nonconservative systems

and though much less can be said about these in general, their geometric and

symmetry properties can be well understood within the variational framework.

This is especially true of the Lagrangian formulation and the Hamiltonian form of

d’Alembert’s principle of vanishing virtual work, the variational principle which

is used throughout this thesis.

True, the mathematical apparatus required to use the variational formulation

is more complicated than the simple vector analysis needed in analyzing Newton’s

three laws. The prevalence of differential geometry, differential forms, Lie groups,

Lie algebras, Lie derivatives, and other tools of global analysis can be daunting,

especially when several results can be derived with more pedestrian mathematical

techniques, though with devilish cleverness (see the first few chapters of [22] for

example). But there is a unity to the variational method which is not apparent in

the Newtonian formulation, and several results which would presumably be out of

reach without the benefit of global analysis. Of course, working backward from

the answers provided by variational methods and comparing with previously

known methods can provide considerable enlightenment and understanding as

to what went wrong, and perhaps ideas of how to fix things without necessarily

using all the results.
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1.3 Discrete variational physics

Of course, at the numerical level, this can appear to be akin to armchair

philosophy, or worse, the use of a sledgehammer to kill a fly. Recent developments

however have proved this view wrong, very wrong.

It is a common textbook example to demonstrate that in certain cases, the

evaluation of limits is a non-commuting process. A sum of limits is not necessar-

ily equal to the limit of the sum. For the case at hand, one can first apply the

variational principle to an analytic formulation, obtain the differential equations

of motions and time-discretize these to compute discrete trajectories. Conversely,

one can first time-discretize the trajectories, use these approximations to evaluate

the discrete action, and only then apply the variational principle, imposing sta-

tionary conditions to recover discrete time-stepping equations of motion. These

discrete stepping equations of motion are called variational mechanical integra-

tors.

Now, Noether’s theorem, the canonical form of the equations of motion under

changes of coordinates, and variable reduction, are all direct consequences of

the stationary conditions on the action. It follows that the same theorems and

techniques apply mutatis mutandis to discrete trajectories if one requires that

they make a discrete action stationary. By contrast, the direct discretization of

the equations of motion may or may not preserve any of the symmetries of a

given system. Though it is possible to explicitly impose symmetries when con-

structing a given integrator, as is done in the energy-momentum preserving and

symplectic Runge-Kutta methods, or in the geometric integrators for instance,

the construction of a mechanical integrator achieves this same result in a far sim-

pler way, without any a priori knowledge of the symmetries of the problem. One

merely has to construct approximations of time integrals over the trajectories as

functions of the yet to be computed discrete points. The stationary conditions of

discrete mechanics then prescribe a stepping scheme to compute these discrete

points, guaranteeing the preservation of all motion invariants, exactly for some,

approximately but within global bounds for others, as described in Chapter 3.

In addition, extensions of a basic integration formula to include constraints and

exotic forces is straight forward, requiring only the approximations of other time

integrals.

Because the action is a time integral of a scalar function of the trajectory, the

discrete action is well defined even in the case where the trajectories are discon-

tinuous, and though some care is needed in constructing the stepping equations,

this extension is also straight forward.

Assuming that invariants are the quantities corresponding to qualitative prop-

erties of physical motion on which human intuition is based, numerical methods

which conserve the invariants, exactly or on average, are the ones needed for in-

teractive physics. It is therefore possible to achieve raw speed using a low order

method without giving up entirely on accuracy. In addition, the preservation of

invariants often provides global stability, at least for the case where the level sets

of the invariants are closed and bounded, which is usually the case for energy

at least. For fixed step integrators, as shown in Chapter 3 and in the examples

of Chapter 2, the energy oscillates around the correct analytic value between

11



1 Introduction

bounds of second order in the time step. This is not quite as good as strict

energy conservation but still leads to a closed and bounded collection of level

sets and thus, global stability, though not entirely unconditional.

The Sun has been shining in the sky for a while and many of the variational in-

tegration methods have been in fact well known for some time, derived via other

means, and appreciated for their qualities. For instance, the famous methods of

Verlet for molecular dynamics [271] and Newmark for structural dynamics [214],

among many others, have been proved to be variational [196, 112]. Marsden and

West in [196] further demonstrate that symplectic Runge-Kutta methods [112]

are indeed variational. But far from being limited to providing moot post ra-

tionalizations, the discrete variational formulation allows the tailoring of an in-

tegrator to handle various special types of dissipative forces, regularization, and

stabilization terms. This is the feature exploited in the rest of the thesis to

construct physical models of numerical regularization and their corresponding

variational time-stepping equations.

Only the simplest possible discrete time-stepping equations of motion are de-

rived for any given case, and this can appear to be a limitation of the method.

But the objective was to construct stable physics based constraint regulariza-

tion and stabilization schemes, and to develop a sound model of impacts and

Coulomb dry friction as well. The fact that these goals are achieved with low

order methods is actually a demonstration of the strength of the techniques. In

addition, a stable, one step, low order method is very useful in a variety of con-

texts where raw speed is needed. The popularity of the Verlet method [271] in

molecular dynamics (see [178] for more context about this) is a case in point.

But even for these low order methods, one can achieve reasonable accuracy by

solving the nonlinear problems with more precision and decreasing the time step.

Brutal and inefficient perhaps, but a sound strategy nevertheless. This allows

the use of these new methods in scientific application domains demanding high

accuracy but otherwise sharing several of the requirements stated in Section 1.2,

or the modeling flexibility and numerical robustness of physical regularization

and stabilization techniques developed herein.

This said, higher order methods can indeed be constructed within the same

framework. In cases where there is enough computational time available, as is

true in off-line applications, and when there are not too many discontinuities,

this would be more efficient. Higher order methods will be addressed in future

work.

1.4 Thesis outline

The present thesis provides novel numerical methods to compute trajectories of

classical mechanical systems of constrained multibodies subject to contacts, dry

friction, and a variety of constraints, kinematic or otherwise. The text of what fol-

lows is divided into large chapters with theoretical contents and original results,

as well as a sequence of Bagatelles, which are smaller and illustrative chapters,
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either self-contained or based on the theoretical results of preceding chapters.

Examples in the Bagatelles are very small and are typically restricted to one or

two dimensions but this was done for clarity of exposition and to demonstrate

how the new methods perform on known difficult problems in low dimension.

This is not a limitation of the theoretical results though. An implementation of

the new methods as a generic library designed specifically for 3D applications,

as well as performance analysis on large and more difficult problems is part of

future work.

Each chapter starts with a short abstracts explaining the main argument, the

logical organization, and the content listing of each section. All chapters also

end with an “End notes” section collecting additional references to the literature,

general remarks and comments based on personal experience, and indications

of future work. A glossary with definitions of most of the technical terms used

in the thesis is also provided at the end, and a notational index—perhaps less

thorough—is found in the front matter. With these, the book is nearly self-

contained.

A first simple example of numerical discretization of a physical system is pro-

vided in Chapter 2 where the simple harmonic oscillator is discretized in four

different ways and stability is analyzed.

In Chapter 3, the fundamental principles of both classical and discrete classi-

cal mechanics are exposed in Lagrangian form. This provides some explanations

for the results demonstrated in Chapter 2 but goes much further in constructing

good integration methods for mechanical systems subject to conservative and

non-conservative forces, as well as a variety of constraints. Methods of discrete

classical mechanics are used to construct low order fixed step integration formu-

lae for all the systems considered. The same chapter exposes the theory behind

the conservation laws of classical mechanics and demonstrates the discrete me-

chanical counterparts. The only new element introduced here is an analytic

representation of nonholonomic constraints using a special form of Rayleigh dis-

sipation which is not found in the literature.

The content of Chapter 4 is entirely novel in providing stable numerical in-

tegration schemes for regularized constrained systems, or in other words, stable

discretization of strong penalty forces implementing constraints. This is the first

physics based constraint regularization and stabilization scheme that is provably

linearly stable.

Following Chapter 4, five Bagatelles illustrate several aspects of the theory.

First in Chapter 5, the stability properties of explicit Runge-Kutta methods up

to order four applied to the simple harmonic oscillator are investigated using

standard techniques. For this specific case, the explicit Runge-Kutta methods

are not performing as well as they do on arbitrary systems including dissipation.

In fact, only methods of order 4 and above are stable for the harmonic oscil-

lator, the second simplest physical system. This strengthens the case that for

simulating physical systems at least, a low order physically motivated method is

much better than a high order general purpose one. The next Bagatelle in Chap-

ter 6 investigates the motion of the simple pendulum to illustrate the differences
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between various strategies to integrate constrained mechanical systems. Once

again, it is found that the stepping methods derived in Chapter 3 are performing

very well, and are very efficient when including the modifications presented in

Chapter 4.

The Bagatelle of Chapter 7 contains investigations of the motion of a planar

slider crank mechanism. This simple system exhibits an isolated kinematic sin-

gularity, a point in configuration space where the constraint Jacobians do not

have full row rank. Simulations are performed using a variety of methods and

the point is made that using the regularized methods of Chapter 4 removes this

singularity at no extra computational cost. Continuing with Chapter 8, the

main stability result of Chapter 4 is illustrated in the simplest possible context,

namely, a planar point particle constrained to move along a line but subjected to

a force acting to veer it off course. This example illustrates how typical penalty

methods normally introduce highly oscillatory forces. This is contrasted with

the regularized method of Chapter 4 which, when stabilized in a simple fashion,

damps these oscillations.

The following Bagatelle in Chapter 9, a simple spring and damper model of

one-dimensional contacts is analyzed to illustrate that a suitably damped high

frequency oscillator can be used to model instantaneous impacts. Though this

is well known, the example serves to illustrate that impact dynamics can be

decoupled from the rest of the smooth motion by separating time scales, which

is then analyzed in depth in the next chapter.

In Chapter 10, a number of nonsmooth problems are investigated including

collisions between nonpenetrating solids, and dry frictional contacts. After pre-

senting an exact discrete collision model which preserves energy due to Fete-

cau and Marsden [87], a novel two-step approximation is constructed which is

strictly dissipative but mildly so. This can be implemented at very little cost in

the general framework built in Chapter 4 by requiring one additional solution

of the linear problem with different data but the same matrix. Proceeding from

there, a novel physical model based on non-smooth Rayleigh dissipation func-

tions is developed to construct nonideal constraints imposing hard bounds on

the velocities as well as on the constraint forces themselves. This is then used

as a building block to construct a regularized model of Coulomb friction. In

turn, after discretization, this model produces a novel, solvable, isotropic nonlin-

ear complementarity problem formulation of dry friction with a genuine stiction

mode, in sharp contrast to several previously published smoothed models such

as [33] and [108]. In addition, though this is not pursued here, the new dry

friction model is extensible to higher order stepping schemes via the variational

framework.

Next Bagatelle in Chapter 11 expands further on the famous Painlevé paradox

which illustrates a fundamental problem in the analytic formulation of Coulomb

dry friction: there are configurations where the contact forces are infinite and

others where they are not uniquely defined. It is shown by numerical example

that the discretization strategy of Chapter 4 and the discrete dry friction model

of Chapter 10, resolve the paradox satisfactorily. Multiple solutions are still
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possible in zero regularization, but that less important than the existence of a

true stiction mode and the absence of infinite forces.

The following four chapters cover various aspects of rigid body dynamics.

Starting in Chapter 12, the rigid body is defined and its motion is resolved

into translational and rotational components, as is well known. The connection

between rigid body motion and the group of rigid rotations in three dimensions,�âI6��î � , is established and this serves as motivation for the next chapter. A short

section providing an analysis of two-dimensional rigid bodies is also provided for

reference for Bagatelle V in Chapter 7 and Bagatelle VIII in Chapter 11.

Before continuing with rigid body mechanics per se, Chapter 13 develops a

concrete representation of the quaternion algebra
�

in terms of ñá�yñ real ma-

trices and four dimensional real vectors. A large number of theorems, lemmata,

corollaries and identities related to the various special matrices which appear in

the representation are provided, some of which might very well be new though

without great consequence, except for their usefulness in what follows. The ma-

terial of this chapter is seldom found collected in one place, or with the details

necessary for applications to rigid body kinematics.

Armed with the results of Chapter 13, Chapter 14 proceeds to define a number

of kinematic rotational constraints between pairs of rigid bodies using quater-

nion algebra. This strategy removes global degeneracies encountered in vector

algebra based definitions of hinge and prismatic joints for instance, in which

anti and collinear conditions are indistinguishable. The quaternion definition

disambiguates anti and collinear conditions. Of the constraints considered, the

definition of the Hooke joint in terms of quaternion algebra is novel. For the

others, the representation provided is more general than what was published

previously [263].

The results of Chapter 13 and Chapter 14 are then combined in Chapter 15 to

investigate the dynamics of rigid bodies, and especially the numerical discretiza-

tion thereof. A Lagrangian formulation in terms of the quaternion algebra is con-

structed and the quaternionic equations of motion are derived. This derivation

was not found in the literature. After observing that the discretized, nonlinear,

quaternionic equations of motion do not have the correct form to be processed

together with the equations of motion for the center of mass, a novel approxima-

tion method is constructed. This approximation captures much of the nonlinear

dynamics of rigid body rotations and yet, it allows the processing of all the rigid

body variables in a unified way in the framework developed in Chapter 4. This

is similar in spirit to the solution of Anitescu [18], but the new approximation

preserves energy better and correctly integrates the free rigid body case with very

small errors. The approximation fails on gyroscopes though, because of the high

rotational velocities involved. For this case, a specialized method such as [51]

should be considered.

Since the approximation of the friction model of Chapter 10 requires the solu-

tion of linear complementarity problems (LCP), an introduction to this topic is

presented in Chapter 16, including solution methods for these, straight forward

extensions to cover mixed linear complementarity problems (MLCP), as well
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as simple performance comparisons between the best known methods on ran-

dom problems. This histogram-based performance analysis is novel. It greatly

helps making a rational decision in choosing a LCP solver. The presentation of

the LCP algorithms uses block matrices instead of the traditional pivotal alge-

bra and basis representation common in the linear and quadratic programming

literature. This allows the use of the high performance basic linear algebra sub-

routines (BLAS) level-3 set of operations [107] and the general matrix matrix

multiplication (GEMM)-based approach [149, 148], instead of the lower perfor-

mance BLAS level-2 set to which pivotal operations are restricted. In particular,

the block form allows the use of sparse linear algebra packaged supplemented

with factorization update and down-date routines.

In Chapter 17, a well-known form of splitting which can be applied to the dry

friction model of Chapter 10 to make the problem easier to solve is analyzed in

detail. An original proof is constructed to characterize the geometric and conver-

gence properties of the sequence of the iterates. A novel form of splitting, which

also simplifies the computation and makes it parallelizable, is also presented but

in this case, only numerical results are provided.

Finally, in Chapter 18, the various numerical linear algebra problems encoun-

tered in building a software library implementing the stepping scheme of Chap-

ter 4, including the nonlinear complementarity conditions arising from the im-

pact, contact and dry friction models of Chapter 10, are discussed. A number

of data layout issues are first discussed and detailed solutions, known to work in

practice, are provided. This is followed with a presentation of a known sparse

factorization algorithm for saddle point matrices that is then used as a precon-

ditioner for a modification of a conjugate gradient algorithm which can process

the special types of saddle point matrices appearing in the regularized stepping

equations of Chapter 4. Gauss-Seidel type iterative methods are then analyzed

with respect to their data movement requirements. Some “poor man” computa-

tional techniques are also presented to allow the implementation of factorization

updates and down-dates discussed in Chapter 16, using third party matrix factor-

ization libraries, to provide for the case where such operations are not provided

natively.

A synthesis is then provided in Chapter 19 to collect the various sub-problems

analyzed through the thesis, to provide an overall view of a physics engine, and

collect closing remarks as well as description of future work.

1.5 Survey of related work

Interactive physics draws on several independent branches of investigations. The

first strictly concerns the coupling of interactive 3D graphics with some sort

of physics simulation, best illustrated with the development of the commercial

flight simulators, in which all aspects of interactivity come first and foremost.

Then comes a development in computational physics and engineering addressing

the dynamics of constrained multibodies, considering first the simple constraints
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found in robot design, and eventually the more complicated dry frictional contact

constraints. Also of interest is the development in numerical analysis of methods

for handling DAEs, which include methods applicable to robots and machines,

and similarly in molecular dynamics, a set of special, fast methods with various

symmetry properties suitable for multibody systems. Each of these branches

contributes something of significance to interactive physics though none provide

a satisfactory answer meeting all the requirements described in Section 1.2. The

review provided below is not exhaustive, mostly concentrating on articles and

books related to contacting multibodies subject to dry friction, but it serves to

illustrate the range of techniques which have been developed so far.

Indisputably, the early developments of flight simulator technology not only

set the course for interactive 3D computer graphics [92] but that of physics

driven VEs. The simulation of a single rigid body subject to drag and lift forces,

computed by interpolating from experimental tables given the difficulty of a full

fledged hydrodynamic flow simulation of a complex body moving at high speed,

might not appear terribly difficult or exciting today. However, the realization of

flight simulators established the possibility of creating immersive virtual worlds

using computer systems. In creating the link between computational physics

and computer graphics, flight simulator development must be credited with the

invention of interactive physics, as well as providing inspiration for all that came

after.

Following the pioneering efforts in flight simulation, 3D computer graphics

became a field of research in its own right but it did not take so long for the

proceedings of the yearly meetings of the Association for Computing Machinery

(ACM) special interest group on computer graphics and interactive techniques

(SIGGRAPH) to start including computational physics papers describing tech-

niques for adding realism via physics simulations. The trend generalized in all

the 3D computer graphics journals.

Perhaps the first few instances including both physics simulation and graphics

are credited to Terzopoulos [264] who started right away with deformable bod-

ies, with impressive effect but with forgettable techniques, and then Barzel and

Barr [45] who introduced the important concept of kinematic constraints for con-

trolling virtual objects, and as a necessary modeling element of a physics engine.

The treatment of constraints was through index 1 reduction and Baumgarte sta-

bilization [47], a technique described in Chapter 4 which, unfortunately, is both

in widespread use and unstable or, at least, notoriously difficult to tune properly.

Barzel proceeded later to publish a “howto” book to add simple physics models

in simulations [44], and then introduced the notion of “plausible animations” [46],

arguing that many details of a given physical phenomenon are beyond observation

or fundamentally noisy, and that instead of unachievable goals towards accuracy,

a balanced view should be adopted, even including some provisions for artistic

license. The basis of the Barzel’s argument [46] is that variability is inherent

in nature and he reflected carefully about how and where to include this vari-

ability explicitly to save on useless computations and thus produce simulations

which were closer to common experience without requiring so much accuracy. In
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simulating a pool (billiard) break for instance, explicitly adding randomness can

produce realistic results, whilst an exact contact formulation might not. This

argument is not followed here as, strictly speaking, it is orthogonal to the con-

struction of good time stepping schemes. This said, Barzel’s careful and sound

argument is unfortunately often grossly misquoted to grant license for blatant

disregard for accuracy, without any checks on whether the simulated motion

matches observations, at least in some average sense.

The case of dry friction between contacting rigid bodies in two dimensions

was pioneered by Lötstedt [189, 190, 191] during this PhD thesis work concerned

with the collapse of buildings in two dimensions. His techniques are discussed

further below. This work found its way in the SIGGRAPH proceedings in a

series of papers by Baraff who built on Lötstedt ideas and presented techniques

for two-dimensional rigid bodies subject to dry friction based on the Lemke al-

gorithm [179] in [31, 33, 34] and on the Cottle-Dantzig algorithm in [35], also

providing some analysis of smooth contacting geometries in [32], and address-

ing flexible bodies with frictional contacts in [38]. Finally, he generalized this to

three dimensions in [36] and suggested a sparse factorization technique to speedup

some of the computations in [37]. The integration method used throughout this

work is the common Runge-Kutta method of fourth order, RK4a [113], which

requires four stages, i.e., four derivative evaluation per step. Constraints are

treated by reducing the problem to an index 1 DAE and stabilized using Baum-

garte’s method [47]. The impact of these papers on the graphics and computer

game development communities was tremendous. I started my own work by

implementing these methods, and so was everyone else I was meeting who was

working on these problems. However, the shortcomings of the dry friction model

and its suggested solution scheme [35], as well as the integration and constraint

stabilization scheme made these techniques frustrating to use. The resolution of

these problems came later from the engineering and mathematics literature as

described further below.

In parallel to this, Mirtich chose to treat all collisions and contacts using

strictly pairwise interactions, computed via a simple binary impulse model [204,

205, 203]. This involves conservative prediction of time impact between each

pairs, sorting these in a hierarchical table, integrating the system to the next

predicted impact, resolving it, updating the estimates, and continuing. This

is quite easy to implement but suffers from non-uniform time flow and Zeno

points where the time step cannot be advanced significantly because of dense

clusters of nearly simultaneous impacts. This is especially true when approaching

resting contact and in this case, the method amounts essentially to a Gauss-

Seidel process since time no longer moves forward, until some thresholds are

met. To some extent, this problem can be addressed via parallelism as in [203],

or using clever sorting strategies. Such techniques become quickly intractable

when many simultaneously contacting bodies are considered. At that point, one

must relax the conservative impact estimates and allow some interpenetration to

recover performance. A method allowing multiple simultaneous resting contacts

is generally more efficient in that regime.
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More papers appeared in the graphics literature after Baraff and Mirtich,

chiefly concerned with large unstructured piles of rigid bodies which became

a benchmark. First with Milenkovic [202] who used a standard quadratic pro-

gram solver to approximate dry friction in two steps, then with Guendelman,

Bridson, and Fedkiw [109], and similarly in the work of Kaufman, Edmunds and

Pai [155], an iterative process based on pairwise interactions—akin to the Mir-

tich strategy described above—was used to resolve pairwise collisions, which was

then extended to process more general constraints as well in [275]. It is impres-

sive to see that an iterative solver can quickly approximate the contact forces of

thousands of stacked bodies but the size of the errors and the slow convergence

of such methods make them of little use when validation is required. Iterative

techniques are not fundamentally bad and even Gauss-Seidel is routinely used in

high accuracy scientific applications. However, I strongly believe that the choice

of using an iterative method should be taken after a sound overall time-stepping

technique has been selected, and the problem to solve is clearly identified, but

not be built into a procedural description of the integrator, leaving no room for

mathematical analysis. Such procedural methods are usually presented with the

claim that they are “plausible” but one is left to wonder whether this implies the

overall credibility and variability described by Barzel [46] when he introduced the

term, or intentional deceit, as implied by the dictionary definition of “plausibil-

ity”, motivated by an aversion for quantitative evaluation of statistics, stability,

and accuracy. Because of the fundamentally procedural nature of the recent rigid

multibody papers presented in the graphics literature, impervious to any form of

mathematical analysis, and given the current trend of not providing any form of

quantitative information about the size of errors or the time evolution of energy,

such methods are not considered any further.

The engineering literature contains several threads addressing the simulation

of robots and machines. On the robotic front, much work was done to construct

methods for simulating tree structured mechanisms with ideal joints in linear

time, which culminated in the work of Featherstone [86]. This type of topological

or recursive technique, as it is called in robotics because it is based on traversing

the connectivity graph of the multibody, allows the reduction of the dynamics

of a multibody system to ODEs, but only in the case where there are no closed

kinematic loops. This problem can be addressed to some extent as in [127, 128],

and more recently, using a technique called natural orthogonal complements [12,

13, 243, 233]. Topological methods are just one form of coordinate reduction

technique, others being based on analytic reduction, or numerical state space

reductions based on orthogonal factorization (QR) of constraint Jacobians.

All topological methods of robotics eliminate the constrained degrees of free-

dom and though they might be more efficient in some cases, the descriptor

method which I favor allows the introduction of joint compliance which is useful

in modeling, allowing the simulation of elastic bodies, for instance. It is part of

some future work however to consider hybrid formulations based on the recursive

formulations within the variational framework, in order to improve performance

and for the ability to provide compliance free joints, since this can be useful in
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some cases.

A large and broad research effort covering all aspects of computer simulations

of multibody systems was sponsored by the German Research council (DFG)

from 1987 to 1993 and the papers describing several results are collected in [246],

and generated such off springs as the Mobile library of Kecskeméthy [156] which

is a recursive model allowing loop closure, and the MBSSIM library of von Schw-

erin [272] which is a hybrid between a descriptor form and a recursive method

using integrators from the Adam Bashforth family [113], both software packages

reducing the DAEs of motion to ODEs using differentiation. Interesting aspects

of the DFG multibody dynamics research effort are the overall software envi-

ronments which were built to produce complete work flow pipelines from system

design to interactive simulations, described in [221, 130]. It is part of future

work to adapt such design ideas to produce a complete work flow around the

numerical methods developed herein.

Perhaps an illustration of the difficulty of multibody simulation is the fact that

the collection of papers in [246] contains several incompatible numerical models,

each with its own set of restrictions. These divisions remain to this day and no

one formulation of the problem or numerical integration strategy dominates.

Also in the engineering literature, but with a closer relation to interactive

physics, is the work of Haug and his group which led to both the development

of the now apparently defunct DADS software package for Design Analysis for

Dynamic Systems, an early version of which is described to some extent in [118],

and the development of the Iowa Driving Simulator [93], eventually superseded

by the National Advanced Driving Simulator [119]. Haug and his group inves-

tigated both descriptor and reduced coordinate formulations, with a particular

emphasis on hybrids and state space projection methods. The early develop-

ment is recorded in [282, 283, 230] and more recently in [251], with some ef-

forts to solve dry friction problems with explicit addition and deletion of con-

straints [123, 280, 281]. The development of real-time techniques is documented

in [267, 268, 65], and the development of stiff integration methods based on local

state space reduction in [122, 252, 212, 121, 120, 211, 213, 244, 274]. There is

also much work from this group on covering several other aspects of modeling

and validation which is outside of the scope of the present thesis. Any form of

state-space reduction technique is of course independent of the integrator and

it is possible they will be used in the future in trying to optimize performance

when addressing larger problems. Nevertheless, state-space reduction and coor-

dinate partitioning is generally slower. There are cases when a global reduction

or or a complete set of realizable reductions can be precomputed, leaving only

small problems to be solved at run-time. This hardly applies to frictional contact

problems, however. Such strategies are not covered further.

In numerical analysis, the problem of integrating the DAEs of motion of con-

strained mechanical systems attracted some attention. Brenan, Campbell and

Petzold [54] produced the DASSL library based on backward difference formula

(BDF) methods, which does work well on index 1 and some index 2 problems

but not on index 3 problems. The limitations of DASSL can be addressed to
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some extent by index reduction techniques of Gear Gupta and Leimkuhler [96].

For certain forms of linear time dependent coefficient DAEs, BDF methods can

be applied successfully for arbitrarily high index [43], and one can also add the

first F time derivatives of constraints to the system, for a DAE of index F , and
solving everything as a least squares problem as in [41, 94]. The least squares

strategy of Barrlund [41] can help preserving physical invariants by adding them

as constraints, though this introduces dense Jacobian blocks since the invariants

typically depend on all the coordinates of the system. The GELDA package

by Kunkel, Mehrmann, Rath, and Weickert [165], improves vastly on DASSL,

using robust linear algebra methods to compute the local invariants, again, at

the cost of performing singular value decomposition (SVD) or QR at each (sub)

step. A number of strategies for solving the DAEs of motion using least squares

strategies and projection methods are discussed by Führer and Leimkuhler [94].

In addition, Arévalo Führer and Söderlind [20] have developed multistep meth-

ods [113] for the specific case of the DAEs of motion of mechanical system with

some success.

However, in general, the BDF methods are strongly dissipative and destroy

physical symmetries. Given the typical computational cost of these methods,

especially when invariant subspaces have to be computed, they are not appealing

for interactive physics.

Hairer and Brasey [53] developed Runge-Kutta methods for mechanical sys-

tems subject to holonomic constraints which they called PHEM5, and Hairer

observed in [114] that the RADAU5 code can process DAEs of index 3, though

at the cost of having to use SVD extensively, and augmenting the formulation

to include positions, velocities, and accelerations in the same nonlinear system

along with constraints and their derivatives. Also related is the extrapolation

method of Lubich, Engstler and Nowak [192], which led to the MEXAX code,

which would be interesting to use as benchmark, as it offers very high local ac-

curacy and good stability. This said, the PHEM5 method is probably the most

interesting to consider as a starting point for future work on higher order integra-

tion, at least for smooth systems not subject to friction, because of the connection

between higher order variational integrators and symplectic Runge-Kutta meth-

ods as described by Marsden and West in [196]. It would be interesting to see

the difference between PHEM5 and a variational formulation of the same order.

Ascher and his colleagues investigated index reduction methods in which a

DAE is replaced formally by an ODE with an invariant [24], as did Barrlund [42]

as well. The problem is then to stabilize the invariant for all times and this

can be done reliably as shown in Chin’s PhD Thesis [61]. A subsequent original

idea from this group is the sequential regularization of Ascher and Lin [25, 26,

27], which was also applied by Lin [185] to the problem of incompressible fluid

flow, in which constraints are replaced by stiff penalties which are decoupled

from the integrator. This works by repeatedly reintegrating the system subject

to a penalty force evaluated on the previous trajectory estimate, making the

strong force independent of the currently integrated variables. A higher order

integration method is required to integrate the resulting ODE though, and the
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regularization process is not based on physics. One could presumably integrate

similar ideas in the variational formulation to construct a multirate integrator

though this avenue is not pursued for now.

However, in all high order numerical methods for solving DAEs of index 3, it is

far from clear how to introduce impacts, contacts and dry friction. Since a high

order integrator must be restarted at each discontinuity, processing a problem

with dry friction would often result in no better than first order accuracy. Of

course, the first order BDF method is nothing else than first order implicit Euler

and is strongly stable but also strongly dissipative, which is bad for physics

problems. It is thus not clear that any of the other strategies just mentioned

would work satisfactorily on nonsmooth problems. This is the main reason why

they have not been considered. Ideally, it should be possible to achieve the

precision and stability of PHEM5 for certain problems when there are no impacts

or other discontinuities due to dry friction and a need for accuracy and this will

be addressed in future work.

As mentioned previously, Lötstedt [191, 190, 189] performed simulations of col-

lapsing 2D rigid body structures subject to Coulomb friction and it appears that

this is the start of the LCP formulation of the Coulomb problem, which was con-

tinued by Pfeiffer and Glocker [232]. However, this formulation involves a second

order DAE and therefore, as explained in Chapter 11, there are configurations

which are not solvable, a fact known as the Painlevé paradox [223]. Several

issues related to the problem formulation where investigated by Pang, Trinkle,

Sudarsky, and Lo [229, 228, 266], for rigid body contacts, and existence condi-

tions were clarified also [227]. In engineering, problem formulation and solvability

was addressed for deformable bodies in quasistatic contacts in several articles by

Klarbring, Andersson, Pang, Christensen, and Strömberg [8, 64, 63, 62, 160, 161].

Much of this work is collected and reviewed in an imposing monograph with

over 1000 references by Brogliato [56], which also includes the first few solv-

able dry friction formulations discussed shortly. More recently, Tzitzouris [269]

applied a variant of the friction formulation of Trinkle, Pang, Sudarsky, and

Loalcitetrinkle:1997:odm, and a modification of Newton’s method to solve the

resulting complementarity problems due to Pang [226] to construct a high order

integration method for contacting rigid bodies. However, this requires locating

each impact discontinuity, including the time location of any transition between

static and kinetic friction, and restarting the integrator at each such event. This

is not a strategy that can process large collections of contacting bodies efficiently.

A recent development of friction modeling is due to Glowinski and his col-

leagues [101, 102, 255, 103], which bears some interest and provides a number

of simple examples suitable for benchmarking. However, the formulation is not

a standard complementarity problem and the question of whether it is solvable

in general is open. In addition, the graphs included in these papers illustrate

the presence of undesirable high frequency noise, and the time steps needed to

remove this are much smaller than required in interactive physics.

As for existence and uniqueness of solutions of dry friction problems, Pang

and Stewart did obtain an existence proof given a number of general assump-
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tions [227], providing some indications of what fails in the case of a rigid rod con-

tacting a plane—the example that leads to the Painlevé paradox. Klarbring and

Andersson [7, 8] provide results for the static and quasistatic deformable body

case but the conclusions are limited to small friction coefficients. In connection

to this work, Hassani [117] provides sufficient conditions for non-uniqueness, and

WÃlodarczyk [278] characterized the multiple solutions, which always appear in

odd numbers.

However, most formulations of dry friction mentioned in the previous para-

graphs are based directly on Newton’s second law and involve the acceleration of

physical bodies. As observed previously, the accelerations are not well defined at

discontinuous points, which include transitions between static and kinetic fric-

tion. According to the existence theorem of Pang and Stewart [227], this implies

that the friction problem may not always be solvable in the acceleration form as

they all exhibit the Painlevé paradox. But there are solvable formulations, and

the first few of these are also included in Brogliato’s monograph [56], and these

are in fact the methods of interest which we now turn to.

Stewart observed that Coulomb friction was a non-smooth phenomena, even

when restricted to one dimension, and that one should regard the equations of

motion as differential inclusions (DI). He then constructed high accuracy numer-

ical methods for these [258]. Later, in a series of papers by Stewart, Trinkle,

Anitescu and Potra [261, 259, 17, 19], a solvable LCP model of Coulomb fric-

tion was developed part of a first order time-stepping scheme. Resolution of

velocity discontinuities is achieved by formally integrating the equations of mo-

tion over one time step, yielding a finite difference scheme, which can either

be implicit or explicit, bearing similarities to the variational discretization de-

scribed herein. The resulting stepping scheme is essentially the first consistent

mathematical representation of Coulomb friction which satisfactorily resolves the

Painlevé paradox [259]. Adding to this, Anitescu looked at stabilization of the

DAEs of motion [15], addition of stiff forces using linearly implicit stepping, and

stabilization of the gyroscopic terms [18]. This set of papers has been influential

in the graphics literature as well but it has turned out that solutions of the fric-

tion model take too long to compute when considering 3D applications. More

details of this model and its limitations are provided in Chapter 10. Though

the literature just mentioned was a great source of inspiration for the present

work, limitations of the allowed time integration methods, which are strongly

connected to the solvability of the friction model, became frustrating and this

ultimately led to choosing the variational approach of the present effort. The

final form of the Coulomb friction model developed in Chapter 10 is rooted more

in the variational formulation though it reduces to the solvable model of Stewart,

Trinkle, Anitescu, and Potra mentioned above in the appropriate limit, mean-

ing that it is both a derivation from fundamental physical principles, and an

augmentation of previously known solvable models.

In collaboration with Kane and Marsden, whose work in connection with

variational methods is described further below, Pandolfi, Kane, Marsten, and

Ortiz [225], present a variational method for frictional contact problems of de-
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formable bodies which is consistent but relies on solving nonsmooth, non-convex,

nonlinear programs. There is no indication how fast this is or whether solutions

always exist, and it appears that the framework cannot be applied to rigid bodies

because the rotational physics cannot be formulated as a minimization problem,

as shown in Chapter 15. This approach has nevertheless been inspiring for the de-

velopment of the regularized Coulomb friction model presented in Section 10.11,

especially with regards to the definition of nonsmooth Rayleigh dissipation func-

tions.

In all previously mentioned contact and dry friction formulations, one must

solve special types of complementarity problems in which the coupling between

normal contact and tangential friction forces is asymmetric. This means in par-

ticular that the resulting LCP or nonlinear complementarity problem (NCP)

cannot be reduced to a quadratic programming (QP) problem. Several numeri-

cal solution methods for the LCPs of friction have been proposed to address this,

based either on sequential QPs, solving alternatively for normal and tangential

forces as in [191, 273, 234, 235, 236, 237, 238, 143, 76, 77, 2, 143, 142] or directly

using smoothed Newton methods [62, 183, 226], succeeding to various degree.

However, the proposed solution methods do not always converge as shown in

Chapter 17 and the construction of a robust solver for dry frictional contact

problems, even for the provably solvable ones, is in fact an open issue which will

be addressed in future work.

The problem of finding integrators which preserve geometric properties of given

physical systems has stimulated much work in the field molecular dynamics where

the motion of molecules is simulated for long periods of time [178]. The low order

method of Verlet [271] has been a long time favorite due to sheer speed and good

physical properties. Symplectic and energy-momentum preserving Runge-Kutta

methods were actively developed in the 1990s [112], and these are definitely

good choices for conservative systems as reviewed briefly in [247]. They are

also connected to the variational formulation in an interesting way [196]. An-

other similar effort is the development of geometric integrators, and, particularly,

splitting schemes for these [199]. Here, a complicated dynamics problem is de-

composed into simpler components which are then integrated individually using

exact propagation formula within an interleaved scheme. There is no indication

in the literature whether such splitting techniques can be extended to multibody

problems or dissipative systems, let alone dry friction.

Finally, we come to review some of the literature on discrete mechanics, the

theoretical basis for the present thesis. The idea to discretize trajectories before

applying the principle of least action in Lagrangian mechanics appeared almost

simultaneously by Moser and Veselov [208] who first studied the motion of a

free rigid body with the intent to construct a discrete equivalent of an inte-

grable system—a dynamical system which had as many invariants of motion as

variables—and by Gillilan and Wilson [100] in the molecular dynamics literature,

concentrating on computation of closed orbits. Whereas Gillilan and Wilson sim-

ply recovered the known Verlet algorithm for point particles [271], the stepping

method constructed by Moser and Veselov for the free rigid body was new. These
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ideas were pursued in depth by Marsden and his colleagues and graduate stu-

dents, first with Master’s theses extending the basic idea [194, 277, 276], then

constructing an extensive theory of discrete mechanics [196]. Cortés, de Diego,

and Mart́ınez [68, 67], generalized to the case of nonholonomic constraints, whilst

Kane and colleagues, in collaboration with Marsden, covered nonsmooth con-

tacts [152], as well as Coulomb friction for contacting elastic bodies [225], and

clarified the well-known good properties of certain Newmark integrators [151],

revealing these to be variation methods in fact. Application to nonsmooth prob-

lems including impacts was done by Fetecau [87]. There are also developments

to continuum systems [180, 181], as well as application of classical reduction

theory [51]. But these and other current developments of discrete variational

integrators fall outside the scope of the present thesis.

One aspect that is missing in the aforementioned literature on discrete mechan-

ics is the development of concrete numerical algorithms which can reliably and

efficiently process the stepping equations. This is the topic specifically addressed

in the present thesis with the prominent treatment of constraint regularization

and stabilization, as well as several approximation techniques.

1.6 Previous contributions

Most of the new results presented in this monograph were not published previ-

ously. The monograph format allows for the inclusion of tutorial material and

provides enough space for detailed explanations. This was deemed necessary

because variational stepping methods are radically different from existing tech-

niques and relatively new.

Nevertheless, some aspect of this work was presented at conferences and pub-

lished in peer-reviewed proceedings. Quantitative analysis of the performance

of LCP solver on frictional contact problems using various models and splitting

strategies [167] was presented at the Swedish chapter of SIGGRAPH, SIGRAD,

at the annual conference on November 20–21 2003, Ume̊a, Sweden.

A time stepping technique for multibody systems with constraint regulariza-

tion and stabilization, not based on the variational principle [168], was then

presented at the International Workshop on PDE Methods in Computer Graph-

ics March 31–April 1, 2005 University of Copenhagen, Denmark, along with an

approximation scheme for stabilizing the gyroscopic forces of rigid bodies [169].

Both of these papers are to appear in a special issue of Electronic Letters on

Computer Vision and Image Analysis. However, the publication of the special

issue has been delayed twice which is why both papers [168, 169] appear as

departmental scientific reports at the time of writing.

A parallel splitting method for solving frictional contact problems on multicore

CPUs[170] was presented at the Workshop on State-of-the-art in Scientific and

Parallel Computing, Ume̊a, Sweden, June 18-21, 2006. This article has been

reviewed and accepted for publication in the Springer Verlag series “Lecture

Notes in Computer Science” (LNCS). The LNCS volume is to be printed in
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2007.

Mats Dalg̊ard did Master’s thesis work [70] applying the regularized step-

per [168] to a rigid multibody model for the real-time simulation of cloth and de-

fended his work successfully in September 2005. The model of cloth for this con-

sists of spherical rigid bodies connected by regularized fixed distance constraints.

This allows for arbitrary interconnection topology. The constraint forces can be

computed quickly using the preconditioned conjugate gradient method presented

in Section 18.6, using the sparse factorization of Section 18.4 as preconditioner.

Dalg̊ard performed the software implementation based strictly on my theoretical

work.

Dalg̊ard’s work built on Tobias Hellman’s Master’s thesis project which used

a point particle model for cloth with the regularized stepper. Regrettably, Hell-

man did not defend his thesis for personal reasons, even though the report was

complete and the results were good. Both Dalg̊ard’s and Hellman’s simulations,

based on my work, delivered far superior performance, better stability and better

modeling that the commonly used technique of Baraff and Witkin [39], based on

a linearized implicit Euler integration, which is good for damping everything as

shown in Chapter 6 for instance. A scientific paper reporting on that work is in

preparation.

An application of the regularized method of [168] to elastic bodies subject to

dry frictional contacts was developed in the Master’s thesis of Niklas Melin [201]

which was successfully defended in January 2006, and a paper was then published

at the SIGRAD’06—Computer Games, conference in Skövde, Sweden, November

22–23, 2006.

In collaboration with Martin Servin, the same regularized stepping scheme

was used to model massless cables [253] using relaxed kinematic constraints of

special type, allowing to model cable torsion and bending resistance. This paper

has been accepted for publication in Computer Graphics Forum and will appear

in 2007. Also in collaboration with Servin, a rigid body model for cables with

non-zero mass is in preparation and to be submitted for publication in June 2007.

These applications of the regularized stepping scheme [168] helped isolate some

issues related to energy fluctuations. The resolution of these came with the appli-

cation of the variational techniques discussed herein, and the same also produced

sound strategies to handle impacts, dry friction, as well as the gyroscopic forces

of rigid bodies.

The new results of the thesis will soon be submitted for publication in scientific

journals.

1.7 End notes

Interactive physics provides for both interesting applications of standard com-

putational physics techniques as well as for challenging problems due to special

requirements.

Despite ample literature on numerical integration of general differential equa-
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tions as well as the specific differential equations of mechanical problems, existing

methods are not entirely satisfactory, warranting new developments to fully meet

the requirements of interactive physics demands, both in terms of better models

for nonsmooth, constrained mechanical systems, and in terms of overall balance

between stability, speed and accuracy.

Recent advances in discrete variational mechanics are very promising. In-

deed, discrete mechanics offers a systematic framework to discretizing all forms

of physical phenomena, starting directly from the Lagrangian formulation. The

resulting stepping methods automatically enjoy a number of invariance proper-

ties which closely approximate the natural equivalents observable in both the

continuous formulation of mechanics, and in the real world as well.

The present thesis covers the basics of discrete mechanics techniques with a

particular emphasis on general constrained systems, and special attention to the

numerical implementation. This justifies the development of special force mod-

els, physics based constraint regularization and stabilization methods, a solvable

isotropic model of dry friction, and approximation techniques to handle nons-

mooth problems, dry friction, and the gyroscopic forces of rigid bodies. Also

because of the emphasis on numerical methods, some chapters are devoted to

the presentation of algorithms for LCPs and numerical linear algebra, as well

as an explicit representation of the quaternion algebra in terms of matrices.

For concreteness, some chapters contain the description of standard mechanical

constraints and robust implementation thereof, and others are devoted to the

analysis of self-contained numerical examples used to test the new methods and

illustrate differences with previously known ones.

The main theme is the analysis of the interplays between ideal physical models,

discretizations thereof, and numerical implementations. The result is the con-

struction of a fast, stable, regularized, single fixed time-step method, requiring

only one linear system or LCP solve operation per step. Being based on discrete

mechanics, this method exhibits the symmetries of the original physical problem

at the numerical level and thus achieves a reasonable degree of accuracy for the

given computational effort, and offers good potential for eventual validation.
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2 Bagatelle I:

The Discrete Simple Harmonic

Oscillator

2.1 Background

Much of the present thesis is aimed at the construction of low order, fixed step,

time integration methods, suitable for the equations of motion of classical me-

chanical systems. The present chapter offers a brief and self-contained illustration

of the range of behavior of such methods by analytically computing the discrete

trajectories they produce for the simplest possible physical problem, the simple

harmonic oscillator. The results illustrate the point that local accuracy is far

from telling the complete story of the qualitative behavior. A systematic frame-

work for constructing such well behaved methods is the content of Chapter 3

and 4.1.

The problem is defined in Section 2.2 and discretized to first order in para-

metric form in Section 2.3. Discrete trajectories are then computed analytically

for the entire family in Section 2.4 and stability is investigated for four specific

choices of parameters corresponding to standard, low order integration tech-

niques. The results of numerical experiments are presented in Section 2.5 and a

summary follows in Section 2.6.

2.2 Problem definition

Consider a unit mass point particle in one dimension with time-dependent coor-

dinate �   / ¢¤ /
, attached with an ideal spring to the origin so the force on it

is já� ?�Ô Ú � . The equation of motion for this system is known to be the second

order linear ordinary differential equation (ODE)|�Å� ?�Ô Ú � � (2.1)

and the solution is the trigonometric expression� �gf �W��� � 
��O°M±;8 � Ô f � V h� � 
��Ô 8 � � � Ô f �~� (2.2)

where � � 
T�,� h� � 
�� are the initial position and velocity, respectively. The energy for

the system is known to be c � �� h� Ú V Ô Ú� � Ú (2.3)
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and is a constant of the motion, as is readily verified by substituting the expres-

sion for the trajectory (2.2). The definition (2.3) is recognized as an ellipse and

this means that the phase plot—the graph � \ �sf �,� h\ �gf ��� —has finite area, which

also means that trajectories are bounded and periodic: they move around the

constant energy curve. The expression for the energy also tells us that this sys-

tem is bounded in time and, in particular, & �}&~a*Ô u c ��� , & h�V&ka u c �;� . Finally,

because an ellipse is a closed curve, the system is periodic.

Introduce the natural time variable z �EÔ f and the natural coordinate \ � z �W�� �gf �Î�£� � z �LÔ¸� . In addition, set the time reference so that the initial conditions

are \ � 
T�¸�.� , and h\ � 
��Z�J
 . The equation of motion now reads
|\ V \��J
<� after

writing
� \Q� � z � h\ , and this second order ODE is now expanded to two coupled

first order ODEs and written as the following systemh\¡�A�h�H� ?1\�= (2.4)

With these definition, the geometry of the trajectory � \%� h\k� is easily recognized

to be the circle h\ Ú V \ Ú � � c , where c is the constant energy of the system.

Given the simplified initial conditions, the solution of (2.4) is\ � z �W�º°>±�8 z = (2.5)

2.3 Discretization

Introduce the parametrization \ ¬ �º\ ��F¨R �~� 
K' R - / � F - �
and the parametri-

zed discretization \ ¬ 032W?�\ ¬R �u�?� ¬ Vº� ��?B�3�7� ¬ 032� ¬ 032W?�� ¬R ��?r� �Z\ ¬ Vº� �ã?á���8\ ¬ 0â2��3� (2.6)

with �¸��� - © 
O�� « . The method is fully explicit when � � �m� � , and fully

implicit when � � �À� 
 . The stepping equations (2.6) correspond to the

stationary recurrenceö � ? R�� ��?B�3�R�� �ã?���� � ÷ ö \ ¬ 032� ¬ 0â2 ÷ � ö � R �? R � � ÷ ö \ ¬� ¬ ÷ (2.7)

Define the two-dimensional vector � � � \������ a , so the recurrence (2.7) can now

be written as d3� ¬ 032Z�� � ¬ where d and  are the � � � matrices appearing on

the left and right hand side of (2.7), respectively. Equivalently, we have� ¬ 0â2�� _�� ¬ � where _ � d N 2 b= (2.8)

Now, matrix d has the explicit inversed N 2 �A� N 2 ö � R�� �ã?��3�? R�� ��?���� � ÷ � where ����� V	R Ú � �ã?��3� � �ã?����,� (2.9)
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and this is well defined for the given range �¸���A- © 
O�� « . From this, we get an

explicit form for matrix _ � d N 2  :_ �A� N 2 ö ��? R Ú � � �Z?B�3� R? R ��? R Ú � � �ã?á�ã� ÷ ��� N 2 � � (2.10)

and matrix
�

has the form � � ö < R? R � ÷ � (2.11)

with <E�m�Î? R Ú � � �Î?	�3� , and �B� �Î? R Ú � � �b?���� . Given the simple form of

matrix
�

in (2.11), it is easy to compute everything there is to know about this

family of steppers, and that is done next.

2.4 Discrete trajectories and stability

With this notation, the trajectory of the system is given by � ¬ � _�� ¬ N 2���=>=>={�_ ¬ ��" . An analytic expression for � ¬ is constructed below. First note that the

iterates � ¬ are bounded as F ¤ �
if and only if the spectral radius of matrix _

is unity or less: Ò ��_ �¸� �+*-,ª & Ð ª &T��. ���¬�032 4 _ ¬ 4 2�6 ¬ � (2.12)

where Ð ª are the eigenvalues of matrix _ , & � & is the modulus operator over the

complex numbers,
�
, and

4 � 4 is any compatible matrix norm (see [107], section

2.3 for definitions).

To compute the spectral radius Ò ��_ � , let Ð D and � D be the eigenvalues of

matrices _ and
�
, respectively, so that Ð D ��� N 2 � D . Concentrating first on

matrix
�
, the characteristic polynomial is�¨�,� � � ? � � �w� ììììì <á? � R? R �(? � ììììì � � Ú ? � < V �¨� �¡V	R Ú V <��H��
<� (2.13)

and the eigenvalues are � D � < V �� ��� � <á?��¨� Úñ ? R Ú = (2.14)

We can now reconstruct the eigenvalues of the original problem with straightfor-

ward algebraic substitutions to getÐ D ��� N 23� ��? R Ú� � � V �B?B���k��� � § R � ��? R Úñ � �i?á��� Ú�� � (2.15)

where �y��� V�R Ú � ��?B�3� � �ã?���� as before in (2.9), and §w��� ?�� is the imaginary

unit. It is interesting to note already that for all cases with ����� , the two roots

have the imaginary components
� § R for any value of R . This imaginary part is

what produces oscillatory behavior as we show shortly.
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But we can do better than just finding the stability range for the different

methods. Recall from the Cayley-Hamilton theorem that any square matrix �
satisfies its own characteristic polynomial. Given a � � � real matrix � with

characteristic polynomial 7 � Ñ��W��Ñ Ú V r Ñ V ¯��u
O� having roots Ñ D , we have� ¬ ��� ¬ �.V � ¬ � Ú;� (2.16)

where � ¬ and � ¬ are polynomials of degree F in the coefficients r and ¯ , and � Ú
is the � � � identity matrix. Using induction to get the recurrence, and noting

that it holds for F ��
<�M� , and � , by inspection, and observing that� ¬ 0â2 ��� ¬ � Ú V � ¬ � ��� ¬ � ? r � ?B¯ � � V � ¬ � � � � ¬ ? r � ¬ � � ?B¯�� ¬ � = (2.17)

This defines the polynomials:� ¬ 032�� ? r � ¬ ?�¯�� ¬ N 2� and � ¬ � ?D¯�� ¬ N 2� (2.18)

and so � ¬ can be recovered easily from � ¬ and is therefore not considered further.

The polynomials � ¬ now satisfy a two-term linear recurrence relation and the

general solution for this is easily found to be� ¬ � ý 0WÑ ¬0 V ý N Ñ ¬N � (2.19)

where
ý D are scalar coefficients. These are computed by taking account of the

initial values � " ��
<����2Z�������kÚD� ? r � yielding the formula� ¬ � Ñ ¬0 ?�Ñ ¬NÑ;0�?�Ñ N = (2.20)

The trajectory of � ¬ � � ¬ ��" is thus explicitly given by� ¬ � Ñ ¬0 ?BÑ ¬NÑ�0i?BÑ N �T��" ?B¯ Ñ ¬ N 20 ?BÑ ¬ N 2NÑ�0i?BÑ N ��" = (2.21)

When the eigenvalues of � are complex, they can be written as Ñ D ���{� D ¦ s
where ��� ü - / �����E
 leading to the trigonometric expression� ¬ ��� ¬ N 2 8 � � ��F ü �8 � � ü �T��" ?�¯�� ¬ N Ú 8 � � � © F ?E� « ü �8 � � ü ��" = (2.22)

The sinusoidal nature of the dynamics is now clearly visible. As a matter of

curiosity, one can recognize the trigonometric form of the Chebyschev polyno-

mials of the second kind as found in [21] for instance, defining \E�5°M±;8 ü and� ¬ � °M±;8 ü �w��8 � � ��©ëF`V � « ü ����8 � � ü
.

Applying this result to the iteration matrix _ defined in (2.12), we have:_ ¬ �Àö � N 2 � ¬ <á? v-� 0�� Ç� � � ¬ N 2 � N 2 R � ¬?�� N 2 R � ¬ � N 2 � ¬ �K? v-� 0�� Ç� � � ¬ N 2 ÷ � (2.23)

where � is defined as in (2.9), <â��� defined as in (2.11), � ¬ defined as in (2.20) as a

function of the eigenvalues of matrix _ defined in (2.10). We can then construct

the following four cases.
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2.4 Discrete trajectories and stability

2.4.1 Explicit Euler integration: �¡ �¢X ¤£
Setting �������£� in the definition of the recurrence matrix _ ��� N 2 �

of (2.10)

and (2.11), we have <y�A�H������� , ��R Ú V <������-� Ú � R Ú , and Ð D ��� � § R . Define�È� � � V	R Ú �J� , and Ð D �A�{�¥D ¦ s , so that °M±;8 ü � � Ð 0 V Ð N ��� � �p�{�w���L� � � V�R Ú ,
and 8 � � ü � � Ð�0�?BÐ N � � � �;§7�T�w� R � � � V	R Ú . Approximating these, we have°>±�8 ü ����? R Ú� V�IK��R	¦ �,� and 8 � � ü � RKVoI6��R É �~= (2.24)

Notice that the exact solution °>±;8 z given in (2.5) implies the discretized tra-

jectory \ ¬ � °>±;8 ��F¨R � . We thus expect that
ü GÀR . Now, as is well known,°>±;8 ü ���O? ü Ú �;� VKIK� ü ¦ � for small

ü
. Comparing with (2.24) yields

ü � R%V(I6��R Ú � ,
as required.

We can then explicitly compute � ¬ �A� ¬ N 2 8 � � ��F ü � ��8 � � ü � � � ¬ � R �}8 � � ü
. Using

the trigonometric angle addition formula to evaluate � ¬ N 2 , we find_ ¬ � � � V	R Ú � ¬ 6 Ú ö °M±;8 ��F ü � 8 � � ��F ü �?m8 � � ��F ü � °>±;8 ��F ü � ÷ � (2.25)

which implies that � a¬ � ¬ � � � V R Ú � ¬ �Ta" ��" ¤ �
as F ¤ �

. This scheme is

fundamentally unstable for this system, even though it can process systems of

the form h\J� ?ãÒ{\ in a stable way when R ÒJ':� (see [114] for definitions of

stability and analysis of the Dahlquist test equation h\���?ãÒ{\ ).
Explicit Euler is never advertised as a particularly stable scheme but the fact

that it is unconditionally unstable for the simple harmonic oscillator is seldom

reported. In the game physics literature and community, this problem is avoided

by introducing a damping force of the form ?DÓ h\ , for a positive scalar ÓJC 
 .
Further analysis shows that this only works for a relatively small range of Ó . In
other words, by increasing the damping coefficient enough, the solution becomes

unstable again! Explicit Euler is of no use whatsoever in the context of physics

simulation since it cannot even process the simplest possible problem.

2.4.2 Implicit Euler integration: �¡ §¢¨ ª©
Setting �������u
 in the definition of the recurrence matrix _ ���%N 2 �

of (2.10)

and (2.11), we have: <��X�º�X�J� � V@R Ú , ��R Ú V <��¨���¥� Ú � �� � � V@R Ú � , andÐ D �A��N 2 � � � § R � . Define �È�£�� � � V	R Ú , and Ð D �A�{�¥D ¦ s , so that °M±;8 ü � � Ð�0 VÐ N ��� � �p�{�w���� � � V�R Ú �A� , and 8 � � ü � � Ð�0�?BÐ N � � � �;§7�T�w� R � � � V	R Ú � R � .
We therefore recover the same dynamics as defined in (2.25) but with the

definition �y� �� � � V	R Ú ' � . This implies that � ap � ¬ � � � VºR Ú � N ¬ � a" ��" ¤ 

as F ¤ �

. This scheme is unconditionally stable but it damps oscillations

artificially, destroying the physical properties of the system.

Interestingly, the observed oscillation frequency, �ÔE� ü � R , is identical to that

found in the fully explicit case above, namely, �Ô ¤ � as R ¤ 
 . However, as R
increases, we reach the limit �Ô ¤ 
 . Put differently, the limit

ü � �1* � N 2 ��R � ¤
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2 Bagatelle I: Discrete Simple Harmonic Oscillator«#��� as R ¤ �
means that the solution oscillates with a period of four steps for

large step size, which has nothing to do with the statement of the problem!.

Therefore, not only does the solution decay to zero amplitude exponentially

fast, the observed frequency quickly becomes very wrong.

The dead fast stability of the implicit Euler method is old news, both in the

numerical analysis and the game physics communities. However, the anomalies

just observed are far from well known or widely reported. Strong stability, as

desirable as it is, should not come at the cost of destroying the qualitative physical

behavior and thus, the implicit Euler method, just like its explicit older brother,

is persona non grata in physics simulation.

2.4.3 Implicit midpoint rule: �� §¢X ¬£	~®
Setting � � � � ���� in the definition of the recurrence matrix _ �¯� N 2 �
of (2.10) and (2.11), we have: <y���Y���<? R Ú � ñ , ����� VYR Ú � ñ , and ��R Ú V <��¨� �-� Ú �� . The eigenvalues becomeÐ D � �� V	R Ú � ñ � ��? R Úñ � § R � �°& Ð D &�����= (2.26)

Define °>±�8 ü � � Ð�0 V Ð N � �;�`� 2 N v-� 6 ¦2�0 v � 6 ¦ , and 8 � � ü � � Ð�0`?ÈÐ N ��� � �;§8�â� R � � � VYR Ú � ñ � .
After some trigonometric manipulations, we find_ ¬ � ö °>±�8 ��F ü � 8 � � ��F ü �?±8 � � ��F ü � °M±;8 ��F ü � ÷ = (2.27)

This is easily recognized as a planar orthonormal rotation by the angle F ü , so
that �{a ¬ � ¬ ����� F ���;���O�>=>=>= . Therefore, the trajectory is bounded and moreover,

the energy of the discrete system is constant and equal to that of the continuous

system.

For the simple harmonic oscillator which is a linear system, the cost of the

implicit midpoint is identical to that of the fully implicit Euler. But for the

same money, we get to hear the music as it was intended.

In general, the cost of using the implicit midpoint rule is nearly identical to

that of using the implicit Euler methods and the benefits just observed persist.

For physical systems, the implicit midpoint rule, which is known at least since

Gauss [112], is a godsend and it is indeed very popular in molecular dynamics.

Curiously though, the midpoint rule is practically never used in the game physics

community despite being equally easy (or hard) to implement as the implicit

Euler method. The striking improvements gained form using implicit midpoint

instead of implicit Euler was reported in the context of a cloth simulator in [218],

though it was not credited with any of its given names. One can only hope that

the good example will be followed by the practitioners.
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2.5 Numerical experiments

2.4.4 Symplectic Euler: �¡ ¬£³²�¢X ª©
Finally, setting �5� � and � � 
 in the definition of the recurrence matrix_ �ª��N 2 �

of (2.10) and (2.11), we have: < � � , �@� �È? R Ú , � � � , and��R Ú V <��¨� �-� Ú ��� . The eigenvalues are nowÐ D �µ´¶· ¶¸ ��? v-�Ú � § R _ ��? v �¦ �¹& Ð D &������ when R aE� .��? v-�Ú � R _ v �¦ ?E�;� when R CE� . (2.28)

Therefore, when R CE� , & Ð�0°& C@� VBR Ú ���(CJ� so the spectral radius Ò ��_ ��CJ� and

the iterates diverge. For the case where R a � , define °>±�8 ü � � ÐQ0 V Ð N �����á��ã? R Ú �;� and 8 � � ü � � Ð�0B?�Ð N � � � ��§8��� R u ��? R Ú � ñ . After some trigonometric

manipulations the iteration matrix is found to be_ ¬ � �°>±�8 ý ö °>±�8 ��F ü V ý � 8 � � ��F ü �?±8 � � ��F ü � °M±;8 ��F ü ? ý � ÷ � (2.29)

where °M±;8 ý � u ��? R Ú � ñ , and 8 � � � ý �Y� R �;� . Obviously, matrix _ ¬
is not a

rotation matrix so the norm of � ¬ is not preserved. However, introducing the

rotation matrix �È��F ü �w� ö °>±;8 ��F ü � 8 � � ��F ü �?±8 � � ��F ü � °>±�8 ��F ü � ÷ � (2.30)

and defining
( ¬ � �1* � � ý �}8 � � ��F ü � �<�%* 9 � ?��;�M�� , we have _ ¬ � 2º7»:¼�½ ����F ü � V ( ¬ and

therefore,4 � ¬ ? ( ¬ ��" 4 � 4 ��_ ¬ ? ( ¬ � ��" 4 � 4 �°>±�8 ý ����F ü � ��" 4 � �°M±;8 ý 4 ��" 4 � ï�¾� z f = (2.31)

This defines a quadratic invariant on the trajectory that is preserved by the

iteration which is close to the energy of the system. In fact, the difference is of

the order of
�1* � � ý �W� I6��R Ú � .

This is where one should breath deeply and take a step back. For a general

system, this symplectic Euler method (there are two actually, the second one

having �@� 
 and �A� � ) is no more expensive computationally than explicit

Euler, and much cheaper than implicit Euler or midpoint, and yet it captures

some essential features of the physical problem. Besides, as long as the forces on

the system are velocity independent, it has second order accuracy like its cousin

the midpoint rule of the previous section.

2.5 Numerical experiments

The most instructive way to look at the output signal for the simple harmonic

oscillator is to plot the phase portrait, i.e., build a graph of velocity versus

position. Recall that in natural coordinates,� Ú V \ Ú ��� c � (2.32)
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2 Bagatelle I: Discrete Simple Harmonic Oscillator
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Figure 2.1: Phase portraits of the four different methods for small time step R Ôo������
 . Both symplectic Euler and implicit midpoint methods produce

closed ellipsoids but explicit Euler spirals outward and implicit Euler

spirals inward, slowly though.

where � is the natural velocity, \ is the position, and c is the energy. This is the

equation of a circle when natural time is used but is an ellipsoid otherwise. The

stationary recurrence � ¬ 032H� _�� �¸����� � ¬ of (2.8) was implemented and started

with � " � � �M
<� 
�� a , i.e., an initial position of \ � 
���� �M
 and an initial natural

velocity of h\ � 
T�Å� 
 . The results are plotted in Figure 2.1 for small time stepR Ôo�������
 , in Figure 2.2 for the moderate time step R Ôo���L� y , and in Figure 2.3

for the large time step R Ô��£�L�;� . Note the outward spiral profile of the explicit

method with ��� � � � and the inward spiral profile of the implicit method�*�J� � 
 . Both the midpoint method with �*�J� �5�L�;� and the symplectic

method with ������������
 , produce the correct phase portrait as easily seen from

the graphs.

Note that for large time step R Ô � 
<= y , the explicit method quickly escapes

the range © ?�� y �M� yL« allowed on the plot of Figure 2.3. Given that the cost of

this method is identical to that of the symplectic method, even for nonlinear

problems, this clearly shows that explicit Euler should never be let near any

second order differential equation describing a physical problem. For implicit

Euler, the problem is not stability but total destruction of the qualitative aspects

of the system—a numerical realization of the great deceiver himself!

2.6 End notes

A detailed analysis of the four schemes considered is found in Ref. [112], Chapter

1, for instance. It is easy to demonstrate that the implicit midpoint method
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2.6 End notes
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Figure 2.2: Phase portraits of the four different methods for moderate time step:R Ôo�u
O=ë� . The symplectic Euler and implicit midpoint methods keep

producing closed ellipsoids but explicit Euler spirals outward and

implicit Euler spirals inward at sizable speed.
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Figure 2.3: Phase portraits of the four different methods for large time step:R Ôo�u
O=ë� . Whilst the implicit midpoint method keeps computing the

correct energy surface, the symplectic Euler method is now producing

a skewed ellipsoid, but ellipsoid nevertheless. The other two methods

cannot survive 10 steps.

37



2 Bagatelle I: Discrete Simple Harmonic Oscillator

is of second order but that the other three schemes are first order only in gen-

eral, though symplectic Euler has second order accuracy for velocity independent

forces. Nevertheless, only the symplectic and implicit midpoint methods are of

any use since only these two schemes reproduce any of the basic physics. In

addition, the symplectic scheme approximates the energy of the system withinIK��R Ú � for all times and exactly preserves a quadratic invariant which is close to

the energy of the system! This is precisely the sort of integration scheme that is

needed to meet the requirements described in Section 1.2.

There is a fundamental reason why both the symplectic Euler method and the

midpoint rule perform well on physical problems which is investigated in depth

in Chapter 3. As will be shown, these methods are good because they can be

constructed using the principle of least action applied directly on the discrete

trajectory. Also to be shown in Chapter 3, the variational principle is the culprit

enforcing preservation of symmetries of both continuous and discrete mechanical

systems, and is precisely the daemon needed if one wants good physical trajecto-

ries. It is because of these exact invariants of the discrete motion that low order

methods are usable at all. By contrast, the implicit and explicit Euler meth-

ods cannot be constructed from the variational principle. Though they appear

equally valid discretizations of the equations of motion, they do not preserve any

qualitative aspect of the physical trajectory over sizable time intervals.

The striking difference between the qualitative behavior of explicit or implicit

first order Euler integration versus the implicit midpoint or first order symplectic

method is a traceable to the non-commutation of two limits. One could first

construct the equations of motion from the principle of least action and then

discretize these to achieve consistency at a given order. Conversely, one could

start with discretizing the trajectories and then apply the least action principle

on the discrete samples to construct stepping formulae. The latter sequence

is best for constructing integrators of mechanical systems because it preserves

all the natural symmetries of the motion, as even hardened numerical analysts

agree [112].
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3 Analytic and Discrete Mechanics

This chapter introduces the necessary concepts of classical mechanics—the study

of how and why physical bodies move—along with time discretization techniques

based on the principle of least action, the cornerstone of analytic mechanics. The

presentation unifies the well known results of continuous analytic mechanics with

the more recent developments in discrete mechanics. The latter allow the con-

struction of discrete time-stepping methods, the discrete mechanical integrators.

The emphasis weighs on the global conservation properties of discrete mechanical

integrators on the one hand, and the discretization of non-conservative forces and

constraints on the other. The latter two are essential elements for the construc-

tion of physics motivated regularization and constraint stabilization techniques

presented in Chapter 4, as well as the dry friction model presented in Chapter 10.

After defining the scope of application, elementary notions of mechanics, and

the contrast between Newtonian and analytic mechanics in Section 3.1, especially

with regards to their respective time discretizations, Newton laws of motion are

detailed in Section 3.3, followed by definitions of the fundamental of work and

energy in Section 3.4, and the introduction of both continuous and discrete forms

of the variational principle of mechanics in Section 3.5. After illustrative exam-

ples of the time discretization strategy are presented in Section 3.7, continuous

and discrete spatial symmetries and conservation laws of physical systems are

investigated in Section 3.8, followed by the analysis of symmetries of time and

connections to energy in Section 3.10. A summary of geometric concepts and an

analysis of the symplectic nature of the flow of both continuous and discrete tra-

jectories are presented in Section 3.11, accompanied with illustrative examples.

The basic model of Section 3.5 is extended to include non-conservative forces and

their variational discretization in Section 3.12, and a wide array of constraints

in Section 3.14, in which the notion of constraint regularization is introduced,

as well as a novel analytic representation of nonholonomic constraints using a

special type of Rayleigh dissipation function. The minimization structure of the

stepping equations is analyzed in Section 3.16 which is followed by a survey of

other work and a short summary in Section 3.17.

The present chapter is self-contained and tutorial in nature.

3.1 Introduction

Classical mechanics is the study of motion of physical bodies, tangible objects with

finite extent and mass. It provides answers both to how and why these objects

move. The“how”is answered by kinematics: the study of motion without regards
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3 Analytic and Discrete Mechanics

to what caused it. The “why” is answered by dynamics: the study of the causes

of motion, namely, the description of forces. It is limited in scope to bodies

which are not so small as to be subject to the laws of quantum mechanics, too

big as to be the subject the laws of general relativity, or moving at speeds close

to the speed of light so as to be subject to the laws of special relativity. Classical

mechanics also neglects all phenomena related to heat and thermodynamics as

well as chemical reactions. Specifically, the description of motion produced by

classical mechanics applies to physical bodies ranging from molecules up to the

smaller and slower celestial bodies.

The application context of the present thesis fits comfortably within the range

of validity of classical mechanics. Given the focus on real-time interactive simu-

lation of typical everyday situations, the time scales range from milliseconds to

days, and the length scales range from millimeters to kilometers, and the masses

range from milligrams to tonnes. The archetype multibody systems to keep in

mind range from robots to ground vehicles, including virtual humans and so on.

In addition to the restrictions just stated, the analysis is focused on systems

with finite degrees of freedom. Fluids, gases and deformable solids are explicitly

excluded in what follows in order to concentrate on systems of point particles for

the most part, and including rigid bodies in some sections. Extensions to certain

types of spatially discretized continuous systems are straight forward and have

been successfully realized. These will only be mentioned in the literature notes

to limit the scope. Likewise, some of the methods developed below could also

be extended beyond the range restrictions mentioned above to cover celestial

mechanics and perhaps molecular dynamics as well but these avenues will not be

pursued further.

Within the stated range of mass, length and time scales, the only fundamental

physical interactions of any relevance are the electromagnetic and gravitational

forces. At the length and mass scales of interest for interactive physics, only

uniform gravitational fields are relevant. Also, since most macroscopic objects

are electrically neutral, electromagnetic forces are restricted to contact physics

and drivers and these are usually modeled using macroscopic constitutive laws

instead of molecular models. This justifies the extensive use of constraints in

what follows.

The purpose of the present analysis is the construction of numerical methods

which can produce discrete time approximations of the motion of certain types

of physical bodies, point particles and rigid bodies, as well as aggregates thereof,

in particular. Specifically, the focus is the development of fast computational

methods which meet the requirements stated in Section 1.2. The strategy cho-

sen relies on discrete mechanics instead of pure numerical analysis. This allows

establishing a direct correspondence between physical models and the numer-

ically computed motion, which is important for understanding the numerical

results. The presentation thus begins at the heart of classical mechanics and

moves quickly to discrete mechanical integrators.

Dynamics establishes the relation between the time rate of change of the kine-

matics variable and the interactions between the different parts, which are called
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3.2 Essential kinematics

the forces. To do this, one first needs to introduce the notion of momentum or

quantity of motion. For a point particle with Cartesian coordinates \ ½ ¦�¾ , the mo-

mentum is � ½ ¦�¾ �*7 h\ ½ ¦¿¾ , where the mass 7 is a positive scalar. For generalized

coordinates, the momentum is a more complicated expression which is derived

later in this chapter. The fundamental principle of dynamics, which was estab-

lished by experimentation, is that the rate of change of momentum is directly

proportional to the applied force, the content of Newton’s second law which is

explained in more details in Section 3.3.

3.2 Essential kinematics

The kinematics analysis of classical mechanics starts with point particles labeled

with indices §1� ��� �O�>=M=>=~� ¶ , with time-dependent positions described as Carte-

sian coordinate vectors \ ½ ¦¿¾ �sf �D- / p
, and velocity vector h\ ½ ¦¿¾ �gf �D- / p

, in either

one, two or three dimensions. This can be extended to rigid bodies as described

later in Chapter 12. Coordinates \ ½ ¦¿¾ �sf � are agglomerated into a configuration

vector, \ �sf � by concatenation

\ �gf �w� ×ØØØØÙ
\1½ 2 ¾ �sf �\ ½ Ú ¾ �sf �

...\ ½ é ¾ �sf �
Ü ÝÝÝÝß � (3.1)

and similarly for the velocities.

One may impose restrictions on this motion via constraints such as a suffi-

ciently smooth function �£  / p ¢¤ / +
, with �Q� \Q�y�À
 , say. When 7 � � ,

this amounts to a general change of coordinates. Defining the smooth manifold� � � N 2 � 
T� , the configuration of the system is then given by the generalized

coordinates � �sf �y- �
where the manifold

�
is the configuration space. Since

the generalized coordinates � �gf � are restricted to the configuration space
�
, the

corresponding generalized velocities h� �gf � must be tangent to
�

at the point � �gf � .
The full kinematic description is then provided by the time history of general-

ized coordinates and their corresponding generalized velocities which is written

as � � �sf �,� h� �gf ���ã- � �
, where

� �
is the tangent bundle of the configuration mani-

fold
�
, i.e., the disjoint unions of tangent spaces

� ] � for each point �È- �
. The

tangent bundle
� �

is often called phase space as well, especially in the physics

literature. Though we shall not delve in the depths of differential geometry,

this abstract notation is used throughout for the sake of consistency and preci-

sion. It is a fundamental result of classical mechanics—which we explain further

below—that kinematics analysis stops with the description of phase space, since

the equations of motion prescribe the relation of the generalized acceleration.

Thus, the kinematic variables consist solely of the phase space vector � � �sf �,� h� �gf ��� .
A computer simulation necessarily implies a discretization of kinematics, and in

particular, a discretization of time. In other words, a simulation should produce

trajectories at discrete times f 21' f Ú`'u=>=>=¨' f ¬ , consisting of discrete generalized
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3 Analytic and Discrete Mechanics

coordinates � ¬ �@� �sf ¬ � and velocities h� ¬ �@� �gf ¬ � . The computation of � ¬ and h� ¬
for a given set of forces and constraints is the heart of a physics engine. Since

the changes in kinematics are governed by the laws of dynamics, this is what we

now turn to.

3.3 Newton’s laws of motion

The starting point in classical mechanics is Newton’s three laws of motion which

summarize experimental observations made by Newton himself but also by his

predecessors, notably including Galileo.

The starting point is Galileo’s principle of relativity which states, (as quoted

in [22]): “There exist coordinate systems (called inertial) possessing the following

two properties:

1. All the laws of nature at all moments of time are the same in all inertial

coordinate systems.

2. All coordinate systems in uniform rectilinear motion with respect to an

inertial one are themselves inertial.”

In addition to this, time is assumed to be universally defined, having the same

rate of flow in any reference frame, a definition which was modified eventually in

Einstein’s theory of special relativity [188].

Newton defines the concept of a “physical body”which is a point particle with

time dependent position \   / ¢¤ /ZÉ
, with scalar mass 7ÁC 
 , defined as the

product of volume and density. A physical body has a “quantity of motion”—

called momentum today—which is the product of mass and velocity: � �sf ���7 h\ �sf � , where h\ �sf � is the total time derivative of the position. Newton then

describes forces as “that which causes changes in momentum”, and this leads to

the three laws which we quote directly from [215]:¿ An object at rest will remain at rest unless acted upon by an external and

unbalanced force. An object in motion will remain in motion unless acted

upon by an external and unbalanced force;¿ The rate of change of momentum of a body is proportional to the resultant

force acting on the body and is in the same direction;¿ All forces occur in pairs, and these two forces are equal in magnitude and

opposite in direction.

From this, we get the mathematical description:

Momentum
� �gf �W�*7 h\ �sf � ;

Newton’s first and second laws: time rate of change of motion, h� �gf � is propor-
tional to net force j �sf � : h� �gf �W��j �sf �1À (3.2)
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3.4 Work and energy

Newton’s third law: action equals reaction so that if j ½ ¦�Á ª�¾ - /ZÉ
is the force

acting on body § due to body Ä , and conversely j ½ ª:Á ¦�¾ - /¸É
is the force

acting on body Ä due to body § , then, j ½ ¦%Â ª,¾ ��?Dj ½ ª:Á ¦¿¾ , i.e., the action and

reaction forces are equal and opposite.

This formulation is very general. It can be extended to cover continuous bodies

with finite extents as well as fluids and gasses by dividing these objects into

collection of
¶

point particles, \ ½ ¦¿¾ �sf �,�#� ½ ¦�¾ �gf �W�*7 ½ ¦�¾ h\ ½ ¦¿¾ �gf � , §w���;� �<�>=>=>=>� ¶ , and

estimating the forces j ½ ¦�Á ª,¾ these particles exert on each other. Aggregating the

system vectors of positions \ �gf � and momentum � �gf �¸�  h\ �gf � , as done in (3.1),

and introducing the block diagonal mass matrix � �<�%* 9 � 7 ½ 2 ¾ � p ��7 ½ Ú ¾ � p �>=>=>=M�87 ½ é ¾ � p �~� (3.3)

where � is the dimension of the kinematic space considered, as well as the ag-

gregated net force, with j ½ ¦¿¾ �ml ª j ½ ¦�Á ª�¾ , maintains the form of (3.2). Thus,

Newton’s second law can be seen as a formulation of the dynamics of systems of

point particles. Using elementary calculus, it is also possible to change coordi-

nates and define aggregate entities as is done in Chapter 12 for the case of the

rigid body.

When considering systems of point particles, several symmetries of the problem

can be discovered directly from this formulation as is done in [22], chapters 1

and 2. However, as we shall see below, the Lagrangian formulation offers a

more systematic way to discover symmetries and to correlate these to integrals

of motion, i.e., scalar constants which can be used to reduce the number of

variables in the problem.

Also, since the equation of motion in (3.2) is a second order ODE, it can

be integrated using standard methods. This is good enough in several cases in

fact. But when it comes to numerical preservation of the underlying symmetries

lurking in the three laws and the Galilean principle of relativity, standard in-

tegration methods are found wanting and much effort has been invested in the

last decade to construct numerical integration formulae preserving well known

physical invariants, such as energy and momentum.

For these reasons, Newton’s formulation of dynamics is abandoned here in

favor of the more satisfactory analytic formulation.

3.4 Work and energy

Before introducing the principle of least action central to analytic mechanics, we

need to introduce the concepts of work and energy. When a force j   / ¢¤ /ZÉ
acts

on a point particle with mass 7 and coordinates \   / ¢¤ /ZÉ
, it eventually alters

its kinematic state. To measure this, consider the correlation between the force

and the change in position along a physical trajectory 5� � \ �gf �Ã& f - © f�" � f 2 « �
and thus define mechanical work done by a force as the following line integralÄ � qÆÅ j a � \%= (3.4)

43



3 Analytic and Discrete Mechanics

The first observation is that given Newton’s second law (3.2), and assuming

constant mass 7 , this integral reduces toÄ �*7 q Å |\ � \¡�*7 q ��"�%$ � z |\ a � z � h\ � z �W�*7 �� q ��"�%$ � z �� z±Ç h\ a � z � h\ � z �ÉÈ� �� 7 4 h\ 4 Ú ìììì �#"�%$ = (3.5)

This introduces an important quantity, namely, the kinetic energy of a point

particle as � �<h\��W� �� 7 4 h\ 4 Ú = (3.6)

The action of a force j over a given trajectory thus yields a change in kinetic

energy in proportion of the work done.

Next, consider the line integral (3.4) defining work again. For an arbitrary

force j �gf � , the work done depends on the details of the path  . However, the

line integral (3.4) is notably independent of the path  for the case wherejá� ? ´ ! � \Q�´ \ a � ? 
 ! � \Q�,� (3.7)

where
!   /¸É ¢¤ /

is called the potential energy or the potential function, and the

negative sign convention will become clear presently. For this important special

case, we have Ä � ? ! � \ �sf 2���� V ! � \ �gf Ú�8�W� � �Oh\ �sf 2,�8�3? � �<h\ �gf Ú�8�~= (3.8)

Therefore, the sum of kinetic and potential energy is conserved so that we can

define the total energy as c � � �Oh\k� V ! � \k�~= (3.9)

These observations generalize to the � -dimensional case where \   / ¢¤ / p
by replacing the scalar mass 7 with a constant, ���á� , symmetric and positive

definite mass matrix  , and introducing the � -dimensional force vector j �? 
 ! � \k� . Clearly, the function
! � \k� can also be replaced by a sum l ¦ ! ½ ¦¿¾ � \k� ,

each producing a force j ½ ¦¿¾ � ? 
 ! ½ ¦¿¾
We thus define conservative mechanical systems as those for which all forces

can be derived from potential functions. In [173], among other references, the

forces which can be derived from potential functions are called monogenic to dis-

tinguish them from polygenic forces, the latter being generally non-conservative.

Some special types of dissipative forces can be represented with pseudo-potentials—

the Rayleigh functions introduced in Section 3.12.

Note that under a curvilinear coordinate transformation, the kinetic energy

generally becomes dependent on both h� and � . Indeed, for a two-dimensional

case with \   / ¢¤ / Ú
and 7 C 
 , switching to polar coordinates � ��� � � with\�2Z�A�W°>±;8 � , and \�ÚD���Ê8 � � � , the velocity becomesh\¡� ö h�w°M±;8 � ? h� �Ê8 � � �h�Ê8 � � � V h� �w°M±;8 � ÷ � (3.10)
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3.5 Basic variational principle

and thus
� � � ��;�T��7 4 h\ 4 Ú � � �L�;���Í7 �Oh� Ú V h� Ú �{� clearly depends on � as well as

on h� and h� .
It is also possible to define potential functions which depend on h\ as well,

and this is the case for the magnetic vector potential in electrodynamics [136].

However, magnetic phenomena are not considered in the present thesis and we

thus concentrate on potential functions of the restricted form
! � ��� . Potential

energy cannot depend on time since then, the line integral (3.4) would be path

dependent again.

3.5 Basic variational principle

The most general statement of the variational principle is due to d’Alembert

who postulated that, given a physical trajectory and infinitesimal displacements

thereof at each point in time, and compatible with all imposed constraints,

the work done by the virtual displacements along the physical trajectory van-

ishes when the motion is not bounded, and is non-positive otherwise (as quoted

in [173]). This last statement being known as the Fourier inequality and which

will be useful in the study of contacts. This statement is stated mathematically

for both the continuous and discrete cases.

To give flesh to this principle, consider a mechanical system with generalized

coordinates �È- �
, where

�
is the configuration space. In general,

�
is a manifold

but for what follows, it is sufficient to think of a coordinate chart on
�

so that, at

least locally, �È- / p
(see [248, 104] for essential notions of differential geometry).

The velocity of this point is denoted by h� and the configuration space is the

tangent bundle
� �

. The structure of
� �

is the set of all pairs, � �{� h�;� , such thath� is locally tangent to the manifold
�

at the point � .
A Lagrangian is a scalar function |   � � ¢¤ /

. A case of special interest is| � �{� h���w� � � � � h���3? ! � ���~� (3.11)

where
�   � � ¢¤ /

is the kinetic energy and
!   � ¢¤ / � is the potential energy

as defined in Section 3.4.

Systems with Lagrange function of the form 3.11 are conservative as described

in Section 3.4, a fact which will be proven with more mathematical rigor in

Section 3.9 below.

The kinetic energy term
� � �{� h�;� is a quadratic form. It is either defined as� � �{� h���4� 2Ú h�  h� , where the �@�B� matrix  is symmetric, positive definite,

and constant, or, for the rigid body case in particular, as explained in details in

Chapter 12,
� � �{� h�;�w� 2Ú h� a  � ��� h�O� and the square ���H� matrix function  � ��� is

block diagonal, symmetric, positive definite, smooth matrix function    � ¢¤/ p³Ë p
. To simplify both notation and the exposition, the rigid body case will

be analyzed in separate sections. Therefore, in what follows, the mass matrix

is assumed constant except when explicitly stated otherwise. Constant mass

matrices cover the cases of systems of point particles in three dimensions, rigid

bodies in two dimensions, and dynamically homogeneous rigid bodies (those
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3 Analytic and Discrete Mechanics

which have identical principal inertiae) in three dimensions, among others, as

long as they are expressed in Cartesian coordinates.

Collecting these observations, our basic model Lagrangian has the explicit form| � �{� h���w� �� h� a  h�Î? ! � ���,� (3.12)

where the constant �B��� real matrix  is symmetric and positive definite, and

the rigid body Lagrangian has the explicit form| � �{� h���w� �� h� a  � �;� h�b? ! � ���,� (3.13)

where the ���4� real matrix  � ��� is a symmetric and positive definite smooth

function of the coordinates � . In addition to this explicit form, the potential

function
! � ��� is assumed to contain uniform gravitational potential terms which

have the form ! � � ���W� r � < a  � (3.14)

where r � is a positive constant—the acceleration due to uniform gravity—and< a is a � �i� projection matrix. For a single point particle with mass 7 and

Cartesian coordinates \ , this term is just r � 7 �Ta \ , where � is a normal vector

pointing upward.

One of the main theme of the present thesis is to extend simple Lagrangian as

defined above to include terms which are necessary for stabilizing and regular-

izing the numerical methods in a systematic, physical way. These terms will be

carefully chosen so as not to strictly preserve the overall variational formulation

exposed henceforth.

Introduce the action integral as the following functional�ã© � « � ÿ q ��"�%$ � zM| � � � z �~� h� � z ���>� (3.15)

where �  Î© fÍ" � f 2 « ¢¤ �
is a smooth, known function of time. For the general

case, � �gf � must be of class  Ú
but this can be relaxed at the cost of a more

complicated analysis to include nonsmooth phenomena [87]. Now, Hamilton’s

principle of least action states that the physical trajectory of this system is the

path which minimizes the value of the functional � over all smooth paths which

go through given endpoints. This is not only an interesting postulate but an

experimentally verified fact. In fact, as we show below, Hamilton’s principle of

least action does reproduce Newton’s laws of motion.

Concretely, assume that � � �gf �~� h� �gf ��� is the trajectory of the physical system.

Following the original notation of Lagrange and using
ÿ
to denote the varia-

tional operator, let
ÿ � �sf � be an infinitesimal, time dependent perturbation of the

trajectory so that � V ÿ ��- �
be a small perturbation of the motion. Then, using

calculus of variation [284, 173], the resulting variation
ÿ � of the action functional

46



3.6 Discrete variational principle

is computed toÿ �ã© � « � ÿ q ��"�%$ � zM| � � � z �~� h� � z ���� q �#"�Ì$ � z � ? �� ztÍ ´ | � �{� h���´ h� Î V ´ | � �{� h���´ � � ÿ � V¨Ï ´ | � �{� h���´ h� ÿ ��Ð �#"�%$ = (3.16)

Assuming that � is an extremal or, at least, stationary on the physical trajectory,

the variation
ÿ � should vanish at least to first order in

ÿ � . The boundary term

can be neglected if we restrict the variations to satisfy:
ÿ � �gf " �ã� ÿ � �gf 2~�ã��
 . A

necessary and sufficient condition for
ÿ � to vanish is that the trajectory satisfies

the Euler-Lagrange equations �� f ´ |´ h� a ? ´ |´ � a ��
<= (3.17)

This is a set of non-linear, second order ODEs in semi-implicit form. For the

case of the constant mass matrix simple Lagrangian of (3.12), we have�� f �  h�;�w�  |�Å� ? ´ !´ h� a � ? 
 ! � ���W��j � ���,� (3.18)

which is Newton’s second law (3.2), writing j � ���¸� ? 
 ! for the vector of forces

acting on the system. Assuming the mass matrix  is invertible, the equa-

tions are explicit, non-linear and second order ODEs which can be integrated

with standard methods. But we can do much better by reversing the order of

discretization.

The process of evaluating the Lagrange function | � �{� h�;� for a given system

and computing the resulting Euler-Lagrange equations of motion for it is called

the variational method. The method extends to cases where the system is non-

conservative by using d’Alembert’s principle as described in Section 3.12 but

in that case, the equations of motion are no longer strictly the Euler-Lagrange

equations.

3.6 Discrete variational principle

Introduce the discretized Lagrangian as the action integral over a short interval

of time, R CE
 B = � � " � ��2� R �W� q v" � zM| � � � z �~� h� � z �8�>� (3.19)

where � " � � � 
T� and �L2D�@� ��R � . The integral can be approximated in a number

of ways. For instance, if R is small enough, we have h� � z � G R N 2 � �L21?	� " � , and� � z � G�� ������ � �L2 V � " � . We describe some alternative choices in Section 3.7.

Define the discretized action as followsC = � � " �>=>=>=M� �MéÅ� R �W� é N 2Ñ¬,q " B = � � ¬ � � ¬ 0â2� R �,= (3.20)
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3 Analytic and Discrete Mechanics

Now, the condition that
C = � � " �>=>=>=M� �MéÅ� R � should be optimal over the trajectory

is that all partial derivatives should vanish namely´>C = � � " �M=>=>=>���>éÅ� R �´ � ¬ � ´ B = � � ¬ ��� ¬ 032L� R �´ � ¬ V ´ B = � � ¬ N 2��� ¬ � R �´ � ¬ ��
O= (3.21)

These stationarity conditions yield the fundamental equations of discrete me-

chanics, namely, the discretized Euler-Lagrange equations� a 2 B = � � ¬ ��� ¬ 032L� R � V � aÚ B = � � ¬ N 2��� ¬ � R �W��
O� (3.22)

which are the transpose of (3.21), and where
� 2� � Ú are the partial derivatives

operators with respect to the first or second argument, respectively. To enunciate

further, given a scalar function of two vector arguments, j � \%��d¨� , we write� 2,já� ´ j � \%��d¨�´ \ � � Újá� ´ j � \%��d¨�´ d � and also,� a 2 já� ´ j � \%��d¨�´ \ a � � aÚ já� ´ j � \��:d¨�´ d a = (3.23)

The discrete Euler-Lagrange equations (3.22) is a set of simultaneous nonlin-

ear equations which can be solved for � ¬ 0â2 given � ¬ and � ¬ N 2 . This defines the

map:
F   � � � ¢¤ � � �

with
F � � ¬ � � ¬ N 2~�b� � � ¬ 032L� � ¬ � , which is the discrete

time integrator. Solutions to the nonlinear equations (3.22) exist in general at

least for the case where the matrix
� Ú � a 2 B = � � ¬ � � ¬ 0â2� R � is invertible. For the

simple case considered here, this matrix is precisely the mass matrix  which

is assumed symmetric and positive definite, hence invertible. Extensions cover-

ing applications where the matrix
� Ú � a 2 B = � � ¬ � � ¬ 032� R � is singular are discussed

in [240]. We will return to this later on when discussing the discretization of

ghost variables, since these have no mass.

The process of computing the discrete Lagrangian and evaluating the discrete

Euler-Lagrange equations for a given system is the discrete variational method

or variational method for short, when the context is clear.

It might appear that this discretization strategy can only yield first or second

order methods. However, section 2.6 of [196] contains constructions of higher

order methods which include higher order symplectic partitioned Runge-Kutta

as well as Galerkin methods. It is also possible to generate higher order methods

using composition rules, also presented in [196], though this is not necessarily

the most efficient strategy. Other constructions include some of the Newmark

integration methods as well [151]. For the purpose of this thesis however, the

emphasis is on low order methods and we do not pursue this topic further.

3.7 Examples of discrete mechanical integrators

To construct approximations of (3.19), we start with:h� � z � G �L2W?B� "R � � � z � G � " = (3.24)
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3.7 Examples of discrete mechanical integrators

Substituting these choices in the reference case (3.12) producesB = � � " � �L2� R �W� �� R � �L2W?B� " � a  � �L2W?B� " �3? R ! � � " �Q� (3.25)

and applying the discrete Euler-Lagrange equations (3.22) to this yields? �R  � � ¬ 032¸?B��� ¬ V � ¬ N 2,�3? R~
 ! � � ¬ �w��
<= (3.26)

After rearrangement, this becomes� ¬ 032����T� ¬ ?B� ¬ N 2¸? R Ú  N 2 
 ! � � ¬ �~� (3.27)

which is recognized as the Verlet [271] formula, and also known as Leapfrog or

Störmer-Verlet [112].

Despite its simple appearance, this formula is in fact widely used in molecular

dynamics simulation [178] for instance. For the simple harmonic oscillator, it

corresponds to the Symplectic Euler method analyzed in Chapter 2.

It is interesting to note that any approximation of the formB ½ è<¾= � � " � ��2� R �¸� �� R � ��2W?B� " � a  � ��2W?�� " �3?�� R ! � � " �#? � ��?á�ã� R ! � �L2,�Q� (3.28)

leads to the same discrete stepping equations (3.27). This symmetry is analyzed

in [196] to demonstrate that the innocuous looking stepping scheme (3.27) is in

fact second order accurate.

Using � � z � G 2Ú � � "OV ��2�� and h� � z � GuR N 2 � �L2{?È� " � , we get the discrete LagrangianB ½ 276 Ú ¾= � � " � �L2� R �W� �� R � ��2W?�� " � a  � �L2W?B� " �3? R ! Í � " V � 2� Î � (3.29)

and applying the discrete Euler-Lagrange equations (3.22) to that yields� ¬ 0â2������ ¬ ?B� ¬ N 2¸? R Ú�  N 2 ö 
 ! Í � ¬ V � ¬ N 2� Î Vt
 ! Í � ¬ 032 V � ¬� Î ÷ � (3.30)

which is the implicit mid-point rule. This was also studied in Chapter 2 and was

one of the two good methods, in fact.

Conspicuously absent from the set of first and second order stepping formu-

lae one can find using the variational formulation are the implicit and explicit

first order Euler methods described in Chapter 2. As shown in Section 3.11,

all methods derived from the discrete variational principle are symplectic and

this means that their stepping matrix–matrix _ of (2.8) for the simple harmonic

oscillator—should have unit determinant. Neither explicit nor implicit first or-

der Euler have that property as shown in Section 2.4. At the very least, the

variational principle can guide the selection amongst known methods, restricting

candidates to those which can be constructed from the discrete Euler-Lagrange

equations (3.22). Indeed, as demonstrated in the next few sections, where the

differential equations of motion of mechanical systems are concerned, variational

integrators are provably superior to general methods in every aspect, quantitative

as well as qualitative.

Further numerical investigations of the methods described above are provided

in Section 3.11 below.
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3 Analytic and Discrete Mechanics

3.8 Symmetries and conservation laws

We now investigate some conservation laws which are implied by the variational

formulation of classical mechanics in Lagrangian form. To fix the ideas, consider

a system made of two unit point masses with coordinates � ½ 2 ¾ �sf �,� � ½ Ú ¾ �sf ��- /ZÉ �
which are subject to a central force potential, i.e.,

! � ���Î� ! � 4 � ½ 2 ¾ ?o� ½ Ú ¾ 4 � , so
the Lagrangian for this system is simply| � �{� h�;�W� �� 4 h� ½ 2 ¾ 4 V �� 4 h� ½ Ú ¾ 4 ? ! � 4 � ½ 2 ¾ ?�� ½ Ú ¾ 4 �~= (3.31)

It is clear that shifting the origin of the coordinate system by a constant vector

leaves the Lagrangian unchanged since neither the velocities nor the relative

distance are affected by such a shift. Consider then the infinitesimal variation:ÿ �Å��),� " where � " - / P is constant. Since this leaves the Lagrangian unchanged,

we have | � � V ÿ �{� h�;�6� | � �{� h�;� and this means in turn that
ÿ | � �{� h�;�6� | � � Vÿ �{� h�;�¸? | � �{� h�;�`� 
 . The variation of the action thus vanishes identically over

any given time interval and so we find
`� ÿ �ã© � « ��)�q ��"�%$ � z°Ò ? �� z Í ´ | � �{� h���´ h� Î V ´ | � �{� h���´ � Ó � "ZV ) Ï ´ | � �{� h���´ h� � " Ð �#"�%$ =
(3.32)

Since the integrand vanishes identically along the physical trajectory by virtue of

the Euler-Lagrange equations (3.17), we are left with the boundary term which

reveals the symmetry ´ | � �{� h���´ h� � " ìììì �%$ � ´ | � �{� h���´ h� � " ìììì ��" � (3.33)

which means that the six components of the one-form ��� ´ | � ´ h� are constant,

since there are 6 independent choices for � " , all of which yielding the same sym-

metry.

As a second illustrative example of the same phenomenon, consider the in-

finitesimal generators of orthogonal transformations in
/ãÉ

. By this we meanî6�áî matrices ¥~¦ such that for a vector \y- /�É
, the transformationdH� � � É V ) ¥~¦ �Í\%� (3.34)

is orthonormal up to order I6� ) Ú � . Simple algebra reveals that the generators ¥M¦
must be antisymmetric, yielding the basis

¥ 2�� ×ØÙ 
 
 

 
 �
 ?�� 
 Ü Ýß � ¥ ÚÎ� ×ØÙ 
í
 ?��
í
 
� 
 
 Ü Ýß � ¥ É � ×ØÙ 
 � 
?�� 
Û

 
Û
 Ü Ýß = (3.35)

For those versed in Lie groups (introductions can be found in any of [193, 248,

104]), we are now dealing with the special orthogonal group �wI6��î � which is the

group of orthonormal transformations on
/�É

, which can be represented by the
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3.8 Symmetries and conservation laws

group of îÅ�6î orthonormal matrices with unit determinants. This is an example

of a continuous group of symmetries as the elements of �wIK��î � actually form a

differentiable manifold of dimension î . As is well known [137], the infinitesimal

transformations of a given Lie group can be finitely generated by linearly inde-

pendent elements ¥>¦ ��§Î� �;� �<�>=>=>=>� which form a Lie algebra g. We need not be

concerned here with the exact details, but only that to each generator ¥¦ there
corresponds a conserved scalar.

Now, the simple Lagrangian | � � � h�;�W� � �L�;��� 4 h� 4 ? ! � 4 � 4 � is invariant under the
action of �wI6��î � since these define isometries and thus preserve the norm of any

vector. Thus, computing the variations due to an infinitesimal rotation
� É V ) ¥ ¦

for each of the generators ¥>¦ and performing the same computation as in (3.32)

yields the symmetry´ | � �{� h���´ h� ¥~¦�� � �sf �8� ìììì �%$ � ´ | � �{� h���´ h� ¥~¦ � � �gf ��� ìììì �#" � (3.36)

and after evaluating this for each index §á� ��� �O� î , we recover the conserved

vector ×ØÙ�Ô 2Ô ÚÔ É
Ü Ýß � ×ØÙ h�>Ú� É ? h� É �~Ú? h�L2�� É V h� É �L2h��2,�~Úã? h�~Ú�L2

Ü Ýß � (3.37)

which is the angular momentum about the origin: ç���� ��h� , where the operator� is the cross product in three dimensions.

These two cases cover the essential content of Noether’s theorem which we now

enunciate. This is stated in an inordinately complicated field theoretic framework

in [105], but with great lucidity in [22], and rigorous precision in [196]. The

presentation here follows that found in the latter.

Consider a Lie group ^ acting on the configuration manifold
�
, with associated

Lie algebra g and generators ¥M¦ -
g, so that ¥>¦�  � ¢¤ �

. Assuming that

the action of the group on the elements of
�

leave a given Lagrange function,|   � � ¢¤ � , strictly invariant, then, to each generator ¥M¦ there will come a

scalar which is called the conserved current, by following the procedure of (3.32)

yielding boundary terms of the form (3.33) or (3.36) in general. We now state

this fact formally.

Theorem 3.1. [Noether’s theorem] Given a configuration manifold
�
, a La-

grangian function |   � � ¢¤ /
, a Lie group ^ and its Lie algebra g with gener-

ators ¥~¦ -
g, where ¥>¦¸  � ¢¤ �

. If the Lagrangian | � �{� h�;� is invariant under the

(left or right) action of the elements of the group ^ , then, along any the trajec-

tory � � �sf �,� h� �gf ��� satisfying the Euler-Lagrange equations of motion, the following

differential forms are constant

Ô ¦ � ´ |´ h� ¥>¦ � ���~= (3.38)

The forms Ô ¦ are called the conserved currents.
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Proof. It suffices to put
ÿ �`��) ¥>¦ � ��� in (3.16). Since the ¥>¦ � ��� are the generators

of ^ , ���� � V ÿ � is a transformation which belongs to ^ and which leaves |
invariant to IK� ),� and therefore,

ÿ � � IK� ) Ú � for this choice of
ÿ � . Thus, when

computing the variation of the action, the integrand vanishes identically on the

interval © fÍ" � f 2 « which leaves only the boundary terms. Since these must also

vanish given that the total variation is indeed null, equation (3.38) is recovered

after canceling out the scalar ) and the result is proven.

The discrete case follows similar logic. Consider first a Lie group ^ with

action
F  Z^ ¢¤ �

, parametrized as
F � for each � - ^ . The associated Lie

algebra is g and this has generators ¥>¦ ��§b� ��� �O�>=>=M= . If our discrete Lagrangian

is invariant under the action of ^ so that
B = � F � � � " �,� F � � �L2~�,� R �`� B = � � " ���L2� R �

for all elements � - ^ , then, considering an infinitesimal element of the form��$ � �¿� V ) ¥~¦ , where ���
denotes the identity map, the change in the coordinates

is then: d � ¬ ��) ¥~¦ and the change in the discrete action vanishes to first order in) so
�� d
C = � � " �>=>=M=>� �MéÅ� R �W� d

é N 2Ñ¬,q " B = � � ¬ � � ¬ 032L� R �W�é N ÚÑ¬,q 2 � � 2 B = � � ¬ � � ¬ 032� R � V � Ú B = � � ¬ N 2� � ¬ � R ��� d � ¬V � Ú B = � �Mé N 2� �>é`� R � d �Mé V � 2 B = � � " � ��2� R � d � "��)°� � Ú B = � � é N 2 � � é � R � V ) � 2 B = � � " ��� 2 � R ��� ¥ ¦ ��
O� (3.39)

where the summand on the second line vanishes by virtue of the discrete Euler-

Lagrange equations (3.22). This identity is not as simple to interpret as the

conserved currents Ô ¦ of Theorem 3.1. However, following [196] and introducing

the definitions Ô 0G?I � � " � � 2 �W� � Ú B = � � " ��� 2 � R � ¥ ¦ � � 2 �,�Ô NG?I � � " � �L2,�W� ? � 2 B = � � " � �L2� R � ¥~¦�� � " �~�Ô~ÕG?I � � " � �L2,�W� Ô 0G?I � � " � ��2,�#? Ô NG?I � � " � ��2,�,� (3.40)

the following evolution laws are readily deduced from (3.39)Ô 0G?I � � ¬ � � ¬ 032,�W� Ô NG�I � � ¬ N 2L� � ¬ �~�Ô 0G?I � � ¬ � � ¬ 032,�W� Ô 0G?I � � ¬ N 2��� ¬ �3? Ô~ÕGKI � � ¬ N 2L� � ¬ �,�Ô NG?I � � ¬ � � ¬ 032,�W� Ô NG?I � � ¬ N 2��� ¬ � V Ô~ÕGKI � � ¬ N 2L� � ¬ �,= (3.41)

Therefore, given an invariant Lagrangian, we have Ô ÕGKI �5
 and thus, the two

currents Ô 0G?I � Ô NGKI are conserved and are equal. This result is formally summarized

in the following theorem which is also found in [196] up to some changes in

notation.

Theorem 3.2 (The discrete Noether Theorem). Given a configuration

manifold
�

and a Lie group ^ acting on
�

with (left or right) action
F  T^�� � ¢¤
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3.9 Extended variational principle�
so that � ¢¤ F � � ��� for � - ^ . Let the associated Lie algebra g have generators¥~¦ with infinitesimal action ¥>¦¸  � ¢¤ � V ) ¥~¦�� �;�,� )b- /

. If the discrete LagrangianB = � � " � ��2� R � is invariant under the action of
F
, then, the following currents are

preserved along the flow � ¬ � F � 
<�M�;�M=>=>=~� satisfying the discrete Euler-Lagrange

equation (3.22)

Ô 0G?I � � ¬ � � ¬ 032~�w� � Ú B = � � ¬ ��� ¬ 032L� R � ¥~¦�� � ¬ 032~�,�Ô NG?I � � ¬ � � ¬ 032~�w� ? � 2 B = � � ¬ � � ¬ 0â2� R � ¥>¦�� � ¬ �,� (3.42)

and in addition Ô 0G?I � � ¬ � � ¬ 032~�w� Ô NGKI � � ¬ � � ¬ 0â2,�~= (3.43)

To get a better understanding of this, consider a two body problem so that the

configuration is �Å� � � ½ 2 ¾ ��� ½ Ú ¾ � , where � ½ ¦�¾ - /ZÉ
. Define a central force potential

and discrete Lagrangian as! � ���W� � � �T�W� � � � ½ 2 ¾ ?�� ½ Ú ¾ �B = � � " � ��2� R �W� �� R � ��2W?�� " � a  � ��2W?�� " �#? R ! � � " �,� (3.44)

with constant S � S diagonal mass matrix  and time step R C 
 . This is

invariant under translations � ½ ª�¾ ¢¤ � ½ ª,¾ V ) ¥~¦ � Ä �.�;� � and §W�.�;� �<� î � where the

generator of translation are defined as

¥ 2Z�
×ØØØØØØØÙ
�

 �


Ü ÝÝÝÝÝÝÝß � ¥ ÚÎ�

×ØØØØØØØÙ

 �

 �

Ü ÝÝÝÝÝÝÝß � ¥ É �

×ØØØØØØØÙ


 �

 �
Ü ÝÝÝÝÝÝÝß = (3.45)

From the definition of the separation vector � and the fact that
´ �{� ´ � ½ 2 ¾ �? ´ �{� ´ � ½ Ú ¾ , we have 
 ] ! � ���W� ö 
ÃÖ � � �{�? 
ÃÖ � � �T� ÷ � (3.46)

so that 
 ] ! � ��� � ¥>¦ ��
O�8§â�£�;� �<� î . Concatenating the three currents in a vector,

we find

Ô 0 � Ô N � R N 2  ½ 2 ¾ � � ½ 2 ¾2 ?�� ½ 2 ¾" � V	R N 2  ½ Ú ¾ � � ½ Ú ¾2 ?�� ½ Ú ¾" �,� (3.47)

which is the standard definition of linear momentum.

3.9 Extended variational principle

The computation of first order variations stated in d’Alembert’s principle and

considered in Section 3.5 above neglected the time re-parametrization. As shown
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3 Analytic and Discrete Mechanics

in Section 3.10, the variation of the time variable plays an important role in

analyzing the energy of a system. This warrants the present computation of a

more general form of infinitesimal transformations and corresponding first order

variations.

Consider the real variable f - /
, the real function j   / ¢¤ /

and the definite

integral
ù �sfÍ" � f 2���� t �#"�%$ � f j �gf � . The change of variable theorem states that for a

function
ü   / ¢¤ /

which is 1-1 on the interval © ü � z " �~� ü � z 2~� « ¢¤ © d " ��d<2 « , thenù �sfÍ" � f 2,�w� q �#"�%$ � d¨j �sf �W� q s�× " ½ ��" ¾s × " ½ �%$ ¾ � z hü � z �8j � ü � z �8�~� (3.48)

where
ü N 2 �sf � is the inverse function and hü � z �W� ��ü � z ��� � z . Now, if we apply this

to a composition function of the form j �sf �`� | � � �gf �~� h� �gf �~� f � , where �   / ¢¤ �
is � 2

continuous and where h� �gf �Å� � � �gf ��� � f , then, we must first transform the

functions �{� h� as follows � � z �¸��� � ü � z ���¸�u� �gf �~�h� �sf �W� � � � ü � z ���� z � z� f � h� � z � �hü � z � � (3.49)

where the implicit function theorem was used to substitute
� z � � f � �L� hü � z � .

Therefore, for the case at hand, the change of variables theorem reads:q sp× " ½ ��" ¾s × " ½ �%$ ¾ � z hü � z � | � � � z �,� h� � z �hü � z � � ü � z � � � q �#"�%$ � f | � � �gf �,� h� �gf �,� f �~= (3.50)

Define the generalized variation as followsf � ü � z �W� z V ) � � z �~��� � z �W� �� �gf �W�A� � z � V )�S � z �W��� �gf � V )�S � ü N 2 �gf ���,�h�� �gf �W� �hü � z �ÙØ h� � z � V ) hS � z �ÉÚ¸� (3.51)

where we assume that S and � are uniformly bounded � 2
functions of time z - /

,

that
� � z " �W� � � z 2,�w��
 , and finally that S � z " �w�AS � z 2,�w�u
 . Assuming that )D- /

is small and expanding the integrand to first order yields| � �{� h�;� Ø �� � z �~� h�� � z �hü � z � � ü � z �ÉÚ`� | � �{� h�;� � �� � z �,� h�� � z �~� z �?B) ´ | � � � z �~� h� � z �~� z �´ h� � z � h� � z � h� � z � V ) ´ | � � � z �,� h� � z �,� z �´ z � � z �,� (3.52)

and finally| � �� � z �,� h�� � z �~� z �Z�| � � � z �,� h� � z �,� z � V ) ´ | � � � z �~� h� � z �~� z �´ � � z � S V ) ´ | � � � z �,� h� � z �,� z �´ h� � z � hS�= (3.53)
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3.10 Variation of time and energy conservation.

Noting now from the first line of (3.51) that
� z hü � z �W� � z � � V ) h� � z ��� , multiplying

this with the terms found in (3.52) and (3.53), discarding all terms of order IK� ) Ú �
and higher, and integrating the term containing

� Õ and S¨Õ by parts, the following

simplification is foundq �#"�%$ � z hü � z � | � �� � z �,� h�� � z �~� z �Z� q �#"�Ì$ � z>| � � � z �,� h� � z �,� z �V )�q � "�Ì$ � z � ´ | � �{� h�O� z �´ z ? �� z±Û | � �{� h�O� z �3? ´ | � �{� h�O� z �´ h� h�~Ü � � � z �V ) Û | � � � h� � z �â? ´ | � �{� h� � z �´ h� h� � � z �pÜ ììììì �#"�%$V ) q ��"�%$ � z'Ò ´ | � �{� h� � z �´ � ? �� zÝÍ ´ | � �{� h�O� z �´ h� ÎÞÓ S � z �V ) Í ´ | � �{� h�O� z �´ h� Î S � z � ììììì �#"�%$� q �#"�Ì$ � f | � �{� h� � f � V�IK� ),�,= (3.54)

The last line of this equation is just a relabeling of the variable z and therefore,

the integral is stationary if all the terms proportional to ) vanish. This reproduces
the previously derived Euler-Lagrange equations of motion (3.17) in addition to

a new equation, namely´ | � �{� h�O� f �´ f ? �� f Û | � �{� h�O� f �3? ´ | � � � h�O� f �´ h� h� Ü �u
O= (3.55)

In the case where
´ | � ´ f � 
 , this last equation contains the definition of the

energy of the system which is time invariant, namelyc6� �{� h� � f �w� ´ | � �{� h�O� f �´ h� h�Î? | � �{� h� � f �~= (3.56)

But in case
´ | � ´ f � 
 , the equation adds nothing new as is easily seen by

expanding the total time derivative in (3.55) and applying the Euler-Lagrange

equations of motion (3.17). Indeed, energy conservation is already implied in

the Euler-Lagrange equations of motion. In the discrete case however, energy

conservation is no longer implied by the basic discrete Euler-Lagrange equations

of motion (3.22). The significance of this is investigated next in Section 3.10.

3.10 Variation of time and energy conservation.

So far, we have seen that spatial translation invariance leads to conservation of

momentum and that rotational invariance leads to angular momentum. Since
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the Lagrangians considered so far do not explicitly depend on time we should

be able to exploit time translation invariance—labeling of the origin of time—to

produce another symmetry, namely, energy.

This symmetry can be discovered by using the extended variations of Sec-

tion 3.9 but a simpler approach is now used as is customary, (see in [173] and

in [150] or [87]) for instance).

Indeed, consider applying an infinitesimal time translation to the general-

ized coordinates � �sf � with the variation
ÿ ��� )�S �gf � h� �sf � , where S �gf�" ����S �gf 2,���
O� x Sk� x f CE
<� and )DC*
 is small. Variations in the function S �gf � thus create local

distortion of this small time shift. Using this form of variation
ÿ
leads to the

following form for the variation of the actionÿ � ��) q �#"�Ì$ � z S Ò ? �� z Í ´ |´ h� Î V ´ |´ �+Ó h�Å��
O� (3.57)

and the integrand is easily verified to be the negative of the total time derivative

of the energy c � � ´ | � ´ h��� h�H? | � �{� h��� , introduced earlier in (3.56). This is

constant along the physically realized trajectory � � � h�;� as long as the Lagrangian

does not depend explicitly on time, as demonstrated previously in Section 3.9.

For cases where the kinetic energy
� � �{� h�;� is a homogeneous function of h� with

degree F and the potential energy
! � ��� is independent of h� , then,

´ | � ´ h�*�F � � �{� h��� and so c � ��F ?u�M� � � �{� h��� V ! � ��� . For the most common case where� � �{� h�;�w� 2Ú h� a  � �;� h� , we have F ��� and in this case, c � � � �{� h��� V ! � ��� . This is
not too surprising since we started the presentation by introducing

� � �{� h��� and! � ��� as the kinetic and potential energy, respectively. We now find that the total

energy of the system is simple the sum of these two terms. For the discretized

case, we start by generalizing the definition of the discretized Lagrangian to

include time B = � � " � fÍ" � �L2� f 2��W�rq � "�%$ � zM| � � � z �~� h� � z �~� z �>� (3.58)

and this now leads to the generalized action which now depends on the choices

of times fÍ" ' f 21' f ÚÅ'J=>=>=<' f é asC = � � " � fÍ" �M=>=>=M� �>éÅ� f é1�w� é N 2Ñ¬�q " B = � � ¬ � f ¬ � � ¬ 032L� f ¬ 032~�,= (3.59)

The minimum of the action over the full set of available parameters leads to the

two sets of conditions´>C = � � " � fÍ" �>=>=>=M� �>é`� f é1�´ � ¬ � � É B = � � ¬ N 2 � f ¬ N 2 � � ¬ � f ¬ � V � 2 B = � � ¬ � f ¬ � � ¬ 0â2 � f ¬ 032 ���
´>C = � � " � fÍ" �>=>=>=M� �>é`� f é1�´ f ¬ � � ¦ B = � � ¬ N 2 � f ¬ N 2 � � ¬ � f ¬ � V � Ú B = � � ¬ � f ¬ � � ¬ 0â2 � f ¬ 032 ���
<�
(3.60)
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where the differential operators
� ª simply mean “differentiation with respect to

the Ä th argument,” generalizing the definition provided in (3.23).

Note that the second of these equations—the conservation of energy—is not

a direct consequence of the first as was the case in the continuous case but is

genuinely a new equation. If we write R ¬ � f ¬ ? f ¬ N 2 , we find the definition of

the discrete energy asß = � � ¬ N 2��� ¬ � R ¬ �w� ? ´ B = � � ¬ N 2L� � ¬ � R ¬ �´ R ¬ = (3.61)

This leads to the observation that an energy conserving discrete integrator

must use an adaptive time step [150, 206]. However, given that energy fluctuates

only within bounds of I6��R Ú � when ignoring the additional equations (3.60), and

given that the main focus in the present thesis is on dissipative systems, this is

not considered further.

3.11 Continuous and discrete symplectic flows.

We have already demonstrated in Section 3.8 how several conservation laws can

be deduced from the invariance of the Lagrange function under the action of

symmetry groups. There is also a fundamental symmetry of the flow,
( �)  � � � / ¢¤ � �

, which maps the initial conditions � � � 
��~� h� � 
T�8� to the configuration

at time f , � � �gf �~� h� �sf �8� . There is in fact a differential form
^ ) associated with the

Lagrange function | � � � h�;� which is preserved by the flow map. Without going

deeply into the theory of differential forms or differential geometry, suffice to

say that this implies the invariance of certain scalars—integrals of
^ ) —along

the trajectory � � �gf �~� h� �gf ���6� ( �) ½ ] ½ " ¾#Á \] ½ " ¾s¾ . We first summarize some basic facts

regarding differential forms and proceed to demonstrate that the flow
( �) defined

by the Lagrange functions |   � � ¢¤ /
preserves a differential two-form and that

this is also true for the discrete flow defined by the discrete variational principle.

In fact, as we shall see below, the preservation of this two-form along the flow is

directly connected to the variational structure defining the flow
( �) .

Following the brief but lucid introductions found in Flanders [90] and in [22],

we define exterior differential forms as the integrands of oriented integrals over� -dimensional domains. Simple examples in
/�É

include the one-form Ô 2 � r � \ V¯ � d Vºï � � leading to the line integral Ð�� tÈÔ 2
, the two-form Ô Ú �à� � d � �KV� � � � \ V � � \ � d leading to the oriented surface integral Ó��:t�tÈÔ Ú

, and the

three-form Ô É � R � \ � d � � leading to the volume integral: ÏB�mt;t�tÈÔ É
. The

scalar functions r � ¯� ï ���#� �{�:��� and R , are all assumed to be smooth integrable

mappings of the form
/�É ¢¤ /

.

Because orientation is a fundamental aspect of integral forms, the calculus of� -forms involves the wedge product � ½ ¦¿¾ Q�� ½ ª�¾ which is linear, associative, and

antisymmetric. Using this, general differential �%? forms are defined in
/ p � � ���

as: Ô n � ��Ká Ñ r ¦ " Á ¦ � Á Â Â Â Á ¦�â d � ½ ¦ " ¾ Q d � ½ ¦ � ¾ Q ����� Q d � ½ ¦�â,¾ � (3.62)
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and � � �¨� 9âÔ n is known as the degree of the � -form. Thus defined Ô n is a

multilinear mapping: Ô n   Q n / p ¢¤ /
.

The wedge calculus can be used to define � V � -forms by composition Ô n 0 ] �Ô n QHÔ ] given a � -form Ô n and a � -form Ô ] .
General � -forms can be differentiated using the exterior derivative operator, d,

which is defined via the following axioms (quoted from Flanders [90])

1. linearity: d � Ô V S��w� d Ô V d S ,
2. distributivity: d � ÔRQ+Sk�w� d ÔRQ+S Vº� ?D� ��ã7ä}å ÔæQ d S ,
3. the Poincaré lemma (closure): for each differential form Ô , such that the

coefficients r ¦ " Á ¦ � Á Â Â Â Á ¦�â of definition (3.62) are � Ú
functions, then:

d � d Ô¸�w��
<� (3.63)

4. For each function j   / p ¢¤ /
:

d já� Ñ ¦ ´ j´ � ½ ¦¿¾ d � ½ ¦¿¾ = (3.64)

Differential forms are useful chiefly because of two fundamental facts which

distinguish them sharply from general tensors. First, consider a map
ü   / +A¢¤/ p

(in general, between two manifolds
µ ¢¤�W

). Given a � -form Ô n   / p ¢¤ /
,

the composition of these two mappings is: Ô n þ�ü   / +�¢¤ / p
. This composition

is called the naturally induced � -form and is denoted
ü>ç Ô n . The map

ü U
is called

the pullback since it maps � -forms Ô n operating on elements of
W

back to � -
forms

ü U Ô n operating on
µ

, i.e., in the opposite direction of
ü
. The situation is

explained in Figure 3.1. For the simple case where manifolds
µ

and
W

have the

same dimension and the map
ü
is 1–1, the pullback

ü U
is the inverse transpose

of the Jacobian matrix of
ü
. The Jacobian of the transform corresponds to

the pushforward map
ü U which, in this case, would map � -forms operating onµ

to � -forms operating on
W
. A simple way to understand this picture is to

consider the case of a line integral which involves only � -forms and vectors. This

leads to evaluating integrals of scalar products of the form l r ¦ � \Q� � \ ¦ where

the r ¦ � \k� are the components of a � -form. For these products to be invariant,

the transformation of the row vector r a � � r 2� r Ú;�M=>=>=M� r p � must cancel out that

of the vector
� \ . Thus if the differentials transform as

� �\�� Ô � \ , the � -forms

must transform as �r � Ô N a r , locally, and this corresponds to the pushforwardü U and the pullback
ü U , respectively. In physics, this is known as co-variant and

contra-variant transformation rules in the context of tensor algebra, especially

when dealing with general relativity [249, 248].

When applied to differential forms, mappings
ü
and their naturally induced

differential forms have the following important properties:

1. linearity:
ü ç � Ô V Sk�w� ü ç Ô V ü ç S ,

2. distributivity:
ü ç � ÔRQTS��w� � Ô ç ü �>Q � Ô ç Sk� ,
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/

µ Wü

Ô nü U Ô n
ü U

Figure 3.1: Illustration of the naturally induced � -form by a mapping
ü
, the

pullback
üVU

.

3. invariance under differentiation: d � ü ç ÔZ�w� ü ç � d Ô¸� ,
4. composition: if

ü   / +£¢¤ / p
and

ý   / p ¢¤ / ¬
, then,� ýBþ�ü � ç � ü ç þ¸ý ç

(the dressing undressing principle).

To see the usefulness of this, consider the integral of the differential � -formÔ n   / p ¢¤ /
over the domain

� - / p
and the smooth map

ü   / p ¢¤ / p
, with

preimage
ü N 2

. With this notation, the generalization of the change of variables

theorem reads qVèYÔ n �rq s × " ½ è ¾ ü ç Ô n = (3.65)

Now armed with this arsenal, we look at the definition of the action in (3.15)

and the functional derivative in (3.16) to rewrite this asÿ � � d � ÿ �{= (3.66)

Define the mapping
( �)   � � ¢¤ � �

so that � � � 
��~� h� � 
T�8� is mapped to the point� � �sf �,� h� �gf ��� on the physical trajectory defined by the Lagrangian | � �{� h�;� and the

initial conditions. Therefore, the evaluation of the differential one-form d � on

the trajectory éK�sf �w� � � �gf �~� h� �gf ��� is
d ��éK�gf �w� � Y ) þ ( �) � éK� 
��3? Y ) éK� 
T�,��� Ç � ( �) � ç Y ) È éK� 
��3? Y ) éK� 
��,� (3.67)

where the time interval © f8" � f 2 « was relabeled as © 
O� f�« , and Y ) is defined as the

differential one-form Y ) � ´ |´ h� d �{= (3.68)
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Indeed, since the Euler-Lagrange equations are identically satisfied along the

physical trajectory
( �) �#éK� 
T�8� , the integrand in (3.16) does not contribute.

Now, by the Poincaré Lemma (3.63), d
Ú � ��
 and using the previously stated

fact that d � ü³ç Ô¸�w� ü³ç � d Ô¸� , we differentiate (3.67) to find� ( �) � ç d Y ) � d
Y ) = (3.69)

Therefore, defining the differential two-form
^ ) � d

Y ) , the following two-form

is invariant under the mapping
( �)^ ) � d

Y ) � ´ Ú |´ � ½ ª,¾ ´ h� ½ ¦¿¾ d � ½ ª,¾ Q d � ½ ¦�¾ V ´ Ú |´ h� ½ ª�¾ ´ h� ½ ¦¿¾ d h� ½ ª�¾ Q d � ½ ¦¿¾ = (3.70)

Now, if we pick a domain
� - � �

consisting of a set of initial coordinates,� � � 
��~� h� � 
T�8��- � �
. Assume that each point in

�
moves in time according to the

same flow map
( �) . The fact that the two-form

^ ) is invariant under the action

of
( �) means we have the following scalar invariant of the flowq ½Ìê~ëì ¾ × " ½ è ¾ ^ ) � q è ^ ) � _ - / = (3.71)

One needs the theory of symplectic manifolds and Hamiltonian flows to analyze

the meaning of this further. It suffices to say here that symplectic invariance of

the flow implies the invariance of the Hamiltonian function ��� �#� ��� which is a

Legendre transform of the Lagrangian. For conservative systems, the Hamilto-

nian is energy of the system expressed in the Legendre coordinates � �%����� , with��� ´ | � ´ h� a , and the symplecticity of the flow is equivalent to the conservation

of energy.

The discretized version of this result proceeds in the same way. We first define

the mapping FHG?I   � � � ¢¤ � � � �FHG?I � � " � ��2,�w� � �L2� �>Ú�,� (3.72)

which is implicitly defined by the discrete Euler-Lagrange equations established

from (3.22). Now, evaluating the one form d
C = � � " �>=M=>=>���>éÅ� R � on a trajectoryé ¬ � � � ¬ � � ¬ 032~� , we have

d
C = � � " �>=>=>=M� �MéÅ� R �W�é N ÚÑ¬,q 2 � � 2 B = � � ¬ � � ¬ 032� R � V � Ú B = � � ¬ ��� ¬ 032L� R ��� d � ¬

V ´ B = � � " � �L2� R �´ � " d � "ZV ´ B = � �Mé N 2���>éÅ� R �´ �>é d �>é� Ç Y ½ 0 ¾G?I þ F é N 2G?I È ��é1" ? Y ½gN ¾G?I ��é1" � (3.73)
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with the definitionsY ½ 0 ¾G>I � � " � �L2,�W� � Ú B = � � " � ��2� R � d �L2�� ´ B = � � " � �L2� R �´ �L2 ½ ¦¿¾ d �L2 ½ ¦¿¾ �Y ½gN ¾G>I � � " � �L2,�W� ? � 2 B = � � " � �L2� R � d � " � ´ B = � � " � ��2� R �´ � " ½ ¦�¾ d � " ½ ¦¿¾ � (3.74)

and after observing that the summand in (3.73) vanishes on the trajectory.

Note that the discrete Euler-Lagrange equations imply that
Y ½ 0 ¾G>I � � ¬ N 2L� � ¬ �á�Y ½gN ¾G>I � � ¬ � � ¬ 032,� . Also, since d

B =`� Y ½ 0 ¾G>I ? Y ½sN ¾G?I
and since d

Ú B =���
 , we have

d
Y ½ 0 ¾G>I � � " ���L2,�w� d

Y ½gN ¾G?I � � " � ��2,�w� ^ G?I � � " � �L2,�� ´ Ú B = � � " � �L2� R �´ � " ½ ¦¿¾ ´ �L2 ½ ª,¾ d � " ½ ¦¿¾ Q d ��2 ½ ª,¾ = (3.75)

Using the Poincaré Lemma (3.63) on (3.73), we find that� F U GKI � é N 2
d
Y ½ 0 ¾G?I � d

Y ½gN ¾G>I � ^ G?I = (3.76)

In other words, the time sequences produced by solving the discrete Euler-

Lagrange equations (3.22) preserve the two-form
^�GKI

, just as in the continuous

case. And this is true for absolutely any choice of discretization of the Lagrangian,

irrespective of the order of the approximation of
B = . As long as we solve the

stepping equations (3.22) accurately enough, the two-form
^ G?I

is preserved by

the flow.

To grasp the meaning of this identity, remember that the initial conditions for

the discrete variational stepper are given by a pair of points, � � " � ��2,� . Consider a
domain of initial conditions

� " - � � �
. Choose

� " to have small area so that all

points in it are somewhat close to each other initially. Then, each point � � " � �L2,��-�
moves according to the map

F ¬GKI � � " � ��2,� to the set
� ¬

, and the invariance

theorem says that
� ¬

has the same surface area as
� " , i.e., _`� � ¬ �(� _`� � " � .

Thus, a cluster of initial conditions cannot spread too far from each other, unless

of course there is a collapse along some of the dimensions, allowing escape towards

infinity along the others. Barring this pathological case, this observation means

that small local errors do not accumulate in variational integration methods. In

particular, making a small error at one stage does not lead to an exponential

divergence in the long run, unless similar errors are made at each step.

This can be illustrated in two dimension using the simple harmonic oscillator

introduced in Chapter 2. The domain of initial conditions is chosen as the con-

tour of the face of a stylized cat. The choice of the face of a cat to illustrate

symplecticity goes back to Arnol’d [22]. Points � � " � ��2,� lying on the outline of

the face of the cat at time f ��
 are used as initial conditions for the simple har-

monic oscillator which is simulated using a numerical integration method such

as the four described in Chapter 2 or any other one. Each point on the contour

is then propagated in time and should at least approximately follow the ellipsec � � ������ h� Ú V�� �L�;����Ô Ú � Ú in phase space as shown in Figures 2.1 2.2, and 2.3 in

Chapter 2
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The outline at time f � F¨R consists of points with coordinates � � ¬ � R N 2 � � ¬ 032%?� ¬ �8� which are the image under the a given integration method. All told, each

picture involves several hundreds of integrations over a given time interval, each

starting at different initial conditions � � " � R N 2 � �L2W?B� " ��� on the outline.

In Figures 3.2, 3.3, and 3.4, and 3.5, we present data from the Verlet, implicit

midpoint, second order Runge Kutta (explicit midpoint) and implicit first order

Euler, respectively, for low values of frequency, namely, using R Ô@�A
<= � , whereR is the time step, and Ô � � F is the natural frequency, F being the spring

constant. The scales on each sub-figure are identical but varies from figure to

figure. The plot key denotes the time of each snapshot.

These pictures illustrate that the surface area of the cat is preserved for the

variational methods, namely, the Verlet and implicit midpoint methods as seen

from Figure 3.2 and Figure 3.3. However, the surface area of the face of the

cat area obviously increases for the explicit midpoint method in Figure 3.4, and

quickly shrinks for the Euler implicit method in Figure 3.5.

A similar series of figures illustrates what happens when the frequency R Ô
is higher. Both variational methods still preserve the surface area of the cat

as seen in Figures 3.6 and 3.7. However, the explicit Runge-Kutta method of

second order explodes the area faster in Figure 3.8, whilst the implicit Euler

method shrinks it faster in Figure 3.9.

t= 25

�
?��
�
t= 17

�
?��
�


t=8.3

�
?��
�
t= 0

�
?��
�


Figure 3.2: Phase portrait of simple harmonic oscillator with frequency R Ôo���� y
using Verlet integration.
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t= 25

�
?��
�
?��t= 17

�
?��
�
?��

t=8.3

�
?��
�
?��t= 0

�
?��
�
?��

Figure 3.3: Phase portrait of simple harmonic oscillator with frequency R Ô����� y
using implicit midpoint integration.

t= 25

�
?��
�


t= 17

�
?��
�


t=8.3

�
?��
�


t= 0

�
?��
�


Figure 3.4: Phase portrait of simple harmonic oscillator with frequency R Ô ��� y using explicit midpoint method integration (Runge-Kutta second

order).
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t= 2

�
?��

O= y
O=ë
t=1.3

�
?��

<= y
<= 


t=0.65

�
?��

O= y
O=ë
t= 0

�
?��

<= y
<= 


Figure 3.5: Phase portrait of implicit first order Euler integration applied to the

simple harmonic oscillator with frequency R Ôo���L� y .

t= 25

��
?��
�
?��?D�

t= 17

��
?��
�
?��?D�

t=8.3

��
?��
�
?��?D�

t= 0

��
?��
�
?��?D�

Figure 3.6: Phase portrait of Verlet integration applied to the simple harmonic

oscillator with frequency R Ô���� .
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t= 25


?D�
�
?��t= 17


?D�
�
?��

t=8.3


?D�
�
?��t= 0


?D�
�
?��

Figure 3.7: History of the phase portrait of the Arnol’d cat initial conditions

for the implicit midpoint integrator applied to the simple harmonic

oscillator with frequency R Ôo��� .

t=0.35


?��M


?��M
t=0.23


?��


?��


t=0.12


?��M


?��M
t= 0


?��


?��


Figure 3.8: History of the phase portrait of the Arnol’d cat initial conditions for

the explicit midpoint integrator (Runge Kutta second order) applied

to the simple harmonic oscillator with frequency R Ô���� .
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t=0.15

�
?��

O= y
O=ë
t=0.1

�
?��

<= y
<= 


t=0.05

�
?��

O= y
O=ë
t= 0

�
?��

<= y
<= 


Figure 3.9: History of the phase portrait of the Arnol’d cat initial conditions for

the implicit Euler first order integrator applied to the simple har-

monic oscillator with frequency R Ôo�£� .
3.12 Forced and dissipative systems

Mechanical systems in which all forces can be derived from potential energy

function,
! � ���   � ¢¤ /

, are called conservative as they preserve energy on the

trajectory, as shown in Section 3.9 and Section 3.10. We now extend the analysis

to cover forced and dissipative systems as well. These are the systems for which

the forces are not the gradient of potential functions and, thus, they do not

necessarily conserve energy.

Assume that a mechanical system is subjected to forcing functions j � �{� h�;�
which cannot be derived from a potential function

! � ��� (or even ! � �{� h�;� for the
general case). Such forces are also known as polygenic forces in contrast with

monogenic ones which can be derived from a potential function. D’Alembert’s

principle [173] states that any variation
ÿ � of the physical trajectory satisfying

the boundary conditions
ÿ � �gf�" �1� ÿ � �sf 2,�D�£
 should produce zero net variation

of the following functionalÿ q �#"�%$ � z>| � � � z �,� h� � z �8� V q �#"�%$ � z j a ÿ �Å��
O� (3.77)

where the combination \ a d is the ordinary inner or dot product of any two� -dimensional vectors \%��d .
The Euler-Lagrange equations of motion for this system are readily recovered

noting that
ÿ � is arbitrary, yielding the following system after transposition�� f ´ |´ h� a ? ´ |´ � a ��j � �{� h���,= (3.78)
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To see that this is consistent with the case of conservative forces case in-

troduced in (3.11), consider j � �{� h���¡� ? ´ � � ��� ´ ��� a and therefore, the second

integrand reads j a ÿ �B� ? � ´ � � ´ �;� ÿ ��� ? ÿ � � ��� so terms can be collected asÿ © | ? � « in the first integral. After updating the definition of the potential

function,
! � ��� V � � ��� , we recover the conservative problem defined previously

in (3.11).

Since
ÿ � is arbitrary, the condition above must hold over each segment of

the time integration and in particular, we must have t v" � z j � �{� h��� a ÿ �K��
 . The

value of � � z � in the integrand is approximated by the smooth function � � z �(�<>= � � " � �L2� z � R � on the interval © 
O� R<« , and therefore, the relation between
ÿ � � z � and

the discretized coordinates � " � �L2 is expressed asÿ � � z �¸� ´ <>= � � " � �L2� z � R �´ � " ÿ � "ZV ´ <>= � � " � ��2� z � R �´ �L2 ÿ �L2= (3.79)

This leads to two terms to be evaluated, namelyq v" � z j � �{� h��� a ÿ �Å� q v" � z j � �{� h��� a ´ <>=´ � " ÿ � "ZV q v" � z j � �{� h��� a ´ <>=´ �L2 ÿ ��2��j ½ 0 ¾= � � " � ��2� R ��a ÿ � "ZV j ½gN ¾= � � " � �L2� R �Ía ÿ �L2� (3.80)

with definitions j ½gN ¾= � � " � �L2� R � � � " � �L2,�W�rq v" � z ´ <>=´ � a" j � � � h�;�~�j ½ 0 ¾= � � " � ��2� R �W� q v" � z ´ <>=´ � a 2 j � � � h�;�~= (3.81)

Collecting terms with
ÿ � p , we find the stepping equations� aÚ B = � � ¬ N 2L� � ¬ � R � V � a 2 B = � � ¬ � � ¬ 032L� R �V j ½gN ¾= � � ¬ ��� ¬ 032L� R � V j ½ 0 ¾= � � ¬ � � ¬ 032� R �W�u
O= (3.82)

A simple general choice for the function <?= � � " ���L2� z � R � is the linear map <?= � � " � ��2� z � R �W�� � "ãV�� �1? � ���L2Î�@�L2 N~ , and the velocity definition ��21� � �� R � � ��2¸?�� " � , leading
to the evaluations j �½gN ¾= � � " � � 2 � R �W� �QR j � � 2 N³ �:� 2 �~�j �½ 0 ¾= � � " � �L2� R �W� � ��? � � R j � ��2 N~ �:�<2��~� (3.83)

and summing the contributions, we havej �½gN ¾= � � ¬ � � ¬ 032L� R � V j �½ 0 ¾= � � ¬ N 2L� � ¬ � R �W��kR j � � ¬ 032 N~ �:� ¬ 032,� V*� ��? � � R j � � ¬ N³ ��� ¬ 0â2,�,= (3.84)

The limiting cases � ��
 and � ��� lead to the stepping equations� aÚ B = � � ¬ N 2L� � ¬ � R � V � a 2 B = � � ¬ � � ¬ 032� R �W� ? R j � � ¬ �:� ¬ �~� for � ��
<�� aÚ B = � � ¬ N 2L� � ¬ � R � V � a 2 B = � � ¬ � � ¬ 032� R �W� ? R j � � ¬ �:� ¬ 032,�,� for � ���;= (3.85)
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Also of interest is the symmetric version of the forces defined asj sym �½gN ¾= � � " � ��2� R �¸� R � � � j � �L2 N~ ���<2,� Vº� �ã? � �8j � �  ���<2,� � �j sym �½ 0 ¾= � � " � ��2� R �¸� R � � � �ã? � �8j � �L2 N~ ���<2,� Vt� j � �  ���<2,���â= (3.86)

These different discretizations will be used alternately in what follows, depending

on the stability requirements and the form of the function j � � � h�;� .
3.13 Rayleigh dissipation functions

A special type of forcing involves Rayleigh dissipation functions which are scalar

functions of the form R � �{� h�;� and which generate forcesj
R � �{� h�;�W� ? ´

R � �{� h�;�´ h� a � (3.87)

which are reminiscent from the potential forces defined previously in (3.18).

A simple example of this is the function R � �{� h�;�W� � �������� 4 h� 4 which generates

a viscous drag j
R

� ?�� h� .
The significance of such a scalar formulation is seen from the computation of

the time rate of change of energy. Indeed, for a Lagrangian without explicit time

dependence, the rate of change of energy due to the introduction of a Rayleigh

dissipation function isx cx f � �� f Û ´ |´ h� h�D? | Ü � Ï �� f ´ |´ h� a ? ´ |´ � a Ð h�`��j a � �{� h�;� h�� ? ´
R´ h� h�{= (3.88)

The most common form for a Rayleigh function is homogeneous of degree 2 inh� . This yields x c � x f � ?D�
R � �{� h��� . Therefore, the value of Rayleigh function is

often associated with the energy dissipation rate.

Since the energy of a system subjected to the force produced by a Rayleigh

function decreases at a rate proportional to R � �;� , the dynamics will settle when

R � ���(� 
 . If R � �{� h�;� is bounded below by 
 , it is minimized by the dynamics

but it also constrains the system on the surface R � �{� h�;��� 
 . This is in fact

the definition of a kinematic constraint. Since there are is no real restriction to

the definition of a Rayleigh function, there offer the most general definition of a

constraint on the system.

3.14 Constraints

From a reductionist perspective, it should be possible to model everything under

the sun as systems of point particles interacting through pairwise interactions. In

fact, for the range of time, length and mass scales mentioned previously, it should

68



3.14 Constraints

be sufficient to use only the forces of classical universal gravitation and classical

electromagnetism. But this argument is deceptive because it does not distinguish

data from noise in both time and space domains. Indeed, a tennis ball can be

viewed as a composite of several thousands of point particles, including millions

of pairwise forces. But in fact, these point particles do not move much relative

to each other and the most important data here is the location and velocity of

the center of mass, the attitude and angular velocity about the center of mass,

followed by the bulk deformations. In fact, these deformations are related to the

velocity of sound in a solid and this typically in the range of �M
 É to �M
 ¦ , and
propagation through a solid of size � m for instance takes �
 N É to �
 N ¦ seconds,
far, far below the time resolution of interactive physics. The point here is that

at the time resolution scale of �M
 ms of interactive physics, most bodies are rigid.

If we choose to ignore the microscopic physics, we must allow for geometric

restrictions on the motion of our objects which are in fact the net result of the

underlying microscopic dynamics. For instance, if a spherical marble of radius� is put on a flat plane described as the surface � �m
 , a macroscopic model

of this should impose the restriction that the center of mass of the bead satisfy

the inequality �1í1?R�Y�E
 , instead of computing the magnetic dipole interactions

between the surface molecules of the marble and the ground surface. On the

time scales we are interested in, any impact between the marble and the ground

plane can be considered as instantaneous and we can therefore safely ignore all

the microscopic physics and concentrate on enforcing the macroscopic constraint:��íb?��Y�E
 .
In general, constraints are restrictions on the variables describing the system,

namely, the coordinates � , their velocities h� , the forces j � �{� h�;� , and time f . Any

such restriction can be written as ïL� � � h� � j ½Eî ¾ � f �Z�E
 . Of course, for the restrictionï �E
 to have an influence on the system, it must produce some sort of net forcej ½Eî ¾ , which will be deduced from d’Alembert’s principle. This is where the

strength of the variational formulation is truly palpable.

In what follows, we first present different categories of restrictions and then

proceed to derive the constraint forces they generate using the fundamental prin-

ciples we have exposed so far. The connection between constraints and strong

forces with fast dynamics will be explored further below.

3.14.1 Kinematic constraints nomenclature

First consider restrictions which are purely kinematic, i.e., independent of the

forces applied on the system so they can be written as algebraic inequalitiesïL� �{� h� � f ���E
 . The following categories are distinguished.

scleronomic: without explicit dependence on time, ïL� �{� h�;���E
 ;
rheonomic: explicitly time-dependent, ïL� � � h� � f �Z�E
<� ´ ï´ f�ï��
 ;
holonomic: independent of velocity, ïL� �{� f ���E
 ;
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nonholonomic: explicitly dependent on velocity so that ïL� �{� h� � f �È�£
 is a non-

integrable function;

bilateral: the restriction is a strict equality ïL� � � h� � f �w��
 ;
unilateral: the restriction is an inequality ï�� �{� h� � f ���E
 ;
ideal: the constraint forces are perpendicular to the trajectory so that the con-

straint does zero net virtual work on the system;

nonideal: the constraint forces produce nonzero net virtual work;

Unfortunately, this taxonomy is not hierarchical. To confuse things further,

the physics literature often uses the term“holonomic constraints” as a shorthand

for bilateral, scleronomic, holonomic, ideal constraints, and “nonholonomic con-

straints” for the rest. In what follows, an attempt is made to be as precise as

possible in referring to different types of constraints.

The motivation for each item in the nomenclature differs. The split between

scleronomic and rheonomic constraints is based on whether or not the is an

explicit time dependence in the constraint definition. Rheonomic constraints,

because they depend on time, can violate energy conservation.

Some constraints can be eliminated by a change of coordinates and this is said

to make them integrable. For instance, if a point particle is constrained to stay at

unit distance from the origin, with a light rigid rod for instance, one can introduce

polar coordinates, set the radius to unity, and delete all time derivatives of the

radius from the equations of motion. This is not possible in general, however, as

discussed in Section 3.14.3. This motivates the distinction between holonomic

constraints and nonholonomic ones, meaning that the former is integrable in

principle, but the latter is generally not, as shown with a counter-example in

Section 3.14.5.

The distinction between ideal and nonideal constraints is prone to generate

confusion. Indeed, holonomic constraints are ideal as shown in Section 3.14.3.

However, a rheonomic constraint can perform net work on the mechanical system,

adding or removing energy.

In addition, the engineering literature [177] uses the term effort constraint as

described in Section 3.14.2. The discretization technique of Section 3.12 suffices

for these.

Special techniques are needed to discretize holonomic and non-holonomic con-

straints correctly, as discussed in Section 3.14.3 and Section 3.14.5, respectively.

3.14.2 Effort constraints

In the best of all circumstances, the forces applied on a system can be computed

from the positions and velocities so that we have an explicit function of the

configuration j � �{� h�;� . But there are several cases where the best that can be

done is the formulation of a constitutive relation � � �{� h� � j ½ Ö�¾ � f ���E
O� contributingj ½ Ö ¾ to the generalized forces. In this case, the restriction generates additional
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forces which may change the energy of the system according to the value of the

integral t � z j a¡h� , which is the work done done by a given force j on the system.

The term effort comes from the systems engineering literature [154] [177] where

it stands for generalized forces.

The best example of an effort constraint is the Coulomb friction model which

describes the contact forces between two rigid objects. In this model, a normal

force j ½ nor ¾ enforces the non-penetration condition between the objects, and a

tangential force j ½ tan ¾ prevents them from moving relative to each other provided

the magnitude of j ½ tan ¾ does not exceed the product of the friction coefficient

times the magnitude of the normal force. When the maximum magnitude is

reached, the tangential contact velocity is opposed by the tangential friction force,

producing dissipation. This is thus also an example of a nonideal constraint.

The only effort constraints considered in what follows are those which can be

derived from Rayleigh functions, which is typical in the engineering system dy-

namics literature [177], where they are called dissipative efforts. The interesting

symmetry here is that potential functions generate forces according to the nega-

tive generalized coordinates gradient whereas Rayleigh functions generate forces

according to the negative of the generalized velocity gradient. As shown fur-

ther below, these can be used to model Coulomb friction—provided appropriate

non-smooth functions are used—as well as a number of constitutive models for

drivers and motors. Since the forces generated by Rayleigh functions were al-

ready stated in (3.87) and since the discretization of non-conservative forces was

already performed in Section 3.12, we do not expand further on effort constraints

until special non-smooth forces are considered in Chapter 10.

3.14.3 Holonomic constraints

Consider an 7 -dimensional vector function of the configuration coordinates �k� �{� f �  � � / ¢¤ / +
with 7 �y� Jacobian matrix ^ � ´ � � ´ � , where � � �<���E�

, and,

generally but not necessarily, 7ða � . The Jacobian maps the changes in co-

ordinates � to changes in the function �Q� �{� f � . Each row of ^ weights the the

changes in each component of � in the global conspiracy to make the value of of��¦ change. Matrix ^ can include conversion in units, scales, or general coordinate

systems. The case where 7m� � is precisely a change of coordinate systems, from

Cartesian to polar or whatnot. When the restriction �Q� �{� f �Å�A
 is imposed on

the system, the net effect is to restrict the values of the coordinates � to live on a

manifold
µ - �

. In fact, it should be possible to parametrize
µ

directly and to

reformulate the Lagrangian | � �{� h���   � ¢¤ /
as [| � de� hd��   µ ¢¤ /

. This is called

a reduced coordinates approach but we choose instead an augmented coordinate

strategy.

To understand the forces required to maintain the system on the submanifoldµ
, we go back to the variational principle and modify it by restricting the

variations
ÿ � to be consistent with the constraints. Specifically, we require that
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they be tangent to the manifoldÿ �Q� �{� f �¸� ´ �´ � ÿ �Å��
O= (3.89)

Now, assuming that ^ has full row rank and that ^ can be partitioned as ^ �ò _ d ó � where the square 7 � 7 matrix _ is assumed invertible, and matrix d
is 7 ��� ?�7 . Given \�- / p

with partitioning \4� � de� � �~��d�- / + � � - / ½ p N + ¾
,

the solution to ^ \¡��
 is found to be\¡�Àö d� ÷ �Àö ? _ N 2 d� p N + ÷ � � �T� � (3.90)

where
� p N + is the ��� ?*7i� �E��� ?E7i� identity matrix, for any � - / ½ p N + ¾

.

In other words, the columns of �J�B� ?*7 Matrix � span the null space of

matrix ^ . Conversely, consider a vector < � ^Åa Ð where ÐA- / + �:<5- / p
,

then, < a � ��Ð a ^`� ��
 . Therefore, the left null space of � is mapped by the

vectors ^ba Ð���Ðu- / +
. Thus we write the variations

ÿ � �gf �6� ) � S �gf �~��S   / ¢¤/ p N + ��S �gfÍ" �Î�ñS �gf 2,�b� 
<� where S is uniformly bounded on © f8" � f 2 « and at least� Ú but otherwise, arbitrary. From this, we find that the functional derivative of

the action (3.16) becomesÿ ���gfÍ" � f 2,�w�rq �#"�Ì$ � z°Ò ? �� ztÍ ´ |´ h�òÎ V ´ |´ � Ó � SH��
<= (3.91)

For this to be true for arbitrary S , we need the term in the braces to be in the

left null space of matrix � which means that it can be written as Ð a3^ for someÐy- / +
, and the value of Ð is determined by enforcing the condition �k� �{� f �W��
 .

After transposing the vectors in (3.91), the Euler-Lagrange equations of motion

now read �� f ´ |´ h� a ? ´ |´ � a ? ^ a Ð��u
�k� �{� f �W�u
O= (3.92)

This is now a system of differential algebraic equation (DAE)s of index 3. There

are several definitions for the index of a DAE [114]). The simplest is the differen-

tiation index. This is one plus the number of times the algebraic equation—the

second line in (3.92)—has to be differentiated twice before the
|� factors can be

extracted and substituted in the differential equation. The index starts at 1 when

there is a non-trivial algebraic part which must be inverted and substituted in

the differential part, and increases by one for each derivative needed to perform

this substitution and thus eliminate the algebraic variables, Ð in the present

case. Another way to see that something is missing is that the ghost variable Ð
appears in the first line of (3.92) but its time derivative hÐ does not appear any-

where in the system. Thus, if we view (3.92) as an implicit differential equation

of the form
( � |�{� h�{� �{� |Ð�� hÐ�� Ð�� f �Z�@
 , the function

(
has several zero blocks in its
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Jacobian which is in fact rank deficient. Solving linear systems with rank defi-

cient matrices requires using singular value decomposition (SVD), rank revealing

orthogonal factorization (QR), or some form of least squares approximation.

Numerically integrating general DAEs of index higher than 1 is difficult and

usually requires the SVD or rank revealing QR at least once per time step to

solve a � �áV 7 -dimensional system of nonlinear equations for �{� h� and Ð several

times. Example of Runge-Kutta methods are found in [111, 114] and backward

difference formula (BDF) based methods are described in [54, 29] and in [165].

Some interesting connection to nonlinear least squares methods are described

in [41, 43].

By comparison, the variational time stepping method offers a simpler and

more robust alternative, at least for the case of constrained mechanical systems,

as shown shortly. Before discretizing the Lagrangian, an alternative derivation

of the constrained equations of motion is derived.

3.14.4 The ghosts enter

Consider the augmented Lagrangian defined as[| � �{� h� � Ð�� hÐk�W� | � �{� h�;� V Ð a �k� �{� f �~� (3.93)

and consider the variable Ð to be the coordinates of a new type of physical

bodies, namely, 7 one-dimensional point particles, each having position Ð ª � Ä ��;� �<�>=>=>=>�87 and to be treated like any other kinematic variable in the system.

These point particles have no mass and do not appear in the kinetic energy

though they appear in the potential term Ð a �Q� ��� . This justifies calling them

ghost particles since they have no material realization though, as we shall see,

they are of great importance in the construction of stable and regularized nu-

merical methods. In the present context, only massless ghosts are considered

but, as we show later, if the mass were to be nonzero, it would have to be neg-

ative since otherwise, the energy would quickly diverge. The usefulness of this

conceptualization is that we recover precisely the standard variational structure

where the variations on the Ð and � variables are unrestricted. Note also that

from (3.93), there is no energy associated with the ghost at all, since �Q� �;�b� 

along the trajectory. Regularization will change that though.

The Euler-Lagrange equations of motion (3.17) for the Lagrangian (3.93) are

easily computed to yield�� f ´ [|´ h� a ? ´ [|´ � a � �� f ´ |´ h� a ? ´ |´ � a ? ^ a Ð¡��
�� f ´ [|´ hÐ a ? ´ [|´ Ð a ��? �k� �{� f �W��
<� (3.94)

which is identical to (3.92). The point being that with the ghost interpretation,

we can proceed to discretize the Lagrangian (3.93) with the same techniques used

for the unconstrained systems in Section 3.5 and 3.7, which is an alternative to

what has previously been reported in the literature.
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The standard technique to discretize a Lagrangian subject to holonomic con-

straints is to starting from the discretization defined in (3.20) and simply re-

strict the variables � ¬ to satisfy the condition �k� � ¬ � f ¬ �á� 
 . Making the ac-

tion stationary is now a constrained extremal problem in several dimensions

(see [195], section 4.3 for instance), and the result is the constrained, discrete,

Euler-Lagrange equations´>C´ � a¬ � � a 2 B � � ¬ � � ¬ 032,� V � aÚ B � � ¬ N 2�� � ¬ �w� ^ a ¬ Ð�Q� � ¬ 032L� f ¬ 032~�w��
<= (3.95)

It is important to note that ^ ¬
appears in the first equation whereas the second

equation calls for vanishing �Q� �{� f � at time F`V � .
Discretizing the ghost variables in the augmented Lagrangian directly, the

same result is obtained usingq v" � z Ð a �Q� � � f � GuR Ð a " �;" = (3.96)

However, assuming for instance that Ð and � are uncorrelated, we could useq v" � z Ð a �Q� � � f � GuR Í Ðe2 V Ð "� Î a Í � 2 VB�;"� Î � (3.97)

to get a slightly different stepping equation´>C´ � a¬ � � a 2 B � � ¬ � � ¬ 032~� V � aÚ B � � ¬ N 2�� � ¬ �w� ^ a ¬ [Ð�Q� � ¬ 032L� f ¬ 032~� V � �Q� � ¬ � f ¬ � VB�Q� � ¬ N 2L� f ¬ N 2,�w��
<� (3.98)

where [Ð�� 2¦ � Ð ¬ 032 V ��Ð ¬ V Ð ¬ N 2~� . This formulation preserves the constraints on

average even though it allows for � ¬ ï�@
 , and this could produce oscillations at

high frequencies. This will be analyzed in depth Chapter 4 when considering

constraint regularization and stabilization.

3.14.5 Nonholonomic constraints

Nonholonomic constraints are kinematic restrictions of the form r � �{� h�O� f �Y� 

which cannot be integrated back to a holonomic conditions of the form �r � �;�Î�
 . As such, they cannot be eliminated by a change of coordinates. There is

still controversy regarding the correct equations of motion when nonholonomic

constraints are concerned [182] [50].

The case a wheel contacting a plane which moves by rolling without slipping

is the archetype of a nonholonomic constraints and offers a good illustration of

what is meant by nonintegrable. Consider a vertical wheel of radius Ò�CE
 which

rolls without slipping on the plane � ��
 . The center of rotation has coordinates\��:de� � � Ò . The angle of rotation of the wheel about the center of rotation is
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3.14 Constraintsü
. The projected velocity of the wheel onto the plane is

4 � 4 �£Ò hü . Now, let
�

be the angle between the plane of rotation of the wheel and the \ -axis of the

plane. As the wheel rolls without slipping, its velocity vector is aligned with the

vector ���¡� h� ü � � °>±�8 � � �~�:8 � � � � �8� a . This leads to the following pair of constraint

equations: h\Y?��W°>±;8 � � � hü ��
hd6?��H8 � � � � � hü ��
<= (3.99)

Now, it is tempting to assume that it is possible to express the motion entirely in

terms of
ü � � and eliminate \��:d but this turns out to be impossible. To show this,

first relabel the coordinates \���d�� ü � � as �;2� �~Ú���� É � � ¦ . Assume assume that (3.99)

can be rewritten as x R�� ��� � x f ��
<� by using an integrating factor, j � ��� . If we write
the first equation as l ¦ �;¦kh� ¦ � 
 , with � 2K�m��� � Ú�� 
<� � É � ?��w°>±;8 � � �~� � ¦ �5
 ,
then, we need to find j � ��� which satisfies equality of mixed partials´ � j �;¦ �´ � ª � ´ � j �Mª �´ � ¦ = (3.100)

But � ¦ ju� 
 identically and so we need

´ � j � É �´ � ¦ � 
 , and ´ � j � 2~�´ � ¦ � 
 . The

first of these two equations implies that j � ����� �j � ��2� �~Ú���� É ���3°M±;8 � � � but after

substituting into the second equation, we get a contradiction. Therefore, there

is no integrating factor and so it is not possible to reduce this constraint to an

algebraic conditions on the generalized coordinates. This means that even though

the constraint reduces the number of degrees of freedom locally, it does not reduce

them globally. This is a fundamental feature of nonholonomic constraint.

To elucidate how a nonholonomic constraint affects the motion, start with a

Pfaffian form (a vanishing differential form of degree one) so that r � �{� h� � f �H�_`� ��� h� VÝéK�gf �¸�u
 , where _ is an 7 �á� -dimensional matrix. In general, 7¯a � ,
and éK�gf � is a given 7 -dimensional time dependent vector. If we require that the

virtual displacements satisfy the simplified constraint: _`� ��� ÿ �H� 
 , then, using
the same analysis as in Section 3.14.3, we find the Euler-Lagrange equations of

motion to be �� f ´ |´ h� a ? ´ |´ � a ? _ a ����
r � �{� h�O� f �w��
<= (3.101)

The motivation here is that the constraint force is _1a � and therefore, the virtual

work is � a#_ ÿ � and since we imposed that _ ÿ ���A
 , this formulation is indeed

workless as desired.

Note that in this case, it is not possible to augment the Lagrangian with terms

of the form � a r � �{� h� � f � as this causes spurious terms proportional to h� which are

not physical as verified in [182] [91], though this vakonomic description—a term

coined by Arnold [23] to mean variational and axiomatic—has been used in the

literature several times. As demonstrated in [91], the issue here is whether the
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condition r � �{� h� � f ���5
 is strictly enforced on the variational paths � V ÿ � , or,
instead, only the simpler, tangential condition _ ÿ ���J
 . Only the latter form is

correct.

However, consider the function R
� h� a r � �{� h�O� f � where � is the generalized

coordinate of a ghost particle and use the augmented Lagrangian [| � �{� h� ���W� h�3�W�| � �{� h�;� . The generalized force due to this Rayleigh function is

j
R

� ? ×ØØØÙ ´
R´ h� a´
R´ h� a

Ü ÝÝÝß � ?Aö _ãa�h�r ÷ (3.102)

and therefore, if we impose the restriction that the virtual displacements generate

no virtual work, we recover the same equations of motion as (3.101) with a

redefinition of the � variables. On the other hand, we also recover the same

equations (3.101) if we allow for free variations applying d’Alembert’s principle:ÿ q �#"�Ì$ � r [| � �{� h� � �¸� h�â� V q �#"�Ì$ � z Í ´ R´ h� ÿ � V ´
R´ hÓ ÿ � Î ��
O= (3.103)

It is curious that this simple fact is not mentioned in the literature and it is not

entirely clear whether the correct equations of motion would be reproduced using

this technique on nonholonomic constraints which do not have a Pfaffian form.

Nevertheless, we consider the formulation R
� h� a r � �{� h� � f � and the variational

formulation in (3.103) as axiomatic since we will only use constraints which have

Pfaffian form.

Nonholonomic constraints are now discretized using two alternative methods

which produce the same result. First, following the analysis found in [68], the

restrictions on the variations are imposed as: _ ¬ ÿ � ¬ ��
 , and the constraints are

now written as r � �{� h� � f � Gº_ ¬ � � ¬ ?�� ¬ N 2,� � R(Vóé ¬
. Note the choice of time index

for these equations which is very important for consistency and stability of the

resulting stepper, and is based on a careful interpretation and discretization of

the classical d’Alembert’s principle of virtual work and geometric analysis. Ne-

glecting the boundary terms, i.e., setting
ÿ � " � ÿ �>é*��
 , the discrete variational

principle is then expressed asÿ C = � � " �>=>=M=>� �MéÅ� R �W� é N 2Ñ¬,q " ÿ B = � � ¬ ��� ¬ 032� R �� é N 2Ñ¬,q " � � 2 B = � � ¬ � � ¬ 032� R � ÿ � ¬ V � Ú B = � � ¬ � � ¬ 032L� R � ÿ � ¬ 032 �
V é N 2Ñ¬,q " � � 2 B = � � ¬ � � ¬ 032� R � V � Ú B = � � ¬ N 2L� � ¬ � R �7� ÿ � ¬ ��
O=

(3.104)

If we write ô ¬ � � 2 B = � � ¬ � � ¬ 032L� R � V � Ú B = � � ¬ N 2L� � ¬ � R � , then, the stationary

condition implies that ô ¬ ��� a#_ ¬
for some vector � , and by simultaneously im-
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posing the discretized constraints, we find the discrete Euler-Lagrange equations

for nonholonomic constrained systems� a 2 B = � � ¬ � � ¬ 032� R � V � aÚ B = � � ¬ N 2L� � ¬ � R �â? _ a ¬ ���u
�R _ ¬ 032 � � ¬ 032¸?B� ¬ � V�é ¬ 0â2Z�u
O= (3.105)

Note once more that the time index of the discretized constraint is shifted by

one here because it includes the yet unknown variable � ¬ 032 . This introduces a

slight asymmetry between _ ¬ 032 in the second equation and _ ¬
in the first.

But simply using the Rayleigh function R
� h� a r � �{� h� � f � along with the dis-

cretization of forced system given in Section 3.12, in (3.82), and choosing the

parameter � � 
 in (3.85), we recover the same stepping scheme as in (3.105)

but with a relabeling of the dummy variables � , i.e.,� a 2 B = � � ¬ � � ¬ 0â2� R � V � aÚ B = � � ¬ N 2L� � ¬ � R �â? _ a ¬ � � ¬ ?B� ¬ N 2~�w�u
�R _ ¬ 032 � � ¬ 032¸?B� ¬ � V�é ¬ 0â2Z�u
O= (3.106)

The equivalence between these two discretization strengthens the case that

nonholonomic constraints are indeed equivalent to special Rayleigh functions.

If this were the end of the story, it would be only a curiosity but in fact, this

pony can do more than one trick. Indeed, careful design of Rayleigh functions—

and careful discretization of the force terms—will allow to produce constraint

stabilization forces as well as a variety of effort constraints, opening a continuum

of possibilities apart from standard, pure holonomic constraints.

3.14.6 Inequality constraints

We now turn to unilateral kinematic constraints of the form ïL� � � f ����
 , whereï�  / � / p ¢¤ / +
, with 7õa � . The restriction on the virtual displacements

is now  ÿ �E� ? ïL� �{� f � . Therefore, whenever ïL� �{� f �iC 
 , we recover the free

equations for small enough
ÿ � . When ïL� �{� f �W��
 , we recover the same equations

of motion as in the constrained case with the constraint force  a Ñ . However,

there is yet another restriction, namely, that Ñá�E
 . To see this, consider a timef such that ïL� � � f �W��
 . Assume that at time f , the other forces on the system are

summed up as j �gf � . Considering the simple constant mass Lagrangian of (3.12)

and the constrained equation of motion (3.92), the acceleration
|� at time f must

satisfy  |�D?B a ÑH��jï�� �{� f �W��
<� (3.107)

which can be solved locally for
|�E�  N 2 � j V  a Ñ�� , where matrix  is the

Jacobian @� ´ ï � ´ � as previously.

Using a first order expansion around f with a small time step R C*
 and using

the expression just derived for
|� , the constraints will still be satisfied at f�V	R if
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the following inequality is satisfied
ba ïL� � �gf%V�R �,� f%V�R �W� R  h� V	R ´ ï´ f V R Ú�  |� V =>=>=� R Í  h� Voï � V R �   N 2 j Î V R Ú�   N 2  a Ñ V�IK��R É �~� (3.108)

where ï � � ´ ï � ´ f . For the present analysis, all terms of order IK��R É � and above

are neglected. Rewriting the last line of (3.108) in matrix form as
Ãa*� V�� Ñ<��Å� R Í  h� Voï � V R �   N 2 j Î � and � ��  N 2  a � (3.109)

the question now is how to choose Ñ so the function ï is free to become positive,

but restricted from becoming negative. Observe first that the components of

the vector � are the rates at which the constraint components are changing in

the absence of constraint force. Restrict the analysis to 7 � � first so that  N 2  a � � C 
 is a positive scalar. Obviously, if ��C 
 , the inequality is

satisfied for Ñ��u
 which leads to ï�� � �sf%V�R �~� f%V	R �ãCE
 . Conversely, if �('*
 , we
need ÑáCE
 to satisfy the inequality (3.108) and this will keep ï�� � �sf�V¡R � f;V�R �W��
 .
In both cases, the result is that Ñ aW� � VE� Ñ��D�.
 , which can also be written as
óa � V�� Ñtc ÑE� 
 . This argument can be generalized to 7 dimensions as

is done in [224] and the result is the unilaterally constrained Euler-Lagrange

equations of motion �� f ´ |´ h� a ? ´ |´ � a ?B a ÑH��

ba ïL� � � f � c Ñá�E
O� (3.110)

where the perpendicularity sign, c is understood componentwise. This means

that given two � -dimensional vectors, \���d , 
Þaº\Rcrdi�u
 implies that for each

index §â����� �O�M=>=>=~� � , the following three conditions hold simultaneously\ ¦ �E
<�õd ¦ �E
 � and \ ¦ d ¦ ��
O= (3.111)

With the conditions stated in (3.111), the familiar perpendicularity \ a du� 

is recovered. The system of equations and conditions in (3.110) is a nonlinear

complementarity system. The variable ÑáCE
 is essentially a slack variable which

enforces the Fourier inequality, namely, that virtual work is non-positive when

the configuration space has a closed boundary [173] (remember that the Euler-

Lagrange equations (3.17) are the negative of the integrand of the variation of

the action in (3.16)).

The solutions � �gf � of this system are nonsmooth since there are jump discon-

tinuities at impact points, i.e., instants f�¦ such that for at least one index Ä ,�Mª{� � �sfÍ¦ ���w�u
 but �Mª{� � �sfÍ¦ ?�),����CE
 for a small )DCE
 .
The discretization of inequality constraints can be handled using standard

techniques for constrained extrema from vector calculus. A naive application of
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these produces the discrete, unilaterally constrained, Euler-Lagrange equations´?C´ � a¬ � � a 2 B � � ¬ � � ¬ 032,� V � aÚ B � � ¬ N 2�� � ¬ �W�� a¬ Ñ
ba ïL� � ¬ 032� f ¬ 032~� c Ñá�E
O� (3.112)

which defines a nonlinear complementarity problem (NCP). However, this for-

mulation is deceptive since we neglected to constrain the energy of the problem.

A careful analysis of this issue is found in [87] in which a time stepping method

is constructed by requiring that energy be strictly conserved at each impact.

However, since locating all impacts is prohibitively expensive for large systems,

we will instead construct an inelastic regularized time stepper which resolves

impact conditions only at the discretized times f � F¨R . We will restore the

incident momentum when an impact has been detected but this will be reso-

lutely post facto. In order to build a stable method for this though, we need

both constraint regularization and constraint stabilization techniques which are

developed in Chapter 4.

3.15 Discrete momenta and velocities

The description of the stepping equations so far relies on three terms recurrence

relations of the coordinates � ¬ N 2L� � ¬ � and � ¬ 032 . For the archetypal case of the

Verlet stepping formula, this leads to� ¬ 032����T� ¬ ?B� ¬ N 2 V�R Ú  N 2 
 ! � � ¬ � (3.113)

It is however often more convenient to work with two step recurrences based on

velocities and positions only. For the simplest cases, using the approximation� ¬ � h� ¬ G � ¬ ?B� ¬ N 2R � (3.114)

as we did previously in the definition of
B = � � " � � 2 � R � , we can rewrite the recur-

rence relation as � ¬ 0â2 �A� ¬ V�R  N 2 
 ! � � ¬ �� ¬ 032���� ¬ V	R � ¬ 032= (3.115)

But since a typical simulation does need both the values of positions � and

velocities �H� h� , an implementation should be realized in terms of these observ-

able variables and not using the three term recurrence in � . It is expected that

this evaluation is a slight numerical improvement. Specifically, it might be a

good idea to use velocities to avoid the potentially problematic sum ��� ¬ ?�� ¬ N 2 .
Indeed, this looks much like the textbook example for catastrophic cancellation.

Other than being practical though, this formulation adds no new information.

For this reason, the theory exposition continues with variables � ¬ only.
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Of course, this approximation of velocity is only good to first order and, in

deed, a second order approximation could be obtained by putting� ¬ 03276�Ú � �R � � ¬ 032¸?B� ¬ �,= (3.116)

This leads to the velocity Verlet scheme (see [196] for a variational derivation

of this) which requires two force computation per step in the case where we

have velocity dependent forces or constraints. This is not pursued further in

order to concentrate on constraint regularization and stabilization, as well as the

treatment of friction and impacts.

An alternative formulation which does slightly change the resulting algorithm

formulation is to introduce the momentum variables defined as:� ¬ � � aÚ B = � � ¬ N 2L� � ¬ � R �~= (3.117)

As shown in [196], it is possible to construct Hamiltonian flows, � � ¬ ��� ¬ � ¢¤� � ¬ 0â2�#� ¬ 032,� as long as we can indeed construct the discrete Hamiltonian func-

tion,
� = � �{���#� R � which is the Legendre transform of the discrete LagrangianB = � � ¬ � � ¬ 032� R � . The theoretical ramifications of a Hamiltonian representation

are interesting but in the context of dissipative systems with nonholonomic con-

straints, many subtleties are avoided by concentrating on the Lagrangian formu-

lation. We shall therefore not consider the Hamiltonian theory at all in the rest

of this thesis. Nevertheless, the definition of discrete momentum will be used

whenever useful. It is interesting to note here that for the simple conservative

mechanical Lagrangian | � � ��;�T� h� a  h�1? ! � ��� of (3.12), the momentum � ¬ de-

fined by (3.117) is not simply  � � ¬ ?�� ¬ N 2,� � R as one might first expect but can

in fact contain terms proportional to 
 ! as well.

3.16 Minimization structure

An interesting fact which was exploited at length in [151, 152, 225] is that in

some cases, with appropriate discretization choice, the solution of the discrete

Euler Lagrange equations (3.22) is in fact the solution of aminimization problem.

For instance, the simple discretization of the prototype mechanical Lagrangian

of (3.12) yieldsB = � � ¬ ��� ¬ N 2L� R �W� �� R � � ¬ ?B� ¬ N 2~� a  � � ¬ ?B� ¬ N 2~�3? R ! � � ¬ N 2,�~� (3.118)

leads to the objective functionü � � ¬ 032L� � ¬ ��� ¬ N 2,�W��� � � ¬ 032W?B� ¬ � a  � � ¬ 032¸?�� ¬ � V � a¬ 032  � � ¬ ?B� ¬ N 2~�#? R Ú � a¬ 032 
 ! � � ¬ N 2~� (3.119)

and the trajectory is found by solving the problems*-h 9 �Y� � ] äÉö " ü � � ¬ 032L� � ¬ � � ¬ N 2,�~= (3.120)
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This is a quadratic minimization problem which is easy to solve with a variety

of methods suitable for unconstrained convex minimization. Numerical convex

minimization is generally better behaved that general nonlinear equation solving

and this can be a great advantage. It is shown in detail in [151] [225] how to

modify the function
ü
to different integration methods, in particular, to a class

of the Newmark integrators. Since we do not pursue this avenue, the details are

not covered further here.

The true usefulness of this formulation lies in that we can introduce holonomic

constraints directly to the minimization problem. This leads to a constrained

quadratic minimization problem which can also be solved robustly by various

numerical methods. But so far, this formulation cannot handle either external

dissipative forces or nonholonomic constraints. The real interest of the minimiza-

tion strategy is revealed when considering forces derived from Rayleigh functions,

as we have done above in Section 3.12, 3.14.1, and 3.14.5. Rayleigh functions

are maximally dissipative since the rate of energy decay is ? h� a ´
R

� ´ h� . From

this fact, it is inferred that � ¬ 032 should be chosen so as to minimize the value of

the discretized Rayleigh functions at the end of the time step. Discretizing the

Rayleigh functions with

R
= � � ¬ ��� ¬ N 2L� R �w� R R � � ¬ ?B� ¬ N 2R � � ¬ N 2~�,� (3.121)

the following algorithm leads to a maximum dissipation. First, solve*-h 9 �Y� � ÷]
subj. to

� ½ ÷] ¾ q " ü � �� � � ¬ ��� ¬ N 2~�,� (3.122)

respecting all constraints, and then, solve the minimum problem:*-h 9 �Y� � ] äÉö "
subj. to

� ½ ] ä�ö " ¾ q " � ] � � ¬ 032L� ���� V R
= � � ¬ 032L� � ¬ �~� (3.123)

where
� = is the discrete kinetic energy defined here as:� = � �L2L� � " �w� �� R � �L2W?B� " � a  � �L2W?B� " �e= (3.124)

This strategy can even be extended for cases where the Rayleigh functions

are non-smooth, which is the case for Coulomb friction as we explain further

below. In particular, it is possible to handle contacts in this way as well, even

non-smooth ones, by imposing the relevant constraints on the minimization prob-

lem as is done in [225], where a non-smooth formulation of Coulomb friction is

also provided. The main issue here is that solving for non-smooth, non convex

quadratic minimization problems subject to nonlinear constraints is not exactly

simple or economical. This is why a different avenue will be explored when deal-

ing with friction and when computing approximations to the constrained, forced

discrete Euler Lagrange equations.

3.17 End notes

The historical development of the principle of least action and analytical mechan-

ics in general is covered at length in the still very fresh and highly recommendable
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monograph of Lanczos [173]. Lanczos explain to great length all facets and all

formulations of the variational principle, including the thinking that went be-

hind the development of the techniques as well as the important elements the

historical debates that opposed the proponents of the variational methods and

those who insisted on sticking to Newton’s three laws.

Another historical account which concentrates on the inception of the principle

and its application to conservative systems, including quantum mechanical and

special relativistic ones, is found in the brief and direct monograph of Yourgrau

and Mandelstam [284]. A more scholarly historical account is provided by Gold-

stine [106] who went to great length in tracing the original correspondence be-

tween the pioneers, namely, Fermat, Maupertuis, Euler, Lagrange, the Bernoulli

brothers, Hamilton and Jacobi. The original work by Hamilton [115, 116], who

is credited with the modern version of the variational principle in integral form,

the Lagrange function itself, as well as the first investigations of the symplec-

tic nature of the flow of conservative systems is still very readable and now

broadly available since the Royal Society of London has digitized its archives

and published them on-line. Also of interest is the original magnum opus of

Lagrange [171, 172], especially because of the direct style in which it is written

and the insistence on relying on the equations themselves, instead of geometric

constructions.

When it comes to Newtonian mechanics, the original Principia [215] is striking

for its direct writing style and, in my opinion, superior to many modern textbook

presentations.

A systematic analytic formulation of non-conservative systems is found in the

brief and lucid monograph of Layton [177], which is perhaps the first attempt to

phrase what the engineers call “system dynamics” into a consistent Lagrangian

form, including effort constraints. This served as inspiration to use Rayleigh

dissipation functions—Layton’s dissipative efforts—systematically.

For the discretization of the least action principle, the credit goes to Moser and

Veselov [208] in the mathematical literature and to Gillilan and Wilson [100] in

the chemical physics literature. A very interesting difference between these two

seminal papers is that whereas Moser and Veselov were chasing after examples

of discrete integrable systems—they used the freely rotating rigid body as their

example—and derived the discrete Euler-Lagrange equations (3.22), Gillian and

Wilson were considering periodic systems and thus used fixed endpoints on the

discrete action and derived a special type of minimum principle for such cases.

It is not clear whether Gillilan and Wilson were aware of the work of Moser and

Veselov or if the idea was already common knowledge. Extensions to systems sub-

ject to holonomic constraints were presented by Wendlandt and Marsden in [277]

and nonholonomic constraints were covered by Cortès and Mart́ınez in [68]. A

comprehensive account of the discrete variational technique which covers all as-

pects is found in Marsden and West [196] which is a must read. Additional exten-

sions of the variational principle to non-smooth contact is presented in Pandolfi,

Kane, Marsden, and Oritz [225, 152]. Energy properties of non-smooth contacts

are presented in Kane, Marsden, and Oritz [150], and dissipative systems are
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analyzed in Kane, Marsden, Oritz, and West [151].

The low order symplectic methods derived via the discrete variational principle

were published by Verlet [271] for unconstrained molecular dynamical systems

and this was extended to constrained systems in a technique called shake by

Ryckaert, Ciccotti, and Berendsen [242], a direct extension of the Verlet step-

ping scheme which works directly on the generalized coordinates, and later in an

extension called rattle, Andersen [5] which computes both generalized coor-

dinates and velocities. These three methods are bread and butter in molecular

dynamics simulations [178] but are little known outside that field. These two lat-

ter methods which solve DAEs of index 3 and require only one or two solutions of

systems of nonlinear equations per step, respectively, are seldom reported in the

DAE literature. They are found in [114] but neither in [54] nor in [29], and that

even though constrained mechanical systems are generally taken as an archetypal

example of a higher index DAE. A comprehensive survey or geometric integration

methods, of which variational methods are a subset, is found in the monograph

of Hairer, Lubich, and Wanner [112], who provide numerous numerical examples.

The same topic but with particular focus on conservative physical systems and

applications to molecular dynamics is covered in the book by Leimkuhler and

Reich [178]. Kane, Marsden, Oritz, and West [151], reported on the connection

between some Newmark integrators, used widely in structural engineering, and

variational formulation. They found that some Newmark integrators could be

derived from the variational principle by redefining the potential energy term—

precisely those members of the Newmark family which were known to produced

better results. But in addition, they proved a “shadowing theorem”, implying

that trajectories generated by these Newmark methods intersect those produced

by any variational integrator applied to the original problem, within each time

step. In other words, the Newmark integrators do not generate identical tra-

jectories as any variational integrator but for each time step F , there is a point� ¬ - � 
O� R � , where R is the fixed time step, such that � ½ New ¾¬ 0 �{ä �m� ½ Var ¾¬ 0 �{ä , whereFÅV � ¬
denotes the linear interpolation � ¬ 0 �Tä ��� ¬ V � ¬ � � ¬ 032¸?B� ¬ � .

Standard techniques for integrating differential equations are found in the en-

cyclopedic two volume monograph of Hairer Wanner and Nørsett [113, 114],

for instance, and well covered in the literature as well. The difference between

standard techniques and the variational ones which are the subject of this the-

sis is illustrated in Figure 3.10. Fundamentally, discretization of trajectories

and application of the principle of least action are non-commuting operations.

Applying discretization on the equations of motion—using a standard integra-

tion technique on the Euler-Lagrange equations (3.17) or the extension (3.94)

for holonomic constraints and (3.101) for nonholonomic constraints—offers no

guarantee on the preservation of invariants, unless the method is constructed

specifically to account for these, as is done in symplectic Runge-Kutta methods

for instance [112]. By contrast, any approximation of the time integral of the La-

grangian (3.19) yields a stepping scheme which preserves the symplectic nature

of the flow and other symmetries as well, and the construction of the stepping

scheme via the discrete Euler-Lagrange equations (3.22) is straight forward.
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Discrete Trajectory� ¬ ��� ��RQF �

Lagrangian| � �{� h���w� � � � � h���3? ! � ���

Discrete Trajectory� ¬ �u� ��RQF �
Discrete principle
of least action

DiscretizationLeast action principle

Special, symmetry

Preservation of some or all
symmetries

Equations of motion

(Newton’s second law)

except accidentally
No preservation of symmetry

Discretization

Discrete LagrangianB = � � ¬ ��� ¬ 032L� R � G t � äÉö "� ä � zM| � � � z �~� h� � z �8��� f ´ |´ h� a ? ´ |´ � a ��

preserving methods

Figure 3.10: The non-commutativity of discretization and the principle of least

action.
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The fact is that the two operations, namely, applying Hamilton’s principle of

least action and discretizing the trajectories, do not commute. By discretizing

the Lagrangian function first, the only possible stepping equations that can be

produced are those which preserve a number of physical invariants down to the

precision used in solving the nonlinear stepping equations. By contrast, if dis-

cretization is used after the least action principle is applied to the Lagrangian to

produce the equations of motion, physical symmetries are preserved only when

they are explicitly built into the numerical method. But of course, the numer-

ical analysts have been industrious and have identified very many integration

methods over the years and, therefore, usually, when producing discrete step-

ping equations using the principle of least action, we do recover a known method

and this is why there is a cross link.

Nevertheless—and this is remarkable—, when it comes to integrating differen-

tial algebraic equations of index 3, one of the black beasts of numerical analysis,

the discrete principle of least action produces easily implemented methods with

extraordinary properties, whilst the standard methods for this problem, either

BDF [54] or RADAU5 [114], take enormous amounts of computational power,

fail to preserve the symmetries, and are extremely difficult to implement.
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The variational stepping methods introduced in Chapter 3 generally require the

exact solution of nonlinear systems of equations. This is always required when

nonlinear constraints are present and moreover, the well-posedness of the non-

linear equations is dependent on constraint Jacobians having full row rank. This

is not compatible with the requirements listed in Section 1.2.

The present chapter addresses this issue by introducing regularization—a small

perturbation parameter—directly in the physical formulation. This is done by

adding small self-potential energy on the ghost variables and by perturbing the

Rayleigh dissipation functions. Combining these two techniques makes the time-

stepping well conditioned and provides constraint stabilization. In turn, this

allows to linearize the stepping equations since resulting constraint errors can be

strongly stabilized without diverting the numerical solution too far from that of

the idealized unperturbed problem.

After introducing justifications for and problems related to constraint realiza-

tion in Section 4.1, the case of holonomic constraints is covered in Section 4.2. A

suitable discretization of the ghost variables is constructed after taking due con-

sideration of the results of the classical theorem of Rubin and Ungar [241], which

demonstrates that penalty forces converge only weakly and generally suffer from

high oscillations. An analysis of the realization of nonholonomic constraints lead-

ing to a regularized stepping scheme is then presented in Section 4.3. The two

results are combined in Section 4.4 to produce a physics based stabilization of

holonomic constraints. This is followed by a linearization of stepping schemes for

systems containing both types of constraints in Section 4.5, defining the spook

stepper. A proof that the constraint stabilization scheme is strongly stable for

the case of linearly constrained systems is provided in Section 4.6. Relation to

previous work is discussed in Section 4.7.

4.1 Introduction

It was mentioned in Section 3.14 that constraints essentially model the net ef-

fect of physical phenomena occuring over time and length scales much smaller

than the ones considered in a given system. At the macroscopic level, the high

frequency physics should be ignorable, allowing for a reduction of the problem

without much loss.

The analysis which yields constraints from integrating over fast oscillatory

modes is known as constraint realization in the literature and has received consid-
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erable attention over the years from both theoretical and numerical perspectives.

In the latter case, this is known as penalty forces. The purpose of this chapter

is to introduce a constraint realization scheme which can be discretized reliably

within the variational framework, and which can be interpreted in terms of phys-

ical parameters. At the numerical level, this is a regularization scheme whereby

one solves a perturbed problem with a stable numerical scheme to produce a well

behaved solution that is hopefully close to that of the original problem.

The need for regularization is threefold. For one, more realistic systems can

be simulated if it is possible to “relax” the constraints, making them compliant

or yielding a little. This is closer to the real world. Indeed, there is no such

thing as a perfect hinge in nature. Hanging a heavy enough bag on a door knob

will make the door scrape the floor, whilst pulling on that door hard enough

will rip it off the hinges or off the frame. Forcing exact numerical satisfaction of

the geometric constraints, as is common in robotics and mechanical engineering

literature, is unnatural. Given that mechanical problems with exact constraint

satisfaction are incredibly more difficult to solve efficiently and with decent error

bounds, it seems a complete waste of computational power to pursue this route.

Second, the stepping equations (3.95) presented in Section 3.14.3 can only be

solved accurately in the case when the Jacobian matrix ^ has full row rank.

There are simple examples such as the planar slider crank mechanism, presented

in Chapter 7, which exhibit degenerate configurations where the Jacobian matrix^ is rank deficient. When the problem is close to rank deficiency, the numerical

errors become unbounded and the solutions can be erratic. Regularization re-

moves such degeneracies in a physical way by introducing compliance, and finite

compliance makes the solution easier to compute reliably and efficiently. Finally,

a numerical solution of the nonlinear system (3.95) will contain errors of the

order of machine precision at best, but typically much larger in case of bad con-

ditioning, ill-posedness, or lack of processing time to produce a high precision

result. And that is discounting the fact that the problem to be solved in (3.95)

is a non-symmetric saddle point problem, a very unusual animal. Regularization

can help average out or bias such errors by keeping condition numbers low for

instance, and help keep the overall balance in precision by demanding that only

constraint violation averaged over a few steps be forced to vanish. With a good

stabilization strategy, these averages can be kept small whilst larger errors can be

forced out of existence within a few steps, all the while sticking to nicely behaved

problems at the cost of increased modeling power. In the limit, this issue is a

realization of the fable of the hare and the tortoise: keep a steady pace instead

of rushing frantically.

In more serious terms, the aim with regularization is to first formulate a family

of perturbed physical problems, �Î$ say ( � stands for “real”), which are closely

related to a given ideal problem �D" in the sense that the data of �D" and �D$ differ
by a term of IK� ),� whilst the solutions �����Î$ � converge uniformly to the ideal

solution �����1" � as the perturbation ) vanishes, i.e., . �Ã� $ 0 "%�����1$ �K� �����ã" � . A

discrete formulation !%$ of the perturbed problem �Î$ is then constructed which

can be solved by a backward stable numerical method  , yielding exact answers
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to !%$#ø so that & )¸?�)�Õ�& is small to machine precision. If the numerical solutions¶ $ �  ��!�$ � converge as ) ¤ 
 , then, the limit is also a discretized solution

of !�" and a good approximation of �D" . Because every approximation step and

every regularization step is nicely behaved, this roundabout way of computing

an answer should never be too far off.

An additional consideration is that, typically, the physical problem �b$ is well
posed as long as )��m
 . However, the same problem is often nonsensical for)�'@
 , and has no finite solution then. For instance, a unit mass point particle

can be attached to the origin with a harmonic oscillator of frequency Ô��£�� � ) ,
corresponding to a spring constant of �L�;) . As ) ¤ 
 , the particle cannot move

away from the origin. However, )1'*
 , describes an exponential escape trajectory

with unbounded energy—no longer a conservative mechanical system.

This means that the solution �����Î$ � cannot be expected to be an analytic

function of ) . Thus, a sensitivity or error analysis of �b$ is in fact expected to

break down at �1" , likewise for the numerical problems !3$ and !�" . By contrast,

if !%$ is well posed for )�C 
 , one expects to be able to analytically continue

the solution to extract ����� " � from  ��! $ � . A concrete example of this is the

Cholesky factorization algorithm [107] which has good stability properties for

symmetric, strictly positive definite matrices and can be extended to process

symmetric matrices which are only positive semi-definite at the numerical level

by perturbing them “just enough” [125, 126].

The distinction of the present approach to regularization is that we always

relate the perturbed discrete problem !#$ both to a perturbed physical problem�1$ and to a backward stable numerical method  . In other words, the only

perturbations allowed in !%$ are those which can be traced directly to a physi-

cal parameter and which improve the performance or stability of the numerical

method by allowing the use of a backward stable algorithm. In particular, this

scheme is used so that the main computation is the factorization of symmet-

ric, positive definite matrices, for which there exists backward stable numerical

methods.

In addition to regularization, we need constraint stabilization scheme so that

errors made in solving for a constraint equation, �Q� � ¬ �D�.
 at time step F , say,
do not accumulate to produce large constraint error

4 �k� � ¬ � 4 over time, or cause

instability. As discussed above for the case of regularization, the aim here is to

construct stabilized trajectories corresponding to a nearby physical problem, as

opposed to an ad hoc construction with spurious, non-physical dynamics.

In what follows, analytic formulations of constraint realization is presented

for both holonomic and nonholonomic kinematic constraints. It is shown below

that holonomic constraints are a limit case of strong potential forces—essentially

harmonic oscillators. Nonholonomic constraints on the other hand are the limit

of a strong dissipative force. In both cases, the limit of the trajectories is well

behaved and uniformly convergent but in the case of holonomic constraints, the

forces generated by the realizations are only weakly convergent, in the sense that

time integrals involving the penalty forces do converge but the forces themselves

do not. The cause of this is high frequency low amplitude oscillations which fail

89



4 Regularized and Stabilized Discrete Mechanics

to converge but which can easily be averaged away. In consequence, care must

be taken in the discretization so that this noise is filtered out of the numerical

solution.

The combination of the oscillatory terms generated by the numerical realiza-

tion of holonomic constraints with the dissipative terms generated by the realiza-

tion of nonholonomic constraints yield regularized, stabilized discrete stepping

schemes. These are proven to be unconditionally stable for the case of linear

constraints, though, regrettably, a nonlinear stability analysis is still missing.

As a final note, the weak convergence of highly oscillatory forces is of con-

sequence in molecular dynamics. Indeed, if one replaces very strong molecular

forces with exact constraints, the oscillation energy of these modes is lost and the

overall thermodynamics properties of the system are altered, since the equipar-

tition theorem states that each degree of freedom should receive equal share of

the energy on average [132]. Therefore, using exact constraints in molecular

dynamics is problematic though there are resolutions [89, 60].

4.2 Regularization of holonomic constraints

Classical mechanics text books often state as fact that kinematic constraints of

the form �Q� �;�ã��
 can be understood as the limit of a potential function of the

form [173, 22] � $~� ���W� 2Ú $ 4 �Q� ��� 4 Ú = (4.1)

However, the proof that the trajectories of a mechanical system described by a

Lagrangian of the form | $>� � � h�;�w� | � �{� h���3? � $~� ���~� (4.2)

with trajectories � � $>�gf �~� h� $M�gf ��� , converges to the trajectories of the constrained

Lagrangian | ½Eî ¾ � | V Ð a �k� ���,� (4.3)

is rarely provided. In addition, the fact that the constraint forces generated

by the potential
� $ of (4.1) oscillate with frequency proportional to ) N 276 Ú

, and

converge only in the weak (time averaged) sense is seldom stated. As we show

below, this is what plagues penalty techniques in which constraints are directly

replaced by strong potentials. From the numerical point of view, these high

frequencies in the forces are usually catastrophically unstable, unless they are

filtered properly.

As was first done in [241], and with somewhat simpler methods in [166], con-

sider a sequence of Lagrangians of the form (4.2) subject to potential functions� $�ä of (4.1), where the sequence
� ) ¬ � 2 ¬,q " converges with . ��� ¬1032 ) ¬ � 
 . This

implies that . �Ã� ¬1032 � $�ä � �
, except where �k� ���Y� 
 . To simplify the nota-

tion, the Lagrange function | � �{� h��� of (4.2) is taken as | � � � h�;�W� � �L�;��� 4 h� 4 Ú . This
particularly simple form does not affect the theoretical results.

Fixing the initial conditions � � � 
��~� h� � 
T�8� consistent with the constraint so that�Q� � � 
��8�H�m
 and ^K� � � 
T�8� h� � 
��Y�m
 , the trajectories � � $�äT�sf �,� h� $�ä{�sf �8� are found to
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converge uniformly to the limit trajectory � � "T�gf �~� h� "{�gf ��� , which is a solution of

the constrained Lagrangian | ½Eî ¾ of (4.3). However, the forces generated by the

potentials
� $�ä of (4.1) only converge weakly to the constraint forces, j ½Eî ¾ � ^Îa Ð��

computed from the constrained Lagrangian | ½Eî ¾ . The Rubin and Ungar [241]

version of the theorem is now stated.

Theorem 4.1 (Rubin and Ungar [241]). Assuming that conditions a–e below

are fulfilled,

a. The potential
� � ���   � ¢¤ /

is � 2
in some bounded domain

^ - �
;

b. The functions ��¦ � ���   � ¢¤ / �8§ã�.�;� �<�>=>=>=>�87B� where 7À' � , are � Ú
over

^
such that

µ � � ��- � & � ¦ � �;�D�.
O��§ã� ��� �O�>=M=>=~�87 �
is non empty and the

Jacobian matrix ^Å¦ëª � ´ �;¦ � ´ � ª has full row-rank except at isolated points

in
^ - �

;

c. There exists � " - �
and � � " � h� " �K- � �

with �Q� � " ��� 
 and ^K� � " � h� " � 
 ,
i.e., the initial position � " lies on the manifold

µ
and the initial velocity

is tangent to
µ

;

d. The sequence
� ) ¬ � 2 ¬,q 2 satisfies ) ¬ �E
 and . ��� ¬1032 ) ¬ ��
 ;

e. The sequence of problems
� _ ¬ � 2 ¬,q 2 consists of the ordinary differential

equations|� $�äZVi
 � � � $�ä � V �) ¬ 
 +Ñ ¦ q 2 Ø �;¦ � � $�ä � Ú Ú ��

with initial conditions� $�äT� 
��w��� " � h� $�äT� 
T�w� h� " = (4.4)

Then, the following statements A–G hold:

A. There exists a positive number
ÿ
and a sequence of functions � ¬  �© 
O� ÿ « ¢¤� � F ����� �O�>=>=M=~� such that � ¬ �sf � solves problem _ ¬

;

B. The sequence
� � $�äT�gf � � 2 ¬,q 2 converges uniformly to a continuous function,�  ¨© 
O� ÿ « ¢¤ �

;

C. The functions � ½ ¦¿¾ � � �gf ���W��
<�8§â����� �O�M=>=>=~��7B� vanish identically in f - © 
O� ÿ « ;
D. The function �  ¨© 
O� ÿ « ¢¤ �

is � Ú ;
E. The sequence

� � � $�ä��sf �,� h� $�ä{�sf �8� � 2 ¬,q 2 , � � $�ä � h� $�ä �  Z© 
<� ÿ « ¢¤ � �
converges uni-

formly to � �{� h�;�  �© 
<� ÿ « ¢¤ � �
on © 
O� ÿ « ;

F. The initial conditions � � 
��w�u� " and h� � 
T�w��� " hold;

G. There exist continuous functions Ð1½ ¦�¾   © 
O� ÿ « ¢¤ / ��§¸���;� �<�>=>=>=>�87B� such that|� Vi
 � � ��� V�^ a Ð¡��
 (4.5)

identically on © 
<� ÿ « , i.e., so that the limit trajectory � � �gf �~� h� �sf �8� satisfies the
Euler-Lagrange equations of the constrained problem.
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4 Regularized and Stabilized Discrete Mechanics

The proof is omitted for being far too long and technical. What is most

interesting to note is that the constraint forces generated with this procedure are

weak ?òù convergent with respect to time integration so thatÐ $�äT�sf �w��? �) ¬ �k� � $�ä{�gf �8�~� and. ���¬1032 qÝú" � z Ð a $�ä � z � R�� z �¸�ûq�ú" � z Ð a � z � R�� z �~� (4.6)

for any integrable function R�� z �  ¨© 
O� ÿ « ¢¤ / +
. Indeed, it is expected in general—

see Chap. 8 for a concrete example—that Ð $�ä contains sinusoidal terms with

frequencies proportional to �L� � ) ¬ and fixed amplitude.

The analysis of Rubin and Ungar [241] shows that naively replacing a con-

straint �Q� ���W��
 with a strong potential of the form
� $>� ���W� � ��),� N 2 �Ta�� generates

high oscillations which must be damped by the integration methods if the results

are to make any sense at all. Concrete examples demonstrating the failure of such

numerical constraint realizations, even when using the stable implicit mid-point

rule, are presented in [30].

The regularization starts from the analysis of the extended variables Lagrangian

presented in Section 3.14.1, and particularly from the augmented Lagrangian (3.93),

namely [| � �{� h� � Ð�� hÐQ�(� | � �{� h��� V Ð a��Q� ��� . As previously argued, the ghost vari-

ables Ð are to be considered as full fledged dynamical variables. In some sense,

each variable Ð ¦ corresponds to the coordinate of a one-dimensional point parti-

cle with zero mass. Adding the self-potential term � )~�;����Ð a Ð to the augmented

Lagrangian (3.93), the resulting Euler-Lagrange equations of motion become�� f ´ |´ h� a ? ´ |´ � a ? ^ a Ð��u
),Ð VB�k� ���W�u
O= (4.7)

Obviously, the second equation can be solved for Ð��£?D) N 2 �Q� ��� and this can be

substituted back to yield| $>� � � h�;�w� | � �{� h�;�3? ��T) � a �s� � �k� ���,� (4.8)

which establishes a direct correspondence with Theorem 4.1. However, this form

of the regularization is fundamentally different from the usual form (see for in-

stance, in [114], Section VI.3), where the second equation of (4.7) is replaced

with ) hÐ V	�Q� ���(� 
 , thus adding spurious dynamics to the Ð pseudo particles.

Indeed, no term can be added to the Lagrangian to yield that equation of motion

using the variational method.

Other formulations include the addition of a kinetic energy term of the form? � )~����� hÐ a hÐ . Note note the minus sign in this expression which justifies the ghost

terminology advocated here. Now, such a ghost kinetic energy changes the second

line in the equations of motion (4.7) for ) |Ð V6�Q� ���W��
 . This is used in [83], among

many other instances. This form does not map to the framework of Theorem 4.1

and it is not clear that it produces the correct dynamics at all.
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4.2 Regularization of holonomic constraints

One must understand that the motivation to introduce either ) hÐ or ) |Ð to the

dynamics is so that the DAE of motion of the constrained systems becomes an

ODE and thus, can be discretized correctly, as done in [114] for instance. The

reason why we can do without derivatives is because the variational principle

provides the discretization.

To discretize the regularized Lagrangian, let us first write the following| � �{� Ð�� h�O� hÐk�W� | "T� �{� h�;� V ) | 2 � Ð�� hÐQ� V | " 2 � � � Ð�� h� � hÐQ�,�| 2 � Ð�� hÐQ�W� �� Ð a Ð��| " 2 � �{� Ð�� h�O� hÐk�W��Ð a �Q� ���,� (4.9)

dropping the ) subscripts, and proceed to evaluate discrete expressions for | 2
and | " 2 . In view of the high oscillations and weak limit of Ð as ) ¤ 
 , we

approximate the integrals using symmetric averages. To correctly approximate| " 2 , we first recall that we are considering Ð to be an independent variable at

this stage of the process so that | " 2 GuR 'EÐyC a ' � C where ' � C denotes the

time average over the time interval R . This leads to the following approximationsB = 2 � q v" � z �� 4 Ð 4 Ú G R ü 4 Ð "ZV Ðe2 4 Ú �B = " 2 � q v" � z Ð a �Q� ��� G R ü � Ð "�V Ð�2,� a �s�;"ZV�� 2,�e� (4.10)

from which the discrete time stepping Euler-Lagrange equations are extracted� a 2 B "O� � ¬ � � ¬ 032,� V � aÚ B " � � ¬ N 2L� � ¬ � V	Rk^ a ¬ [Ð¡��
) [Ð V �ñ �s� ¬ 0â2 V � � ¬ VB� ¬ N 2,�W��
O� (4.11)

where we relabeled the Ð variables as[Ð¡� �ñ � Ð ¬ 0â2 V �TÐ ¬ V Ð ¬ N 2~�Q= (4.12)

Averages are used since there is no need to keep track of the Ð ¬ variables directly

from step to step—except perhaps if one wants to keep track of the ghost energy

in the system.

Observe also that we recover precisely the same stepping equations as in the

standard constrained case (3.95) as ) ¤ 
 , as long as the initial conditions�k� � " �w� �Q� ��2,�W��
 are imposed. Indeed, once we set )��u
 and �Q� � " �W� �Q� ��2,�w�u
 ,
the stepping equation (4.11) sequentially enforces �Q� � ¬ �w��
 for F �E� . There only
remains a labeling difference between (4.11) and the original derivation (3.95).

In addition, the numerical solutions of (4.11) are expected to yield [Ð which

differ by ) from the unperturbed problem. To see this, consider the case where

the Jacobian ^ ¬ � ^ is constant and the basic Lagrangian | has constant

mass matrix as in (3.12). Solving (4.11) requires the solution of a linear system�e$ Ð $ � [¯ , with matrix �e$ � ^  N 2 ^Îa�V ) � , and some vector [¯ , whereas solution
93



4 Regularized and Stabilized Discrete Mechanics

of the unperturbed problem (3.95) requires the solution of the problem ��" Ð¡��¯ ,
with �Q" � ^  N 2 ^Îa and for a vector ¯ which differs from [¯ by terms of second

order in R .
Whenever ^ has full row rank, ��$ is symmetric and positive definite and so

is the limit case �e" . Therefore, the solution vectors Ð and Ð $ differ by orderIK� ),� V�IK��R Ú � .
Thus the regularized numerical solution is neither far from the exact solution

of the regularized problem nor from the numerical solution of the exact problem.

In other words, the following diagram commutes.[| regularize: $~ýÈ"?�?¨?<?<?¨?<?<?¨?<? ¤ | ½ $�¾þþÿ discretize: v ýQ" þþÿ discretize: v ýk"[B = realization: $ 0 "� ?<?<?¨?<?¨?<?<?<?¨?~? B ½ $�¾= (4.13)

The simplest approximation of the second equation of (4.11) consists of ex-

panding � ¬ D 2 to first order in terms � ¬ . This is done as� ¬ D 2ã� �k� � ¬ D 2ã� �Q� � ¬ Vº� � ¬ 0 D 2¸?�� ¬ ���� �k� � ¬ � V�^ ¬ � � ¬ 0 D 2¸?�� ¬ �� � ¬ V�^ ¬ � � ¬ 0 D 2¸?�� ¬ �~= (4.14)

From this, the result is�ñ �s� ¬ 032 VB� ¬ V�� ¬ N 2~� G*� ¬ V R ñ ^ ¬ � � ¬ 032¸?B��� ¬ V � ¬ N 2,�e= (4.15)

After introducing [Ð@� R Ú �Ð , and specializing to the constant mass model La-

grangian (3.12), the stepping equation is defined by the linear systemö  ? ^ a ¬^ ¬ ¦ $v � ÷ ö � ¬ 032[Ð ÷ �Àö  © ��� ¬ ?B� ¬ N 2 « ? R Ú ���� ] � ä? ñ�� ¬ ? ^ ¬ © ��� ¬ ?�� ¬ N 2 « ÷ = (4.16)

Observe now that the matrix involved in (4.16) is strictly positive definite, though

non-symmetric, for any value of )DCE
 . A linear stability analysis of this scheme

is presented in Section 4.6.

The usefulness of a regularized scheme without any stabilization is limited since

errors made while solving the nonlinear stepping equations can quickly accumu-

late and cause wild oscillations. Regularization of nonholonomic constraints is

now introduced so that a scheme for regularizing the implied velocity constraints^	h�4� 
 can be constructed. This will be used to impose both �Q� � ¬ � G 
 and^ ¬ � � ¬ ?B� ¬ N 2~��� R�G 
 simultaneously.

4.3 Regularization of nonholonomic constraints

As was noted in the Section 4.2, the standard mechanics texts often mention

the correspondence between holonomic constraints and strong forces. However,
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the correspondence between nonholonomic constraints and the limit of strong

Rayleigh dissipation functions is less well known and seldom quoted, except per-

haps in more recent monographs [23].

An analog of the proof or Rubin and Ungar [241] for nonholonomic systems

had to wait until the early 1980s for a demonstration [55, 153], using two different

techniques, but with identical results, as quoted in Theorem 4.2.

Theorem 4.2 (Brendelev [55] and Karapetian [153]). Given a function,r   / � � � ¢¤ / +
, of the form: r � �{� h� � f �W� _`� �{� f � h� VæéK�sf � , where _ is an 7 �6�

real matrix valued function. Assuming that r is smooth and differentiable, there

exists a sequence of numbers
� � ¦ � 2¦ q 2 with � ¦ C*
O�É� ¦ ¤ 
 as § ¤ �

, such that the

motion of a Lagrangian system with | � �{� h�O� f � subject to the Rayleigh dissipation

function

R � � � ��¥� ¦ r a r � (4.17)

having the trajectories � � � � �gf �,� h� � � �sf �8� , converge uniformly over a time interval© 
<� ÿ « to the trajectory of the Lagrangian system | � �{� h�O� f � subject to the nonholo-

nomic constraints r � �{� h� � f �w��
 .
The proof hinges around Tykhonov’s theorem on separation of slow and fast

variables (see [186] for instance). Note that, as per the analysis provided in

Section 3.12, the rate of decrease of energy is ? � ��¥�e� h� a _ a ��_�h� VÞéK�sf �8� and so, for

the homogeneous case éK�gf �W��
 , given that _1a#_ is symmetric and positive semi-

definite, the regularized system dissipates energy until it reaches the constraint

surface _`� �{� f � h�`�u
 .
It is noted in [153] that the convergence is independent of the initial conditions

so in fact, the theorem should state uniform convergence on the open interval� 
O� ÿ � . This contrasts with Theorem 4.1 on realization of holonomic constraints

where satisfaction of constraints at the initial time was essential. The constraint

forces are not expected to exhibit highly oscillatory terms should thus converge

directly, in contrast to the weak convergence of the holonomic constraint case.

Note also that Rayleigh dissipation functions of the form R
�À�¥� N 2 h� a � h� ,

for a square, symmetric, positive semi-definite �E�i� matrix
�

corresponds to

a linear viscous drag force. When dry friction is considered in Chapter 10, the

corresponding nonholonomic constraint reads
� h�á� 
 for a suitable matrix

�
,

and regularization thus introduces a very small creep velocity of the order � ,
which is a form of viscous friction. Though this is undesirable, this creep can

be kept at the order of machine precision since � only serves to guard against

degeneracy and thus, the result is stable stable friction, within achievable accu-

racy. Essentially, the discretization strategy saves the flawed idea of replacing

dry friction terms with viscous drags which has been reported numerous times

in the literature but is also known to be a spectacular failure, mostly because

the viscous drag coefficient, ��-� , cannot be made large enough to recover the dry

friction mode without introducing stability problems.
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To use this new theorem, introduce the auxiliary variable � and write

R� � �{� h� � �¸� h�Z� f �w��? � � h� a h�i? h� a r � � � h� � f �,= (4.18)

This leads to the equations of motion�� f ´ |´ h� a ? ´ |´ � a ? _ a h���u
� h� V r � � � h� � f �w�u
O� (4.19)

which are are satisfied by the trajectories of the regularized system which is now

denoted as the pair � | � �{� h���,� R � � �{� h� � f ��� or simply � | �
R � � .

A simple substitution using the second equation shows that the new Rayleigh

function is strictly equivalent to the original definition (4.17) in Theorem 4.2.

As this form of constraint realization only introduces first order dynamics—

exponential decay—high oscillations of the constraint forces are not expected.

Therefore, in the limit case where � � 
 , the regularized equations of mo-

tion (4.19) produce the trajectories of the restricted Lagrangian, written as| � �{� h�;��& � ½ ] Á \] Á � ¾ q " . The discretized version of the restricted Lagrangian is writ-

ten
B =	& � ½ ] Á \] Á � ¾ q " and the numerical trajectories are computed by the discrete

stepping equations (3.105).

The regularized physical system (4.19) is now discretized using the framework

introduced in Section 3.12. The discrete forces acting on the � and � variables

are as follows as followsj ½ 0 ¾= Á ] � � " � �L2� � " � �W2,�W�rq v" � f ´ R�´ h� a ´ � �sf �´ ��2 ��
j ½gN ¾= Á ] � � " � �L2� � " � �W2,�W�rq v" � f ´ R�´ h� a ´ � �sf �´ � " � R�_ã" Í �W2W?B� "R Îj ½ 0 ¾= Á � � � " � �L2� � " � �W2,�W� q v" � f ´ R�´ h� a ´ � �gf �´ �w2 ��
j ½gN ¾= Á � � � " � �L2� � " � �W2,�W�rq v" � f ´ R�´ h� a ´ � �gf �´ � "� R � � Í �W2W?�� "R Î V r � �� � �L2W?B� "R � 
T� � =
(4.20)

The choice of approximation for � �gf �Î�5<?= � � " � �L2� f � R � that is made to computej ½ED ¾v Á ] � � " � �L2� � " ���w2,� does not affect the choice of the approximation of the last two

integrals j ½ED ¾v Á � � � " � �L2� � " ���w2,� . The choice of the value of �� in the last equation

of (4.20) is set to ��2 so the known unregularized nonholonomic stepper of (3.105)

is recovered in the limit where � ¤ 
 . This leads to the following discrete stepper

by using the forced, discrete, Euler-Lagrange equations (3.82)� 2 B = � � ¬ � � ¬ 0â2� R � V � Ú B = � � ¬ N 2L� � ¬ � R � V�_ a ¬ � � ¬ 032W?B� ¬ �w��
� � � ¬ 032¸?B� ¬ � V	R r � � ¬ 032�� � ¬ 032¸?�� ¬R � RkF �W��
<� (4.21)
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and this is referred to as the pair � B = � j ½ÌD ¾= � R� �8� .
Now, the numerical trajectories of the pair � B = ��j ½ED ¾= � R � �8� computed by solv-

ing the stepping equations (4.21) are expected to differ by IK� �e� from those of the

discrete restricted problem,
B =V& � ½ ] Á \] Á � ¾ q " computed by (3.105), at least as long as

the Jacobian matrices _ ¬
have full row rank. Indeed, in that case at least, the

nonlinear systems are well conditioned. In addition, the same regularized numer-

ical solutions of (4.21) are expected to be close within IK��R Ú � of the trajectories

of the regularized system, � | �
R � � for a fixed value of ��C�
 . Finally, the result

of Theorem 4.2 says that trajectories of � | �
R � � are uniformly close within I6� �e�

to the trajectories of the restriction | � ½ ] Á \] Á � ¾ q " .
These facts indicate that the following diagram commutes, though some steps

are still missing for a rigorous proof.| & � ½ ] Á \] Á � ¾ q " regularize:
� ýÈ"?O?¨?<?¨?<?<?<?¨?<? ¤ � | �

R � �þþÿ discretize: v ýk" þþÿ discretize: v ýk"B =	& � ½ ] Á \] Á � ¾ q " realization:
� 0 "� ?<?¨?<?<?¨?<?<?¨?<?;? � B = ��j ½ED ¾= � R� �8� (4.22)

4.4 Physical stabilization of holonomic constraints

Armed with discretizations of both holonomic and nonholonomic regularized con-

straints constructed in Section 4.2 and Section 4.3, respectively, the problem of

stabilizing holonomic constraints by combining the two aspects is now investi-

gated. First observe that a constraint of the form �á  � ¢¤ / + � �Q� ���W��
<� implies

that h�Q� ���W� ^K� ��� h� , where the ���¡� Jacobian matrix ^ is defined as ^ � ´ � � ´ �
at the analytic level. However, this relation does not survive discretization since

even with �k� � ¬ � G 
<� �Q� � ¬ 032~� G 
 , then, using Taylor’s theorem�R Ø �Q� � ¬ 0â2~�#? �Q� � ¬ � Ú � �R ^ ¬ � � ¬ 032¸?�� ¬ � V�IK��R �~� (4.23)

so that even nailing �Q� � ¬ 0â2~�i� �Q� � ¬ �i� 
 exactly, the approximation of the

constraint velocity might only vanish to IK��R � .
Strangely enough, the notion keeps appearing in the literature that constraint

drift is due to round-off error, which is typically of the order of machine precision.

This is utterly negligible in comparison to the discretization errors of the type

just described. It should be clear also that if a local linear approximation is

used to compute �k� ��� G 
 , the errors made are I6��R � which makes the constraint

velocity estimate I6� �M� as per (4.23). Severe constraint drift is thus expected over

time.

Secondly, it seems reasonable to relax the accuracy requirements on the so-

lution of �Q� � ¬ � G 
 to balance it with the overall error made by the stepper

which is expected to be IK��R Ú � at best. In fact, it should be best to keep both4 �Q� ��� 4 � IK��R � and 4 ^K� ��� h� 4 � I6��R � along the trajectory. This argument often
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appears in the finite element literature [52] but seldom in the ODE or DAE liter-

ature. In fact, in [114], Section VI, where solution methods for DAEs are exposed

in detail, the notion of violating the constraints �Q� ���W��
 is never considered and

no effort is spared to satisfy �k� ���D�£
 to machine precision. This leads to solv-

ing degenerate systems of nonlinear equations and in turn, this requires using

either SVD, or QR which are expensive computationally compared to regular

factorization methods such as LU factorization (LU) or Cholesky [107].

The strategy adopted here is to consider �Q� ���¸��
 and ^K� ��� h�`��
 as independent
constraints, to be enforced separately. To this end, the following regularization

and coupling terms are introduced| " 2Z�uÐ a �Q� �;�W��� B = Á " 2ã� �ü � Ð "�V Ð�2,� a �s�;"ZVB� 2,�e�| 2 � )� 4 Ð 4 Ú ��� B = Á 2 � )ü 4 Ð " V Ð 2 4 Ú � (4.24)

and the Rayleigh functions and associated discrete forces

R � �{� h� � Ð�� hÐk�W� ? � Í )� hÐ a hÐ V Ð a ^K� ��� h� Î ���j ½ 0 ¾= Á ] ��
O� j ½gN ¾= Á ] � Rk��^ ¬ Ð�2W?�Ð "R �j ½ 0 ¾= Á � ��
O� j ½gN ¾= Á � � Rk� Í ) Ð�2W?BÐ "R V�^ 2 ��2W?B� "R Î = (4.25)

With these choices, after relabeling withÐ¡� �ñ © Ð ¬ 032 V ��Ð ¬ V Ð ¬ « V � R � Ð ¬ 032Z?�Ð ¬ �,� (4.26)

the stepping equations for | V | 2 V | " 2 subject to the forces derived from

R � �{� h� � Ð�� hÐQ� , are found to be� 2 B = � � ¬ ��� ¬ 032L� R � V � Ú B = � � ¬ N 2��� ¬ � R � V	Rk^ ¬ a Ð���
),Ð V �ñ �g� ¬ 032 V � � ¬ VB� ¬ N 2,� V � R ^ ¬ 032 � � ¬ 032¸?B� ¬ �w��
<= (4.27)

This provides for a natural parametrization of the dissipation rate parameter � ,
namely, � � R is the half life of the constraint violation decay.

4.5 Linearized mixed systems: spook

The stepping equations derived so far for various types of systems such as (4.27),

are systems of nonlinear equations in the general case. It is very instructive to

compute the linearized form of these equations since this is what is ultimately

processed, whether only the first linear estimate is used, or whether this is refined

using any form of Newton-Raphson iterations.

The local linear approximation is now constructed explicitly, in both position

and velocity formulations, for a general system containing both holonomic and
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nonholonomic constraints as well as potential functions. The analysis is restricted

to constant mass matrices. The changes that must be made to this formulation

to cover the rigid body cases where the mass matrix is configuration dependent

are covered in Chapter 15.

The linearized version of the regularized and stabilized stepping scheme for

mixed systems with both holonomic and nonholonomic constraint needs a short

name for convenience. With blatant disregard for paganism and superstition, it

is hereby christened spook. The reason for the name is that previous instances

of variational steppers for constrained systems were called rattle [242] for the

simple extension of the Verlet stepping scheme [271] to constrained system, and

shake [5] for a velocity formulation of the same based on Hamiltonian mechan-

ics. The implementation of these steppers in molecular dynamics involves using

approximate solutions of the constraints and thus, the method developed here is

much in line with that development. Since “rattle” and “shake” are both verbs

and nouns, “spook” fits in the nomenclature scheme. Now, Lagrange multipli-

ers are classical equivalents to the ghost particles of quantum field theory [265].

Regularization and stabilization provided them with real energy, making them

manifest themselves. Since to spook is to appear as a ghost, the name spook is

appropriate here.

Consider a system moving configuration manifold
�

of dimension � according

to the constant-mass model Lagrangian function of (3.12), namely, | � � � h�;�á�� ������ h� a  h�w? ! � ��� , where the square ���È� matrix  is constant and symmetric

positive definite, and
!   � ¢¤ /

is a smoothly differentiable function of � .
Assume the system is subject to nonholonomic constraints of the form r   / �� � ¢¤ / +��

, with r � � � h� � f �w� _`� ��� h� VTéK�gf �w��
 , where matrix _ is of size 7 p �`� ,
and the vector function é   / ¢¤ / +��

is 7 p
-dimensional. In addition, assume

holonomic constraints of the form �	  � ¢¤ / p
	
, with �k� ���(� 
 , and Jacobian7 v �á� matrix ^ � ´ � � ´ � .

For each nonholonomic constraint function r ¦ � �{� h� � f �y�À
O�8§�� ��� �O�>=M=>=~�87 p
,

define a regularization parameter � ¦ �E
 . Likewise, for each holonomic constraint

function ��¦ � ���(�5
O�8§�� �;���O�>=>=M=~�87 v � define the regularization and stabilization

parameters, ) ¦ � �~¦ �E
<�8§â����� �O�>=M=>=~�87 v , respectively.
Next, the simplest discretized Lagrangian computed previously in (3.25) is

used, yielding the following basic stepping equations as shown in Section 3.7,� a 2 B = � � ¬ � � ¬ 032L� R � V � aÚ B = � � ¬ N 2L� � ¬ � R �W�? �R  � � ¬ 032¸?B��� ¬ V � ¬ N 2,�3? R~
 ! � � ¬ �w�u
O= (4.28)

After linearizing all the constraint terms in the second line of (4.27), expanding

all terms about time step F , and reorganizing the explicit terms of (4.28), the

linearized stepping equations become×ØÙ  ? _ a ¬ ? ^ a ¬_ ¬ � 
^ ¬ 
 �
ÜÞÝß ×ØÙ � ¬ 032� Ð ÜÞÝß � ×ØÙ �  � ¬ ?  � ¬ N 2W? R Ú 
 ! ¬_ ¬ � ¬ V	R	é ¬? ñ�D� ¬ V 2Ú � � V� � ^ ¬ � ¬ ? Å^ ¬ � ¬ N 2 ÜÞÝß � (4.29)
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where the following square diagonal matrices were introduced� � �R �¨�%* 9 � �k2�É�OÚ��>=>=>=M�É� +�� �~���� ñR Ú �¨�Ì* 9 � )M2� VBñ  "v � )�Ú� VBñ  �v �M=>=>=>� ) +� VBñ  & �v �~�
 � �<�%* 9 � �� V�ñ  "v � �� V�ñ  �v �>=>=>=M� �� V�ñ  & �v �,� (4.30)

and the Lagrange multipliers have been redefined to absorb a factor of R for �
and R Ú for Ð .

When using a velocity formulation, the linearized stepping equations become×ØÙ  ? _ a ¬ ? ^ a ¬_ ¬ � 
^ ¬ 
 �
ÜÞÝß ×ØÙ � ¬ 032[� [Ð ÜÞÝß � ×ØÙ  � ¬ V	R~
 ! ¬é ¬? ¦v D� ¬ V�Å^ ¬ � ¬ ÜÞÝß � (4.31)

where the matrices
� ��� and  are defined as previously in (4.30). The difference

here is that no factor of R is absorbed in the definition of [� , whilst only one factor

of R is absorbed in the new definition of Ð . The specific formulation in (4.31) is

the spook stepping scheme.

Now define the matrix � � ×ØÙ  ? _ a ¬ ? ^ a ¬_ ¬ � 
^ ¬ 
 �
ÜÞÝß � (4.32)

which is common to both the position formulation of (4.29) or the velocity formu-

lation of (4.31). This matrix � is not symmetric but it is strictly positive definite

as long as all parameters � ¦ and ) ¦ are strictly positive. Indeed, the symmetric

part is positive definite for � ¦ C*
 . For the partitioned vector é � � \ a �:d a � � a � a
of appropriate dimension yieldsé a �Té �º\ a  \ V d a � d VÝ� a � � �E
<� (4.33)

and given the assumption that mass matrix  is symmetric and positive definite,

the equality is satisfied only when all components éÎ¦ ��
 .
If Newton-Raphson iterations are used, the iteration matrix is easily verified

to change to ×ØÙ  ? _�a ¬ ? ^Îa ¬_ ¬ ø � 
^ ¬ ø 
 �
Ü Ýß � (4.34)

where � ¬ ø is the current estimate for the final position � ¬ 032 and _ ¬ ø and ^ ¬ ø are
the Jacobian matrices evaluated at � ¬ ø . Strict symmetry is lost but the symmetric

structure is preserved.

The simple linearized form of the velocity formulation (4.31) has been used in

practice. Future work will determine when it makes sense to compute a better

approximation of the nonlinear equations.
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4.6 Linear stability analysis

4.6 Linear stability analysis

To understand the properties of the stepping equation (4.11), consider the case

of linear homogeneous constraints �k� ���Å� ^ �¡�A
 with constant 7 �4� matrix^ . Define
� ª � ��ª � R � Ä � �;���O�>=>=M=~�87 , and

Y � �¨�%* 9 � � 2M� � Ú;�M=>=>=M� � +`� . Relabel

the Lagrange multipliers of the constraints, Ð , to absorb a factor of R as done

in (4.31), and reuse the definition of the diagonal matrices with strictly positive

entries � and  of (4.30). Starting with the constant mass model Lagrangian

of (3.12), define the generalized forces as usual with j ¬ � ? ´ ! � ´ � a¬ and thus,

the spook stepper of (4.27) expressed in terms of positions � ¬ and velocities� ¬ � � �L� R � � � ¬ ?B� ¬ N 2,� is � ¬ 032¸? R � ¬ 032���� ¬ � ¬ 032W?  � ¬ ? ^ a Ð¡� R j ¬R ñ  N 2 ��Ð V �ñ ^�� � ¬ 0â2 V ��� ¬ V � ¬ N 2,� V	R Y ^ � ¬ 032���
O= (4.35)

Multiplying the first equation with ^  N 2
and isolating the term ^ � ¬ 032 in both

equations, the following identities are revealed^ � ¬ 032�� ^ � ¬ V�^  N 2 ^ a Ð V�R Ú ^  N 2 j ¬ �^ � ¬ 032�� ?���Ð6? ñR Å^ � ¬ ? Å^ � ¬ = (4.36)

The following definitions will simplify what follows� � ^  N 2 ^ a � (4.37)�e$ � �yV �Î� (4.38)� $ � �w� N 2$ � ���e$ ?���� � N 2$ � � +�?�� � N 2$ � (4.39)\ ¬ � ^ � ¬ � (4.40)d ¬ � Rk^ � ¬ � (4.41)ç ¬ � R Ú ^  N 2 j ¬ = (4.42)

Using these and grouping the Ð terms between the two lines in (4.36), one finds�e$ Ð¡� ? ñR  \ ¬ V �R �� ? � +`�7d ¬ ? �R ç ¬ = (4.43)

Given that � is symmetric and positive semi-definite at least, �%$ is strictly posi-

tive definite and invertible. Solving (4.43) for Ð and substituting in the first line

of (4.36), the stepping equation is now reduced to\ ¬ 032W?�d ¬ 032��º\ ¬d ¬ 032�� � � +u? ñ � $� Y �Éd ¬ ? ñ � $� \ ¬ V*� � +u? � $ �8ç ¬ � (4.44)

and the factor of �� R of (4.43) was absorbed in the definition of d ¬ � Rk^ � ¬ as

previously explained.
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4 Regularized and Stabilized Discrete Mechanics

The force term ç ¬ is dropped at this point to understand the stability of the

homogeneous equation. First rewrite (4.44) without forces as the recurrenced3� ¬ 032�� _�� ¬ � or� ¬ 032�� �T� ¬ � with � ¬ � ö \ ¬d ¬ ÷ � (4.45)

and with the definitions:d � ö � + ? � +
 � + ÷ � d N 2 � ö � + � +
 � + ÷ �
_ �Àö � + 
? � � + ? � Y ÷ �� � ñ � $� � ñ¨� � +�?�� � N 2$ �  � and� � d N 2 _ � ö � +u? � � +�? � Y? � � +�? � Y ÷ =

(4.46)

Convergence is thus guaranteed if the spectral radius of � is within the unit circle,

i.e., Ò ��� �Å' � . Consider an eigenvalue Ð of � with eigenvector � � � \ a ��d a � a .
A short computation yields that Ð	dH� � �¸?�Ðk�Í\ , and so, in terms of the vector \
only, the eigenvalue Ð must satisfy the following vector equationÐ Ú \Y?B��Ð � � +u? �� � � Y V � +`���Í\ Vº� � +u? � Y �8\��u
O= (4.47)

This is in fact a quadratic eigenvalue problem. Consider for a moment that

matrix
�

is symmetric and positive definite and that
Y

is merely a multiple of

the identity. Decompose vector \ along the eigenvectors � ¦ of matrix
�

so that\¡�ul ¦ �%¦ � ¦ , where �%¦ - �
. Take any eigenvector � ¦ of � and multiply (4.47) on

the left with � a¦ . If the scalar �%¦ � a � ï�u
 divide through to obtain a polynomial

of second order with real coefficients in Ð . Given estimates on the spectrum of�
and the parameter

�
, bounds can be placed on the magnitude of each given Ð

using all eigenvectors � ¦ of � . This is the content of Theorem 4.4 below.

To clarify this analysis, consider the one-dimensional case, 7 � � where �º�) and likewise for
Y � �

. Let the Schur complement matrix � of (4.37) (a

nonnegative scalar here) have the eigenvalue Ð�� so that � N 2$ � �L� � Ð�� V ),� and
(' � $ ��Ð��Q� � Ð�� V ),�W��Óæa@� . Equation (4.47) reduces toÐ Ú ?B��ÐT� V ����
O� where������? � � � V �M�8Ð��� � V�ñ � � � Ð�� V ),� �
('��*'J� when
� C@��;�<� and )DCE
O�
('��*'J�� î when
� CE�<� and )DCE
O�������? ñ � Ð��� � V�ñ � � � Ð�� V ),� � and
K'E��'J� when

� C*
O� and )DCE
<=
(4.48)
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and the roots are Ð D ��� � u � Ú ?��Z� (4.49)

which have modulus & Ð D & �¡& ��&¨'�� when � Ú Cº� . A short computation reveals

that � Ú ?B����? ñ Ð��� � VBñ � � � Ð�� V ),� V ñ¨� � V �� Ú Ð Ú�� � VBñ � � Ú � Ð�� V ),� Ú � (4.50)

which means that � Ú ?o��'�
 when
� ' � and )(C 
 . Thus, for fixed )(C 
 , if� ��
 , ����� and ���£�3?��TÓ and so, � Ú ?y����? ñ Ó � �3?�Ó��W'E
 and & Ð D &T��� . For
K' � 'E� , � Ú ?B��'*
 and & Ð D &T�ñ& ��&T�u�o'J� . Beyond � C*� , if � Ú ?��o'*
 , we

have �*'J�L� î and so & Ð D & 'E�{� î . Thus, & Ð D &O'J� is all cases where � ��)1CE
 . This
includes the case where Ð��¡��
 , in fact, which always leads to a unit eigenvalue.

Note that for
� �u
 , & Ð D &T��� and this leads to oscillatory dynamics which never

decays, much in accordance with the results of Theorem 4.1 though any amount

of dissipation provides some stability, as per Theorem 4.2.

This analysis can be repeated for dimensions 7 CJ� in the case where
Y � � � +

and �E�u) � + since then, matrices � � +u? 2Ú � Y � and � � +u? � � Y ? � +`�8� in (4.47)

commute and their eigenvectors are those of matrix � defined in (4.46). The

bounds just derived for Ð D still hold here.

A similar analysis holds for the case where � is not a multiple of the iden-

tity but
Y � � � + since in that case, the decomposition of

�
into eigenvectors

with positive eigenvalues is guaranteed by Lemma 4.3 below, a well-known re-

sult. However, these eigenvectors are no longer orthogonal which means that a

convexity analysis is required when considering the bounds on the coefficients �
and � of the quadratic equation (4.48).

Lemma 4.3. For a real, �Î�â� symmetric, positive definite matrix _ and a strictly

positive diagonal matrix
� � �¨�Ì* 9 � �k2L�É� Ú��M=>=>=M�É� p �,��� ¦ C 
 , the matrix d � � _

has the same real, positive eigenvalues as the symmetric, positive definite matrix! � � 2�6 Ú _ � 2�6 Ú , and if � is an eigenvector of
!
with eigenvalue Ð , then, ¯�� � 2�6 Ú �

is an eigenvector of d with the same eigenvalue. Unless
�
is a scalar multiple of

the identity, the eigenvectors of
� _ are not orthogonal.

Proof. Since _ is symmetric and positive definite, so is
! � � 276�Ú _ � 276�Ú . Consider

an eigenvalue Ð of matrix
!
. Since

!
is positive definite, Ð is real and positive.

Now,
! ��� ÐV�	� � 2�6 Ú _ � 2�6 Ú � and thus, writing ¯�� � 276 Ú � , assuming that all

elements of
�
are strictly positive, we find� 276�Ú _ ¯���Ð � N 276 Ú ¯� (4.51)

and after multiplying both sides by
� 276�Ú

, the desired result� _ ¯ã� d ¯Z�uÐ�¯� (4.52)

is obtained. Considering two eigenvectors of matrix
! � � 276 Ú _ � 276 Ú , � ¦ ��� ª , and

the corresponding eigenvectors ¯ ¦ and ¯ ª of matrix d , we have¯ a ¦ ¯ ª �A� a¦ � � ª ï��
<� (4.53)

which does not necessarily vanish unless
� ��� � p .
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For the case at hand, observe first that ��$ is positive definite and so is � N 2$ .

Using
Y � � � + and correspondingly,  � � � Vuñ � � N 2 � + , and given that the

matrices appearing in (4.47) only differ by scalar multiples and scalar multiples of

the identity, the same analysis done for the scalar case in (4.50) holds, replacing

the factors )~� � Ð�� V ),� with the scaled eigenvalues guaranteed by Lemma 4.3.

What is missing here is a tight estimate of the eigenvalues of � � N 2$ . In the

diagonal case, there were just )~� � Ð�� V )~� a � , and this produced nice bounds

even for the case where Ð��¡��
 .
Numerical results on the spectrum of the stepping matrix � of (4.46) are

presented in Figure 4.1. Random Jacobian matrices ^ of size 7 �m�T
�
 were

generated and the mass matrix  was set to the identity. The rank of the ma-

trices ^ was made deficient in the first three cases to illustrate the point made

here that regularization does resolve this issue. The last line on the plot corre-

sponds to a matrix with full row rank which is even better behaved. Condition

numbers of the Schur complement matrix � are shown on the plot for each line.

These range from the moderate �M

� to the extreme �M
 2 P , which at the limit of ma-

chine precision, and this hopefully explains the spurious overshoot for the largest

eigenvalue for this latter case. The perturbations ) ª were chosen randomly in the

range © ) min � ��) min « and so were the stabilization parameters
� ª - © �<� î�« . These

simple experiments show that the spectrum of � is expected to be well behaved

in general, even in cases where the proofs provided above do not apply.

A complete characterization of the spectrum of the iteration matrix would

have been desirable and, hopefully, will be available in the future. For the gen-

eral nonlinear case, the recurrence relation must be analyzed in terms of its

contraction properties and this is also left for future work. The discussion of this

section is summarized in Theorem 4.4 below which is restricted to homogeneous

perturbation and damping.

Theorem 4.4. Given a configuration manifold
�

of dimension � , a constant,

symmetric and positive definite �	�4� mass matrix  and linear homogeneous

constraint functions �   � ¢¤ / +
with 7 ' � with �Q� ����� ^ � for a con-

stant 7 ��� matrix ^ . Given also a constant diagonal perturbation matrix��� �<�%* 9 � )M2��)�Ú��>=>=>=M� ) +�� , where ) ª CE
<� Ä ����� �O�>=M=>=~�87 , as well as diagonal stabi-

lization matrix
Y � �¨�%* 9 ��� 2~� R � � ÚL� R �>=>=M=>� � +È� R � where ��ª CJ� for Ä ���;� �<�>=>=>=>�87 .

The dynamics of the spook stepper given by (4.27) converges to ^ � ¬ ¤ 
 and^ � ¬ ¤ 
 when the projected forces vanish.

Proof. Given that �u��) � + , the main matrix to analyze is
� $ � �â� N 2$ � � +@?) � N 2$ where 7 � 7 matrices are defined in (4.37) for � , in (4.38) for ��$ and

in (4.39) for
� $ . Note first that given forces j ¬ , the forcing term ç ¬ of (4.42) does

not contribute to the constraint stabilization dynamics as long as © � +á? � $�« ç ¬ ��
 .
This happens when either ^  N 2 j ¬ � 
 which means that forces are acting

tangentially to the constraint �Q� �;�Î�.
 , or when ç ¬ � R Ú ^  N 2 j ¬ is in the null

space of © � +�? � $�« .
Next, since � and ��$ differ only by a constant diagonal element, they are

diagonalizable with the same orthogonal transformation,
�
. If the eigenvalues
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of � are � Ð�� " � Ð�� � �>=M=>=>� Ð�� & � , say, and thus,
� $ is also diagonalized with this so

that we have ��� $ � a � �<�%* 9 � Ð�� "Ð�� " V ) � Ð�� �Ð�� � V ) �M=>=>=M� Ð�� &Ð�� &�V ) �,= (4.54)

Now, consider an eigenvalue Ð of the iteration matrix � � _ N 2 d defined in (4.46)

with eigenvector é � � \ a ��d a � . Any such root satisfies the quadratic equa-

tion (4.47). Now, decompose the vector \ according to the eigenvectors � ¦ �8§1��;� �<�>=>=>=>�87 of matrix � , multiply (4.47) on the left with � »¦ (the Hermitian con-

jugate is needed here since the coefficients of \ may be complex) and divide

through with \ » \ . Since all matrices appearing in (4.47) differ from
� $ by

only a scalar multiple of the identity and an overall scalar factor, the vectors � ¦
are eigenvectors of these as well. This leads to 7 equations of the same form

as (4.49), namely Ð Ú ?H��ÐT� ¦V � ¦ where the real coefficients � ¦ � � ¦ , §â����� �O�M=>=>=>�87 ,

are now � ¦ ����? � � � V ��8Ð�� �� � V�ñ � � � Ð�� � V ),� �� ¦ ����? ñ � Ð�� �� � V�ñ � � � Ð�� � V ),� = (4.55)

Repeating the computations found in (4.50) and (4.48) for each eigenvalue Ð�� � �
 of � , each such eigenvalue Ð of � is found to have modulus & Ð`&�'�� whenever� C£
 and Ð�� � C£
 , and & ÐK&e� � when
� �A
 or Ð�� � � 
 . The dynamics of the

iterates � ¬ in (4.45) thus corresponds to potentially oscillating exponential decay

for the relevant modes, i.e., those corresponding to nonzero eigenvalues Ð�� � ï�u
 ,
and this means that \ ¬ � ^ � ¬ ¤ 
 and � ¬ � ^ � ¬ ¤ 
 as F ¤ �

. Since the zero

eigenvalue modes do not contribute, the constraint ^ � is thus stabilized in both

position and velocity and the proof is complete.

4.7 End notes

A physics based, numerically stable constraint realization algorithm was con-

structed for both holonomic and nonholonomic constraints. The same techniques

were used to provide a stabilization algorithm for holonomic constraints. This

was proven to be globally stable for the linear homogeneous case, given homoge-

neous regularization and stabilization parameters.

Previously known regularization schemes are not physical in the sense that they

cannot be formulated within a Lagrangian mechanics framework. In addition,

the numerical realization of constraint realization schemes or penalty forces has

been repeatedly observed to be a disaster except for the simplest cases.

Even in the careful analysis of [166], the numerical examples have high oscil-

lations and exhibit noise. For constraint stabilization, with all the deep analysis

and beautiful results of Uri Ascher and his colleagues and students reported

in [61, 26, 24, 25] and [27], there is nothing that comes close to the simplicity

105



4 Regularized and Stabilized Discrete Mechanics
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Figure 4.1: The spectrum of the stepping matrix for moderate values of condition

number and degeneracy.

and physical motivation of the results we have just presented. Also, in most

of Ascher’s work, one uses an explicit Runge-Kutta method as the main work

horse and performs extra computation to stabilize and regularize the system af-

terward. As discussed in Chapter 3 however, it is possible to stabilize constraints

in a physical way, and still using a first order, one stage method, which is faster.

There are high order, accurate and efficient methods for DAEs [165]. These

have well established application domains, and to the extent that they are not

used to model physical systems which satisfy a least action principle or systems

having symplectic flows, they are perfectly fine choices.

With much the same motivations behind the present thesis, low order methods

Runge-Kutta methods for DAEs were developed with an eye on efficiency in the

work of Cameron and Piché [59, 58]. It could be interesting to see if some of

these ideas could be reused to build higher order variational methods.

For mechanical systems, discrete variational mechanics yields simple and re-

markably good low order methods, and this is what is needed for interactive

simulations at least, namely, relying only on linear systems, global error bounds,

and strong linear stability. Indeed, for fixed time step R , discrete energy oscillates

within bounds of order R Ú for the methods considered here. Since the regular-

ization strategy here is to associate an energy cost quadratic in the constraint

violation. Since the total energy budget is bounded, the allowed violations are

globally bounded as well.

Also because of the strictly physics based approach, regularization is not just

a lesser evil in choosing between inaccuracy, high computational cost or instabil-
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ities, but a genuine physical model. Using a large regularization parameter for a

given constraint amounts to introducing compliance into the system. The regu-

larization and stabilization scheme can thus be used to model any form of stiff

force in a stable way, for the cost of adding one extra row and column to the lin-

ear system (4.32). Other schemes for modeling stiff forces in multibody systems,

such as [18], which amounts to using linearized implicit Euler discretization for

the stiff forces, much like in [39], correspond to modifying the mass matrix with

terms of the form R Ú ^ba � ^ , where ^ is the Jacobian of the stiff force,
�

is the

stiffness matrix, and R is the time step. When the eigenvalues of the stiffness

matrix
�

become large, the linear systems become ill-conditioned. By contrast,

in the present formulation, the corrections are of the form ^ � N 2 ^Îa and these

are well behaved as the eigenvalues of the stiffness matrix become large.

Stiff forces can also be handled using adaptive time steps. A variational formu-

lation of this for the context of smooth but stiff contact force potential is found

in Modin and Führer [206].

Previously [168], I reported a different discretization scheme for the analytic

constraint regularization and stabilization technique of the present chapter. This

amounted to a first order backward discretization of the constraint equations and

in turn, that amounts to discretizing the strong oscillatory forces using linearized

first order implicit integration. In fact, that stepping scheme is in the regular-

ized, stabilized family of Section 4.5, when choosing suitable parameters. This

was used in three Master’s thesis projects, two of which completed successfully.

The first application was the simulation of cloth [70] and the second was for

deformable solids [201, 254]. In both cases, the results compared favorably in

performance to the state of the art in computer graphics literature. However,

from the modeling perspective, the new strategy was superior because it did not

dissipate so much energy for degrees of freedom orthogonal to the constraints.

The same techniques have also been used in collaborative work with Servin, re-

sulting in one refereed conference proceeding article [254], one article to appear

in 2007 [253] and another in preparation, where the goal was to simulate light

cables having both bending and torsion resistance and subject to heavy loads,

for interactive simulations of cranes for training applications. Since the cable

is modeled using constrained rigid bodies, it is possible to subject the hoisting

cables to frictional contacts, using techniques similar to those described in Chap-

ter 10. Prior to this work, the literature only reported the modeling of cables

with pure constraints [131] and thus not allowing any contacts and not providing

for bending and torsion, or using Crosserat theory [222] which allows for bend-

ing and torsion but not contacts, or with point masses [187] which allows for

modeling contacts and bending but not torsion.

Constraints were only considered to first order here but higher order schemes

can be built and these will be developed in the future. It is hoped that regular-

ization and stabilization techniques discussed in the present chapter will permit

stable linearization of the internal stages.

The stability result could be stronger if the spectrum of the stepping ma-

trix could be proved to be within the unit circle at all time, and with a better
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characterization of the unit eigenvalue modes of degenerate systems.

The correspondence between exact and regularized systems, both in continuous

and discrete, could be analyzed to greater length. Also, a comprehensive error

analysis is still missing, though important elements and techniques for doing that

exist already [196].

Rayleigh dissipation functions are central to the stabilization and regulariza-

tion analysis. Though they are well known in system’s engineering though [177],

they are conspicuously underused in the analytical mechanics literature, receiv-

ing all the attention of one paragraph in Goldstein [105], and barely mentioned

in Lanczos. Their role in the optimization framework of the principle of least

action, continuous and discrete, is only now being recognized.
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5 Bagatelle II:

Numerical Stability of Simple

Harmonic Oscillator

Explicit computations of the linear stability function of integrators [114] are

performed for a variety of methods for the case of the simple harmonic oscillator

described in Chapter 2. This amounts to evaluating the stability function on the

imaginary axis. This is argued to be a good measure of the usability of a given

integration method for physical systems. The standard technique is described in

Section III which contains all computations. General observations are made in

Section 5.2.

5.1 Classical stability analysis and classical methods

The simple harmonic oscillator is the second simplest physical example. Indeed,

if one considers a power series of potential functions
! � �;� near an equilibrium

point, one finds
! � ���W� ! "WV ¬Ú � a � V =>=>= after the � variables have been changed

so that �Å�u
 is the equilibrium point. The constant term
! " does not contribute

anything to the physics. The quadratic term in � produces a linear restoration

force and is thus the prototypical example of a linear physical system.

Investigation of linear stability theory of numerical methods for ordinary dif-

ferential equation rests on evaluating the result of a single step of a given method

on the canonical test function of Dahlquist [114], namelyh�Å��Ðk�{� (5.1)

where �{� ÐB- � � are complex numbers. Applying any given one step method to

an arbitrary initial condition � " for a single step, one finds�L2�� ����R Ð���� " � (5.2)

where �@  � ¢¤ �
is a scalar complex function of the complex argument � � R Ð ,

and is called the stability function of the integrator. This illustrates the fact

that integrators are linear filters. Stability is then defined as the region of the

complex plane such that & �È��� ��&3a � , where & � & is the modulus operator for

complex numbers. Of course, being only linear, this analysis does not yield the

complete picture. However, a method which fails to be linearly stable cannot

be expected to produce good results in general. In addition, not all integration

methods can be amenable to the format (5.1), and in particular, the variational

109



5 Bagatelle II: Numerical Stability of SHO

integration methods described so far do not fit in this framework, because they

involve two term recurrence relations where �MÚ depends on both ��2 and � " (of

course, replacing � in (5.2) with a matrix can work).

The description of stability as the region of complex plane where & ���#� � & a£�
is focused on the preservation of stability of dynamical systems under discretiza-

tion, and provides little or no information on unstable systems. For instance,

the perfectly valid equation h�H� ��� describes exponential growth and a perfect

integrator would then yield & ����� � & �.� , and thus be considered unstable. The

analysis provides useful information as long as one concentrates on the combina-

tion where the time step is positive, R Cu
 , and the real part of Ð is positive so

that !Å� Ðk�Î'J
 . The case !Å� Ðk�ã��
 is marginal in fact, but that is precisely the

one corresponding to conservative mechanical systems.

The reason to use Ð*- �
is that oscillatory systems necessarily have a non-

zero imaginary component in this one-dimensional framework. Indeed, a simple

harmonic oscillator corresponds here to the pure imaginary case: Ð��u§�& ÐK& . The

present analysis is thus restricted to pure imaginary Ð to get a better picture of

some popular, simple integration methods, including the first order Euler implicit

and explicit methods, as well as the second order Runge-Kutta method and the

wildly popular RK4a method [113, 112], in the context of the simplest linear

physical problem.

The stability functions for these are known to be [114]

�#"$"L��� �W��� VÝ� � explicit Euler�ã¦%"���� �W� �� VÝ� � implicit Euler �� mid ��� �W� � VÝ� �����? � ��� implicit midpoint�'Ö ¬ Ú ��� �W��� VÝ�`V � Ú� � explicit midpoint ��'Ö ¬ É ��� �W��� VÝ�`V � Ú� V � ÉS � explicit third order Runge-Kutta ��'Ö ¬ ¦ ��� �W��� VÝ�`V � Ú� V � ÉS V � ¦� ñ � explicit fourth order Runge-Kutta =
(5.3)

In general, an explicit Runge-Kutta methods of order � has a linear stability

function � Ö ¬ ½ n ¾ ��� � equal to the � first term in the Taylor series expansion of�1,'& � \Q� , namely,
�1,'& ��� �W��� V��DV�� �L�;��� � Ú Vi�����~V�� �� � áë� � p =>=M= . Restricting to the
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5.1 Classical stability analysis and classical methods

case where � �º§Í\���\y- /
, and \yCE
 , we have,& ��"�"� §Í\k��&�� u � V \ Ú CJ���& �ã¦%"L� §Í\k��&�� �� � V \ Ú 'J�;�& � mid � §Í\k��&��£�& � Ö ¬ Ú � §Í\k��&�� � � V \ ¦ñ CJ���& ��Ö ¬ É � §Í\k��&�� � ��? \ ¦�M� V \ Pî S �& ��Ö ¬ ¦ � §Í\k��&�� � ��? �z;� \ P V �y z�S \ � =

(5.4)

It is clear from this that the first order explicit Euler method and the second

order Runge-Kutta method are useless for physical systems without additional

dissipation since the stability function is always greater than unity. By contrast,

the implicit Euler method is, as was observed previously, unrelently dissipative

and can never keep the oscillations going. The implicit midpoint method is stable

for any step size and never dissipates anything. Explicit Runge-Kutta of order 3

and above do have non-zero stability region which increase in size with the order

of the method.

For the third order explicit Runge-Kutta method, the linear stability function,��Ö ¬ É � §Í\k� for real \y�E
 , starts at � for \¡�u
 . The modulus & �°Ö ¬ É � §Í\Q��& decreases
monotonically to take the minimum value

u ü �)( at \ � � � G �;= ñ � ñ � , and

increases henceforth to reach value � for \i� � î�G ��= z î �¨� , and is greater than

unity afterward. Within this range, the Verlet formula holds steady but requiring

one third of the computational work.

Likewise for the fourth order explicit Runge-Kutta method, the stability func-

tion, �'Ö ¬ ¦ � §Í\Q� for real \y�E
 , starts with value � at \¡��
 . The modulus & �òÖ ¬ ¦ � §Í\Q��&
decreases monotonically to reach a minimum value of ���� for \á� � S G �O= ñ�ñ ( y ,
and increases monotonically from that point onward, reaching the value � at\�� � ü G �O= ü � ü ñ , and is greater than unity after that point.

Though on the surface, it appears that using RK4a would allow greater time

steps than the simple Verlet formula which holds up to \��m� as seen before

in Section 2.4.4. However, this is deceptive. Already from \��À�;= y , RK4a is

decreasing the modulus of the complex state vector � by nearly 6% per step.

Just around \o� � , RK4a is loosing 25% of the oscillation amplitude per step

whilst Verlet is still holding up. At \o� �O= y , Verlet is useless but RK4 is now

producing garbage trajectories which decay to 0 at the rate of 50% per step. This

holds up until \¡� � ü G �<= ü � ü ñ =>=>= , at which point the solution explodes.

The extension of the stability range by a mere
� ü ?*� G 
O= ü � ü ñTî =>=>= comes

at the cost of 4 function evaluations per step, and at least twice the storage

requirement. Not only that but this method is slightly dissipative everywhere

within the stability domain which means that this method eventually decays to���5
 when integrating over a very long time interval. The reason for that is
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5 Bagatelle II: Numerical Stability of SHO

that RK4a is not symplectic and it therefore does not preserve any surface area

during integration.

The only interesting functions in (5.4) are those for & �òÖ ¬ É � §Í\Q��& and & ��Ö ¬ ¦ � §Í\k��& .
These are plotted in Figure 5.1 below.

RK4a

RK3

Stability function along imaginary axis for explicit RK3 and RK4a

\

� *+ , -
.�

î�O= y���= y�
O= y


��= ñ��= � �
<= ü
<= S
Figure 5.1: The modulus of stability functions & � rk3 � §Í\k��& and & � rk4 � §Í\Q��& for com-

plex arguments.

5.2 End notes

It might seem artificial to look at the stability of the simple harmonic oscillator.

However, as is well known in mechanics (see [105], Chapter 6, or [22] Chapter 5,

and [174] Chapter V), simple harmonic motion is the most important dynamics

near any equilibrium point of any system. For a complicated system, the spec-

trum of frequency corresponds to the eigenvalue spectrum of the Hessian of the

potential function � � ���,� which is expected to have vanishing first derivative at an

equilibrium point � " - �
, say. When integrating at fixed time step, the danger

is always present that one of the natural frequencies has a period commensu-

rate with the time step and thus, it is always possible that the system become

suddenly unstable. An a priori analysis of all possible natural frequencies of a

system is prohibitively expensive in most cases.

High precision integrators based on high order Runge-Kutta formula address

this issue by adapting the time step, reducing it when high frequencies or large

derivatives in general are detected. As explained previously, the real-time context

does not really allow for adaptive time step adjustment, even though such a
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5.2 End notes

strategy might be more efficient for a given error margin.

It is also true that the simple Verlet stepping scheme, used here as an exemplar

for unconstrained systems, is not unconditionally stable but it nevertheless does

preserve the symplectic flow over the entire stability domain, and does so at an

incredibly low computational cost. The extra precision gained by using a fourth

order Runge-Kutta method for instance is not so useful because it comes at the

cost of losing symplecticity.

Stability is but one of many qualitative measures of an integration method

and it must be considered in the context of the target application.
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6 Bagatelle III:

The Simple Pendulum

The spook scheme of Section 4.4 is compared to a variety of standard techniques

on the simplest nonlinear constrained mechanical system, the simple pendulum.

The problem is described in Section 6.1. Several well-known mathematical refor-

mulations and integration techniques are then presented in Section 6.2, including

penalty force, projection, index reduction, coordinate reduction and standard

DAE techniques. The results of numerical experiments on these are illustrated

in Section 6.3 and various observations are collected in Section 6.4.

6.1 Introduction

The simple pendulum in two dimensions is the simplest non-trivial example of a

system with holonomic constraint. The case considered here consists of a bob of

mass 7 moving in two dimensions at a fixed distance ç from the origin subject to

a uniform gravitational field of strength r � . This example is easily and correctly

reduced to a one-dimensional problem but nevertheless, it is commonly used as

a test of numerical methods designed to handle arbitrary constrained systems

which are not so easily reduced.

The dynamics of this system is described by the position of the bob, � �sf ��- / Ú
,

its velocity h� �sf ��- / Ú
, its mass 7:C*
 , the gravitational acceleration r � CE
 and

its orientation é - / Ú � 4 é 4 � � , and the length of the pendulum çÅC 
 . The

Lagrangian is simply | � �{� h���w� 7 � 4 h� 4 Ú ?�7 r � é a �{� (6.1)

and this is subject to the scleronomic holonomic constraint�Q� ���W� 4 � 4 ?�ç��u
O� (6.2)

or equivalently � Æ � ���W� �� Ç 4 � 4 Ú ?�ç Ú È ��
O� (6.3)

which have the Jacobian ^ � �4 � 4 � a � and ^ Æ���� a � (6.4)

respectively.

115



6 Bagatelle III: The Simple Pendulum

to constraint curve
Velocity h� tangent

Constant downward
pull by gravity: 7 r � in direction é

Allowed trajectory.

Elevation angle
ü

Bob of mass 7
Fixed anchor Massless cable

of lenght ç

Figure 6.1: Schematics of a two-dimensional pendulum.

Obviously, the description of a point moving in two dimensions at fixed distance

from the origin is easily demonstrated to be� �gf �W�ºç ö 8 � � � ü �sf �8�?�°M±;8 � ü �sf �8� ÷ � (6.5)

where the origin
ü ��
 was chosen to correspond to the bob at the lowest position,

which is the equilibrium state.

Performing these substitutions in the Lagrangian, the following one dimen-

sional system is recovered�| � ü � hü �w� 74ç Ú� hü Ú V 7 r � ç;°>±;8 � ü �~� (6.6)

and this leads the equations of motion|ü V r �ç 8 � � � ü �W��
<= (6.7)

For small oscillations, the approximation 8 � � � ü � G ü
can be used to recover simple

harmonic oscillator motion near the equilibrium point with frequency Ô�� u r � ��ç .
This was observed by Galileo who noted correctly that the frequency and the

period of oscillations did not depend on the mass of the bob at all, but only on

the length of the cable. Since there is a single free parameter Ô , the length ç and
mass 7 are renormalized to � .

For large swing, the solutions of (6.7) is a Jacobi elliptic functionÔ f �A<y� q s" �V� �_ ��?ó8 � � Ú � Ú 8 � � Ú � � ( � ü � � � �W� ( � ü �:8 � � Ú � � �~�8 � � � ü � �w��8�� � Ô f ? ü " �:8 � � � � �~� (6.8)
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6.2 Alternative formulation and integration techniques

where the frequency Ô � u r � ��ç , � is the angle at maximum amplitude,
ü " is

the angle at initial time, and
( � \ �0/ � is the incomplete elliptic integral of the

first kind [176].

6.2 Alternative formulation and integration

techniques

The two-dimensional pendulum is a great test bed for any constraint handling

strategy. Out of a large number of alternatives, the following representative

strategies have been selected for direct comparison. First, the distance constraint�k� �����:
 is replaced by a strong potential
! $ � � ��;�T�8) N 2 � Ú � �;�,� )BC 
 , and a

damping term R
� � �L�;�T�8¯ h� Ú � ��� with ¯DCE
 , and the resulting equations of motion

are integrated using either the first order implicit Euler or the implicit midpoint

methods. Second, the time integration is split into two stages, first stepping the

bob according to the Verlet formula and following this by a projection back onto

the constraint surface. Third, the library DASSL [54] is used on an augmented

formulation of the problem which introduces one extra variable. Finally, the

spook stepper of Section 4.4 is applied to this system. The exact solution

of (6.8) computed using numerical implementations of elliptic functions is used

for comparison.

6.2.1 Penalty formulation and implicit Euler integration

Assuming a finite spring stiffness of F � ���)`C 
 and introducing the potential

force ! � ���W� ��T) Ø 4 � 4 ?�ç Ú Ú � (6.9)

neglecting all damping terms since implicit Euler is already dissipative, the equa-

tions of motion are found to beh�Å�A�h�Y� ? r � é ? �7i) Í ��? ç4 � 4 Î �{� (6.10)

where é is the constant unit vector pointing along the gravitational acceleration

as in (6.1). To integrate this using implicit Euler, the following nonlinear systems

of equations must be solved � ¬ 032¸?�� ¬ ? R � ¬ 032��u
� ¬ 0â2w?�� ¬ V�R r � éEV	R	� Ú Í ��? ç4 � ¬ 032 4 Î � ¬ 032��u
 (6.11)

for the new state � ¬ 0â2��� ¬ 0â2 , in which � Ú �û�� � 7i),� was introduced. Using

Newton-Raphson iterations, the Jacobian matrix here is

Ô "�� ���W� ö � ? R �R	� Ú � � ? æ1 ] 1 � ��� a � � ÷ = (6.12)
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6 Bagatelle III: The Simple Pendulum

The non-linear equations in (6.11) can be solved in MatlabTM (from The Math-

Works, www.mathworks.com) or Octave (www.octave.org, open source software

released under the GNU Public License) using the function fsolve which, in

turn, invokes the hybrd1 routine from minpack [207]. It is of little consequence

exactly how efficient the nonlinear solver is in this case. The point made here

is that even with solving non-linear equations down to machine precision, the

results obtained are worse than with the simple physics based stepping scheme

with a linear approximation.

6.2.2 Penalty formulation and implicit midpoint integration

The equations of motion (6.10) of the previous section still apply here, though it

is now advisable to add the damping term via R
� � ¯~�;�T� h� Ú � ��� since implicit mid-

point exactly preserves energy otherwise. The damping here serves as constraint

stabilization. After taking the damping term into consideration, the discrete

stepping equations become� ¬ 032ã��� ¬ V R � � � ¬ 032 V � ¬ �� � V�R ¯ �4 � ¬V4 Ú � ¬ � a¬ � � ¬ 032��A� ¬ ? R r � éEV RV� Ú� Í �Z? ç4 � ¬}4 Î � ¬
V RV� Ú� Í ��? ç4 � ¬ 032 4 Î � ¬ 032� (6.13)

and the corresponding change in the definition of the Jacobian

Ô + � ���W� ö � ? v Ú �v�2��Ú � � ? æ1 ] 1 � ��� a � � V	R ¯ 21 ] 1 � ��� a ÷ = (6.14)

One could be fancy here and use a symmetric discretization for the damping term,

as described in (3.86). In fact, a strict definition of the midpoint rule would lead

to that. However, an interesting aspect of the variational framework is seen

here in that it is entirely possible to mix and match different discretization for

each individual term appearing in the Lagrangian and the Rayleigh dissipation

functions.

6.2.3 Post facto projection

A very popular strategy in game physics engine due to Jakobsen [140] is to first

step the system ignoring all constraints and then apply a projection step using

a nonlinear Gauss-Seidel process. For the simple pendulum in two dimensions,

the projection step is merely to adjust the length of the vector � ¬ 032 to satisfy4 � ¬ 0â2 4 �ºç . This is a radial projection. Since this stepping strategy is naturally

dissipative in the radial direction, no additional damping term is needed.
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Using Verlet integration, the stepping process is then��Å����� ¬ ?�� ¬ N 2W? R Ú r �7 é� ¬ 0â2�� ç4 �� 4 ��Å��� �� � with ��� ç4 �� 4 = (6.15)

This process is illustrated in Figure 6.2. If the energy of the system is measured

using the symmetric formulationc ¬ � 7� R Ú 4 � ¬ ?B� ¬ N 2 4 Ú V 7 r �� é a � � ¬ V � ¬ N 2~�� 7 � 4 � ¬}4 Ú V 7 r �� é a � � ¬ V � ¬ N 2~�Q� (6.16)

the energy change in one step can be found using3 c ¬ 032�� c ¬ 032¸? c ¬� 7 � Ç 4 � ¬ 0â2 4 ? 4 � ¬}4 Ú È V 7 r �� é a Ø � � ¬ 0â2W?B� ¬ � V*� � ¬ ?B� ¬ N 2~�7Ú� 7 � � � ¬ 032W?�� ¬ � a � � ¬ 032 V � ¬ � a V	V R 7 r �� é a � � ¬ 032 V � ¬ �� 7 � � � ¬ 032 V � ¬ � a Ø � ¬ 032W?�� ¬ V	R r � é Ú� � �4?E�M�Í7� � � ¬ 0â2 V � ¬ � a �Å� � �i?	���7��� R � � ¬ 032¸?�� ¬ N 2,� a � ¬ 032� � �4?E�M�Í7��� � ��? � a¬ 032 � ¬ N 2ç Ú � �
(6.17)

and this last expression is almost always negative leading to quick dissipation. In

fact, with this method, the dissipation is higher with higher velocity. Only when

the pendulum is nearly upside down with low tangential velocity is the energy

increasing. Illustrations of this behavior is found in Section 6.3 below.

6.2.4 Variational integration

Because strict variational integration calls for the exact solution of �Q� � ¬ 0â2~� , no
damping is added here, leaving it up to the nonlinear equation solver to follow

the constraint closely. The equations of motion reduce to� ¬ 032ã����� ¬ ?�� ¬ N 2W? R Ú r � é a � ¬ V Ðk� ¬4 � ¬ 032 4 Ú ?�ç Ú ��
O� (6.18)

which leads to the quadratic formula to solve for ÐÐ D � ? � a � ¬ç Ú � 4 � V � � a � ¬ � Úç ¦ ? 4 � 4 Úç Ú � where�Å���T� ¬ ?B� ¬ N 2¸? R Ú r � é = (6.19)
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� ¬ N 2� ¬� ¬ 032
� ¬ ?B� ¬ N 2��? R Ú r � é

Figure 6.2: A post facto projection stepper illustrated. Note how the point �� is

almost always outside of the circle.

� ¬ ?B� ¬ N 2
� ¬ 032

Ð¨0

Ð N
� ¬ � ¬ N 2

? R Ú r � é
Figure 6.3: A vector diagram to illustrate the variational stepper applied to the

simple pendulum in two dimensions.
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In the case when � a � ¬ CA
 , which is true unless the time step R is enormous,

the difference Ð N '*Ð¨0	'E
 and the root Ð�0 makes � ¬ 032 closest to � ¬ and is the

correct choice. A vector diagram explaining this is shown in Fig 6.3.

Measuring the total energy of the system with the symmetric formulation as

in (6.16), the change in one step is now3 c ¬ 0â2�� c ¬ 032W? c ¬� 7 � Ç 4 � ¬ 032 4 Ú ? 4 � ¬Æ4 Ú È V 7 r �� é a Ø � � ¬ 032¸?�� ¬ � Vº� � ¬ ?�� ¬ N 2,� Ú� 7 � � � ¬ 032W?�� ¬ � a � � ¬ 032 V � ¬ � a V�V R 7 r �� é a � � ¬ 0â2 V � ¬ �� 7 � � � ¬ 032 V � ¬ � a Ø � ¬ 032W?�� ¬ V	R r � é Ú� � 7� � � ¬ 032 V � ¬ � a � ¬ � � 7� R Ç � a¬ � ¬ 032¸?�� a¬ � ¬ È �
(6.20)

and this expression has indeterminate sign. As shown in Section 6.3 below, the

energy actually oscillates with amplitude proportional to R Ú which is a reasonable

approximation.

Note that the equations of motion are integrated using a single square root

operation per time step.

6.2.5 Index 2 reduction and DASSL integration

The DASSL [54] package can provably handle index 1 DAEs only, but has been

observed to handle some higher index problems correctly. Given the index 3

formulation of the pendulum h�Å�A�7 h�H��Ðk�Î? r � é� Æ � ���W��
<� (6.21)

DASSL can process the system using the special options to increase the abso-

lute tolerance to �M
 N É , the relative tolerance to �M
 N 2
, and using configuration

parameters to the error on the algebraic equation from the convergence tests.

It is also possible to reformulate the system as an index 2 problem by adding

the velocity constraint ^	h�`��
 , a trick which is due to Gear and Leimkuhler [96]

and reads h�Å�A� V �#�h�Y��Ðk�Î? r � é� Æ � ���W��
� a �Y��
<� (6.22)

and the new Lagrange multiplier � corresponds to the last (redundant) equa-

tion � a ����
 . Even for this formulation, as observed by Petzold et al. [54] (see
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notes pp104–105 in the SIAM edition), it is necessary to remove algebraic equa-

tions from the error tests and to increase the absolute and relative tolerance to

approximately �M
 NQP and �
 N É , respectively.
Note that the workhorse of DASSL is a BDF method and that this reduces

to the implicit Euler method for first order. A fast decrease of energy is thus

expected with this strategy. It would be possible in this case to add the en-

ergy equation as an extra algebraic condition, as was done by Barrlund [41] for

a similar DAE solver strategy. This would indeed conserve energy but not the

symplecticity of the flow. In addition, for a general system, especially one which

contains some dissipative components, the nonlinear equation describing the ex-

act energy is not available making this strategy impractical except for simple

examples. Finally note that the number of nonlinear equations processed by this

method is alarmingly large. Indeed, each constraint in fact introduces at least

two equations using the Gear and Leimkuhler strategy and at least three using

the Barrlund strategy. By contrast, the spook stepper of Section 4.4 introduces

one and only one equation for each constraint component. When direct meth-

ods are used for solving the linear systems, the computational work increases asIK��� � V�F � É 7 É � where 7 is the number of constraint equations and F is the num-

ber of additional equations that must be processed. Each additional equation

introduces almost one order of magnitude of extra work.

6.2.6 Index reduction and Baumgarte stabilization

By far the most popular method for solving constrained systems with simple

methods is that of index reduction and constraint stabilization due to Baum-

garte [47]. Here, the constraint �Q� ���¸��
 is replaced by the mathematical equiva-

lent
|�Q� ��� V � h�Q� ��� V � �Q� ���W��
 , where �¸���ºCE
 are free parameters which have to

be chosen carefully. Choosing �o� �� R , ��� � �3����� Ú works well for a number of

cases. Nevertheless, it is not easy to find appropriate values which work well for

a general problem. In fact, the simplicity of this method is entirely defeated by

the impossibility of finding reliable parameter values in general, as demonstrated

in [24].

In any event, the equations of motion now read h�Å�A�7 h�H��Ðk�Î?�7 r � é� a h� V � 4 � 4 Ú V �?� a � V � � Ç 4 � 4 Ú ?�ç Ú È ��
<� (6.23)

and this is easily manipulated to yield a semi-implicit ODE formulationh�`�A�ö  ? ^Îa^ 
 ÷ ö h�Ð ÷ �Àö j "?D� ^ �K?á� �Q� ���3? h^ � ÷ � (6.24)

where  is the constant mass matrix of the basic modelLagrangian (3.12), the

vector of generalized forces j " is defined as before, j " � ? ´ ! � ´ � a , and the
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constraint functions ��¦ � ���W��
O��§â���;���O�>=>=M=~�87B� have Jacobian matrix ^ � ´ � � ´ � ,
or ^b¦®ª � ´ �;¦ � ´ � ª . Whenever ^ has full row-rank, this linear system is solvable

for h� which thus yields a standard ODE formulation for variables �{�:� .
This strategy for solving the DAEs of mechanical systems has prevailed in

the graphics literature and some of the engineering literature. As seen in the

examples, it is in fact suitable for simple systems and this is why it is included

here. However, this is deceptive since tuning the stabilization parameters for

larger problems can be very difficult or impossible [24].

6.2.7 Using the spook stepper

Using the spook stepper from Section 4.4, one finds stepping formulaö � Ú ?D� ¬� a¬ $v � 22�0 ¦ = ÷ ö � ¬ 0â2Ð ÷ � ö ��� ¬ ?�� ¬ N 2W? R Ú r � é? ¦2�0 ¦ = � ¬ ? ¦ =2�0 ¦ = 4 � ¬}4 Ú V 22�0 ¦ = � a¬ � ¬ N 2 ÷ � (6.25)

where )DCE
 is the compliance parameter, x � � � R is the dimensionless damping

rate. In addition, � ¬ � �Q� � ¬ � is the constraint value at step F and
� Ú is the � � �

identity matrix. The î��iî linear system of (6.25) is easily reduced to a single

linear equation for Ð , which is well behaved as long as � ¬ is away from the origin.

The regularization parameter can in fact be set to )���
 without any ill effect in

this case.

Of course, linearization does introduce an error but as shown below in the

results section, these are of the order of R Ú which is satisfactory.

6.3 Numerical experiments

Starting a unit length, unit mass pendulum with natural frequency Ô Ú � �

horizontally, at rest, perpetual oscillations are expected in which the \ coordinate

varies within the interval © ?��;�M� « and the d coordinate within the interval © ?��;� 
 « .
For this example, the total energy of the system is constant and exactly vanishes:cK�sf �Å� 
 . The period of oscillation is

� � ñ _ æ�65 � � 8 � � � «#� ñ ��� G �O= î;ñTñ{y � where� ��F � is the complete elliptic integral of the first kind (see [21] for instance).

The analytic solution is easily computed for this set of initial conditions using

widely available numerical implementations of the Jacobi elliptic functions and

is compared with numerical results on each graph.

Given the period of a little over 2 seconds, and the maximum velocity of� �M
 Gºî =��MST� î , a fixed time step of ��;ST
 G 
O=ë
<�S�z should be small enough for all

numerical methods. This gives more than 100 sample points per period which

should be sufficient.

For the rest of this chapter, the numerical results obtained from a variety

of method are explored. For each method, a picture with either three or four

subplots was produced and, whenever possible, the reference solution, labeled as

“exact” in the plot keys, was drawn using a dotted line. When the trajectories

computed by a given numerical method coincide with the exact method, only one
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6 Bagatelle III: The Simple Pendulum

solid line is visible because the two lines with different style are drawn directly

on top of each other.

The scales on the subplots are all linear though in a few cases, a different scale

is used on the left hand side vertical axis as opposed to the right hand side one.

This is indicated with a “(left)” and “(right)” qualifier in the plot key, in the case

where the Lagrange multiplier Ð is on one scale and the constraint violation �Q� �;�
on another in Figures 6.10 and 6.11.

The minimum energy for this system is when the bob is at rest at the bottom

position and this yields c � ?��
 . Negative energy is perfectly valid in the

context of classical mechanics.

Consider first what can happen using a standard ODE solver (LSODE in this

case [129], as this is available in Octave) directly on the reduced formulation.

Fig 6.4 shows that the trajectory is in very good agreement with the exact

method.

The energy subplot tells a worrisome story though as the line creeps up re-

lentlessly. By contrast, at least for this sort of time step, integrating the reduced

equation with the simple leapfrog scheme yields cyclic and bounded energy vari-

ations as seen in Fig 6.5.

Now, moving on to a simple projection scheme, as illustrated in Fig 6.6, there

is a rapid decay of the energy until the pendulum is at rest, pointing down. The

rate of energy loss increases with the velocity but is otherwise unpredictable.

Using the shake [242] algorithm though, the energy fluctuations are significant

but the system keeps oscillating forever as seen in Figure 6.7.

Methods designed to handle DAEs such as DASSL [54] essentially fail in index

3 formulation as seen in Figure 6.8 but work reasonably well in index 2 reduction

if care is taken to chose the parameters correctly, as seen in Figure 6.9.

spook from Section 4.4) produces the data shown in Figure 6.10. The en-

ergy oscillates as was seen before in the case of the simple harmonic oscillator in

chapter 2 but these oscillations stay bounded. The exact trajectory is indistin-

guishable from the computed one as well. Meanwhile, the constraint violation

stays within
4 �Q� ��� 4 ' ü � �M
 N É . In fact, this is true even when the regularization

parameter is driven as ) ¤ 
 , and even when solving the non-linear equations

defining this stepper (4.27). There is in fact always a residual error here of the

order of I6��R Ú � .
Next, results from the Runge-Kutta 4a method using the Baumgarte stabiliza-

tion scheme [47] are presented in Figure 6.11. The energy curve looks good at

first with a drift of less than one part in a thousand over ñ 
�
 steps, and so goes

the constraint violation curve with errors of
4 �Q� �;� 4 ' îÙ� �
 N�7 . Trajectories are

also indistinguishable from the exact solution. However, the energy is drifting up

relentlessly at a linear rate and the method eventually breaks down after a large

enough number of steps. In addition, four times as much work is performed at

each step in comparison with spook illustrated in Figure 6.10.

Comes the turn of integrating the penalty formulation of Section 6.2.2 using

the implicit midpoint rule and results are presented in Figure 6.12. The spring

constant here is F ���M
 ¦ and the damping ration is ÏÈ��� , which should produce
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critically damped oscillations.

The energy plot here is not bad but the damping, which should act only

along the radial direction, is also removing kinetic energy from the system. It

is known that the implicit midpoint rule should exactly preserve energy for this

case [112]. Not too surprisingly, the trajectory is in reasonably good agreement

with the exact solution. There is still a noticeable drift in phase shift over

time even though a fairly large spring constant is used. As the spring constant

increases even more, it is expected that the nonlinear equations to solve become

progressively more ill-conditioned and thus increasingly difficult to solve. Again,

for the effort and the cost, the results from spook in Figure 6.10 are better.

Last but not least, and apologizing for labeling such a poor method with

such an illustrious name, the results of applying the implicit Euler method on

the penalty formulation of Section 6.2.1 are shown in Figure 6.13. A moderate

spring constant of F �£�M
 ¦ and damping ratio of ÏÈ��� were used here again. As

is customary with the implicit Euler method, the energy dissipates away much

faster than expected from the value of the damping constant. What is clear from

the plot of the d coordinate though is that the observed frequency of oscillations,

which is essentially determined by the value of the gravitational acceleration r � ,
is wrong by a noticeable amount. Increasing the spring constant further, this

rate of falling would decrease even more. Curiously, the radial force is damping

motion that is orthogonal to it.

This curious phenomena gives some indication why cloth simulated using net-

works of point masses connected with springs and dampers, simulated using a

linearized version of Euler’s implicit first order method [39], appears to fall too

slowly.

6.4 End notes

The numerical behavior of the simplest DAE for a mechanical system was investi-

gated using several alternative methods. It is clear from the data that integration

methods based on the variational principle presented in Chapter 3 are best in

terms of qualitative behavior, and even performance as measured by the number

of linear system solve operations done per step. The one exception to this be-

ing the coordinate reduction strategy since it only involves one scalar equation.

In more general cases, coordinate reduction involves smaller linear systems but

these are more dense and sometimes ill-conditioned [28]. In addition, comput-

ing the coordinate reduction often involves additional QR and SVD operations

and thus, are not clearly faster a priori. Among the variational methods, the

spook scheme of Chapter 4 stands out for requiring only the solution of linear

systems but still maintaining good agreement on the trajectories and keeping

good bounds on energy.
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Figure 6.4: Integrating the reduced equations of motion of the planar simple

pendulum with the reference integrator LSODE [129] available in

Octave.
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Figure 6.5: Integrating the reduced equations of motion of the planar simple

pendulum using the Verlet method.
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Figure 6.6: The planar simple pendulum integrated with the Verlet method fol-

lowed by a pure projection back to the constraint surface.
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Figure 6.7: The planar simple pendulum integrated using the shake algorithm.
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Figure 6.8: The planar simple pendulum integrated with DASSL with index 3

formulation.
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Figure 6.9: The planar simple pendulum integrated with DASSL after performing

an index reduction and adjusting parameters.
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Figure 6.10: The planar simple pendulum integrated with spook.
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Figure 6.11: The planar simple pendulum integrated using index 1 reduction,

Baumgarte stabilization, and Runge-Kutta method RK4a.
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Figure 6.12: The planar simple pendulum integrated with implicit midpoint

method, with a small damping coefficient of ¯���� .
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Figure 6.13: The planar simple pendulum integrated using the implicit first or-

der Euler method to the regularized problem for moderate spring

constant.
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7 Bagatelle IV:

The Slider Crank

The planar slider-crank mechanism is perhaps the simplest constrained mechan-

ical system to exhibit constraint Jacobian degeneracy at isolated points in the

configuration space. This is analyzed here to demonstrate how the spookmethod

of Section 4.4 resolves such problems gracefully in comparison with standard

techniques. The slider-crank mechanism is described in Section 7.1 where the

different parts and constraints are defined in details. The Lagrangian for this

system is constructed explicitly in Section 7.2 and the singularities are precisely

identified in Section 7.3. The results of numerical experiments are presented in

Section 7.4 and observations are collected in Section 7.5.

7.1 Introduction

A slider-crank is a common mechanical device which converts rotational motion,

as produced by the most commonly available type of motors, to linear motion.

This is done by attaching one body to the shaft of the rotational driver, connect-

ing this body with a hinge joint to a second body at one end, and attaching the

other end of this second body to a linear guide in a way that allows translational

motion.

The slider crank in two dimensions is also the simplest example of a system with

a constraint singularity. When the two arms have identical lengths, the Jacobian

matrix of the slider crank has two isolated singularities where it becomes rank

deficient. Such singularities are integrable if the velocity does not vanish but this

is cold comfort since it is easy to construct an example for which the equilibrium

configuration comes to rest at the singularity, as constructed below.
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7 Bagatelle IV: The Slider Crank

Free prismatic
joint to fixed base

ü ½ Ú ¾ � ? ü ½ 2 ¾
Free or driven
hinge

Free hinge

ü ½ 2 ¾
Fixed base

Figure 7.1: A schematic diagram of a slider crank mechanism.

The basic motion of a two-dimensional rigid body is shown in Section 12.4 to

be described by the coordinates �Å� ×ØÙ \�2dTÚü Ü Ýß � (7.1)

where \y� � \�2��dTÚ�D- / Ú
and

ü - /
is a scalar angle. The rigid rotation matrix

defined by
ü
is denoted �È� ü � and has the following definition�È� ü �w� ö °>±;8 � ü � ?m8 � � � ü �8 � � � ü � °M±;8 � ü � ÷ = (7.2)

The time derivative is found to beh��� ü �W� hü Ô 2 ��� ü �~� where Ô 2Z� ö 
 ?��� 
 ÷ = (7.3)

The inertia matrix in this case is a constant diagonal î��Yî matrix of the form � ×ØÙ 7 
 

 7 

 
 8 "
Ü Ýß (7.4)

where 8 " is a scalar computed using8 " �rq'9 � Ú \�Ò � \Q� 4 \ 4 Ú � (7.5)

and
^ - / Ú

is the bounded region covered by the rigid body in rest configuration,

with the center of mass at the origin, in some reference orientation. The scalar
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7.1 Introduction

function Ò � \k�   / ÚÅ¢¤ / 0 is the mass density at \ and is non-negative, and
4 \ 4 Ú

is the standard Euclidean norm in two dimensions.

The slider crank mechanism requires mathematical definitions for the hinge

(revolute joint) and the prismatic (slider joint) holonomic constraint, in addition

to a constant rotational velocity driver, a nonholonomic constraint. These are

defined below.

Note before starting that even if the lengths of the two arms are different,

simple trigonometry indicates thatç�2~8 � � � ü ½ 2 ¾ �w��?1çgÚ>8 � � � ü ½ Ú ¾ �~= (7.6)

This will be of use later when locating the singularities.

7.1.1 Two-dimensional hinge joint

To define the hinge or revolute joint in two dimensions, start with an attachment

point \ ½ " ¾ that is fixed in the inertial frame. Then, consider the vector � ½ 2 ¾ that
is fixed in the frame of a rigid body so that � ½ 2 ¾ �gf �W�º\ ½ "�¾ at all times. The only

motion allowed is then a rotation about \ ½ "�¾ and therefore, the constraint� » " � �{À \ ½ " ¾ �w�º\ �gf � V��È� ü �gf ���Ì� ½ 2 ¾ � 
T�,� (7.7)

and from this, the Jacobian matrix is extracted by computing h� » " � ^ » " h�^ » " �mò � Ú Ô 2 ��� ü �%� ½ 2 ¾ ó � (7.8)

where
�
is the � � � identity matrix.

The construction of the two body hinge constraint is similar. Consider now�1½ 2 ¾ ���D½ Ú ¾ , which are fixed vectors in the frame of body one and two, respectively.

By forcing the location of the point on body one defined by the position of � ½ 2 ¾
to coincide with that of �Î½ Ú ¾ , then, the relative motion of these two bodies is a

rotation about the location of the center of rotation which is given by both � ½ 2 ¾
and �D½ Ú ¾ , namely,� » � �º\ ½ 2 ¾ V	� ½ 2 ¾ � ½ 2 ¾ � 
��3?�\ ½ Ú ¾ ? � ½ Ú ¾ � ½ Ú ¾ � 
T�w��
<= (7.9)

The notation here uses � ½ ¦¿¾ � ��� ü ½ ¦¿¾ , and � ½ ¦¿¾ � 
�� denotes the fixed position of

the attachment point in the frame of body § .
The Jacobian for this is found to be^ » � � ò � Ú Ô 2 � ½ 2 ¾ � ½ 2 ¾ � 
�� ? � Ú ? Ô 2 � ½ Ú ¾ � ½ Ú ¾ � 
�� ó = (7.10)

7.1.2 A constant angular velocity constraint

Since for a rigid body, the angular velocity hü is the same for all points attached

to it, an angular velocity driver is defined simply by the constraint�;:3� ���W� hü ?iÔ �sf �w��
<� (7.11)
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7 Bagatelle IV: The Slider Crank

where Ô �gf � is the driving velocity at the attachment point. The Jacobian for this

constraint is the constant projection matrix^�: � ò 
Û
 � ó = (7.12)

This can also be made into a two body constraint if needed.

7.1.3 The two-dimensional prismatic constraint

A prismatic constraint forces a point fixed on a rigid body to move along a given

axis. For the slider crank mechanism, the axis is defined in the inertial frame

only and so a representation for the line is chosen as� a \ V r ��
O� (7.13)

where \ - / Ú
is any point on the line, � - / Ú

is a unit vector normal to

the direction of the line, and the scalar r is the intercept at the origin. Given

a reference point �Î½ 2 ¾ fixed in the rigid body coordinate, the definition of the

prismatic constraint is then�
<¸� ���W�A� a \ V � a ��� ü �%� ½ 2 ¾ V r ��
<� (7.14)

where \ �gf � is the position of the center of mass. The Jacobian is easily computed

Ô < � ò � a � a Ô 2 ��� ü �%� ½ 2 ¾ ó = (7.15)

7.2 The slider-crank Lagrangian

Agglomerating the variables as follows,

�Å� ×ØØØÙ \ ½ 2 ¾ü ½ 2 ¾\ ½ Ú ¾ü ½ Ú ¾
Ü ÝÝÝß �  �Àö  ½ 2 ¾ 

  ½ Ú ¾ ÷ �  ½ ¦¿¾ � ×ØÙ 7J½ ¦¿¾ 
 

 7 ½ ¦¿¾ 

 
 8 " ½ ¦¿¾ Ü Ýß �

(7.16)

leads to the free Lagrangian| � �{� h�;�W� �� h� a  h�D? � � a  é (7.17)

where � is magnitude of the gravitational acceleration and é is the constant

vector in the direction opposite to gravitational accelerationé �mò 
 � 
Û
 � 
 ó a = (7.18)

The equations of motion for both the continuous and discrete cases are con-

structed from this using the techniques of Chapter 3.
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7.3 Singularities

7.3 Singularities

Choosing a configuration such that both arms have lengths ç and the attachment

points for the hinges and prismatic joints are � ½ ¦¿¾�= � g � ç��;���É<â�8§ã� �;� � , for the

first and second attachments, respectively, with <	� � �;� 
T� a is a unit vector in

the \ direction, the follow Jacobian matrix ^ is found

^ � ×ØÙ � ÚÛ? � ç������ Ô 2 � ½ 2 ¾ < 
 
� Ú � ç��;�T� Ô 2 � ½ 2 ¾ < ? � Ú � ç������ Ô 2 � ½ Ú ¾ <
 
 < a � ç��;�T� Ô 2�� a3� ½ Ú ¾ <â� Ü Ýß � (7.19)

which evaluates to

^ � ×ØØØØØÙ
� 
 � ç��;�T�}8 � � � ü ½ 2 ¾ � 
 
 

 � ? � ç������O°M±;8 � ü ½ 2 ¾ � 
 
 
� 
 ? � ç������}8 � � � ü ½ 2 ¾ � ?�� 
 ? � ç��;�T�}8 � � � ü ½ Ú ¾ �
 � � ç������O°>±�8 � ü ½ 2 ¾ � 
 ?�� � ç��;�T�O°>±;8 � ü ½ Ú ¾ �
Û
 
 
 � � ç��;�T�O°>±;8 � ü ½ Ú ¾ �

Ü ÝÝÝÝÝß = (7.20)

This has a row rank deficiency for
ü ½ 2 ¾ � � «#��� at which point

^K� � «3�;���â� ×ØØØØØÙ
� 
 � � ç��;�T� 
 
 

 � 
 
 
 
� 
 g � ç��;�T� ?�� 
 � � ç��;�T�
 � 
 
 ?�� 

Û
 
 
 � 


Ü ÝÝÝÝÝß = (7.21)

Adding row 5 to row 4 and then subtract row 2 from the new row 4 creates a

zero row.

7.4 Numerical experiments

Since the singularity of the slider crank mechanism is isolated, it is rather difficult

to hit it precisely during a simulation unless starting precisely on it. Alternately,

a viscous drag force of the form ?�� h�{���*C 
 can be added and the mechanism

can be left to stabilize in the degenerate configuration.

Simulations where performed using the plain variational formulation, equiva-

lent to rattle, the spook stepper of Chapter 4, as well as Baumgarte stabilized

Runge-Kutta methods of order two and four as described in Section 6.2.6.

The first set of runs were performed without any form of friction. This is

illustrated in Figure 7.2 which contains two panels. The top panel shows the time

evolution of the \ coordinate of the first body and the bottom panel indicates

the logarithm of the condition number of the matrix used during the integration

process, either ^  N 2 ^Îa or a perturbation thereof.

For these runs, the slider crank was started at an angle
ü �à«#� ñ at rest, and

left to drop freely under the action of gravity. The slider crank then oscillates
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7 Bagatelle IV: The Slider Crank

like the pendulum. The time step is R �£��;ST
 as usual. Notice that the condition

number shoots up each time the system comes near the singularity, though since

it is crossed at non-zero velocity, there is no real problem. The maximum value

of the condition number here is �
 P which is modest. The trajectories produced

by the different methods do not differ significantly over a period. For spook,

the regularization was chosen to be )¡� �
 NQP and the constraint stabilization

parameter was � � R � � . For the Baumgarte methods, the parameters were

chosen as �����L� R and ��� � �3����� Ú , as in Section 6.2.6.

For the second set of runs illustrated in Figure 7.3, some small amount of

viscous damping was added so the slider crank settles precisely on the singularity

at
ü � ?'«#��� . No driver was added here and the system was started at rest atü ��«#� ñ , adding a viscous drag force of já� ?D
<= îãh� . After oscillating for a while,

the slider crank settles near
ü � ?'«#��� and the condition number of the stepping

matrices increase toward �
 N Ú " , at which point the linear and nonlinear solvers in

Octave issue warning that SVD is being used to find a minimum norm solution.

Of course, the matrix processed by spook has maximum condition number of���)¸�£�M
;P and this poses no problem. The trajectories are all close to each other.

7.5 End notes

Point singularities where Jacobian matrices become rank deficient are not the

worst possible numerical problem but spook definitely removes these without

any additional cost. By contrast, an exact variational method, rattle in the

present case, can have severe difficulty at or near a singularity. Other methods

might simply just fail where the solutions of the stepping equations become ill-

behaved near or at the singularities.
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Figure 7.2: Integration of the planar slider crank without viscous friction using

four different methods. The initial conditions are
ü ��«3� ñ and h�Å��
 .

See text for details on the methods used.
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Figure 7.3: Integration of the planar slider crank with viscous friction of magni-

tude ����
O= î , using four different methods. The initial conditions areü ��«#� ñ and h�Å��
 . See text for details on the methods.
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8 Bagatelle V:

High Oscillations

The seminal constraint realization paper of Rubin and Ungar [241] contains a

simple illustrative example in two dimensions which captures all the essential

aspects of the limit behavior of strong forces. The same example is investigated

here to give flesh to the theory presented in the previous chapters. A simple

highly oscillatory planar mechanical system is described in Section 8.1 along

with its known analytic solution. Section 8.2 illustrates how the spook stepper

of Section 4.4 removes the highly oscillatory parts with numerical experiments.

General observations are collected in Section 8.3.

8.1 High oscillation example

The simplest possible case is a two-dimensional particle constrained to move on

a straight line subject to a constant force normal to that line as illustrated in

Figure 8.1.

Consider a point particle of unit mass moving in two dimensions with coor-

dinates � �gf �   / ¢¤ / Ú � ��� � � ½ "�¾ �gf �~� � ½ 2 ¾ �sf �8� a . Subject this particle to a linear

constraint, i.e., restrict it to move on the line �Q� �����:� ½ "�¾ ?�� ½ 2 ¾ �:
 . This

constraint has constant Jacobian ^ � ´ � � ´ �(� © �;�D?�� « . Add the constant forcejJ� © ?��;�y� «Ãa , corresponding to the potential
! � ����� � ½ "�¾ ?º� ½ 2 ¾ , which acts

trying to veer it off the constraint surface.

h�
�;½ 2 ¾

� ½ "�¾^ �X� ?��Û� �j�� Ï ?��� Ð
�Q� ���¸��� ½ "�¾ ?B� ½ 2 ¾ ��
Constraint surface:

Figure 8.1: Schematics of a two-dimensional linearly constrained system.

139



8 Bagatelle V: High Oscillations

This is now a system subject to a linear constraint equation and a constant

force that is orthogonal to the constraint surface. Without any other applied

force, the particle should move with constant velocity along the line � ½ " ¾ �gf ��?� ½ 2 ¾ �sf �w�u
 .
The question now is what happens to the trajectory if the constraint is replaced

by a strong force, and, in particular, how does the particle respond to the constant

unit force which acts against the constraint force.

First consider the exactly constrained problem. The analytic formulation of

the equations of motion starts from the constant mass model Lagrangian of (3.12)

using the mass matrix  � � Ú , i.e., the � � � identity matrix, and the constrained

equations of motion of (3.92) to yieldö |��½ " ¾|� ½ 2 ¾ ÷ ?�Ð ö �?�� ÷ � ö ?��� ÷� ½ "�¾ ?B� ½ 2 ¾ ��
<= (8.1)

This can be solved by inspection by setting Ð@� � . But for completeness,

differentiating the constraint equation twice with respect to time yields ^ |�`��
 ,
and this leads to the linear system of equations×ØÙ � 
 �
 � ?��� ?�� 
 ÜÞÝß ×ØÙ |� ½ " ¾|�%½ 2 ¾Ð ÜÞÝß � ×ØÙ ?���
 ÜÞÝß � (8.2)

and these can easily be solved to yield the solution Ð�� � , producing the con-

straint force ^ba Ð*� ?Îj , exactly balancing the applied force. This leaves the

particle free to move along the line � ½ "�¾ �gf �(�5� ½ 2 ¾ �sf � according to the reduced

equations of motion |� ½ " ¾ � |� ½ 2 ¾ ��
O� (8.3)

the solutions of which have constant velocity �o� h� ½ "�¾ � ? h� ½ 2 ¾ , as per initial

conditions.

To realize the constraint as the limit of a strong force, introduce the potential

function
! $ � 2Ú $ � Ú � ��� , and impose initial conditions � � 
��D�£
<� h�6� © �;�M� « a . This

leads to the equations of motion|� ½ "�¾ V Í � V �) � � ½ "�¾ ?B� ½ 2 ¾ � Î ��
|� ½ 2 ¾ ? Í � V �) � � ½ "�¾ ?B� ½ 2 ¾ � Î ��
<= (8.4)

Introducing the variables \i��� ½ "�¾ V � ½ 2 ¾ and dy��) V � ½ "�¾ ?o� ½ 2 ¾ , the ODEs of

motion are transformed to the decoupled equations|\¡��
O�|d V Ú $ dH��
O� (8.5)
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8.2 Damping the high frequency oscillations

which have solution \	�5� f ��d��.�+8 � � � Ô $�f � V �b°>±;8 � Ô $�f � , where Ô Ú$ � �T��) , and�W��� and � are determined from the initial conditions to be ���@�O���E�J
<�É�4�J) .
Therefore, the complete solution of (8.4) reads� ½ "�¾$ �gf �W� f ? )� � ��?�°M±;8 Í _ Ú $ f Î � �� ½ 2 ¾$ �gf �W� f�V )� � ��?�°M±;8 Í _ Ú $ f Î � = (8.6)

The value of �Q� ��� and Ð���?D) N 2 �Q� ��� are thus computed to be��$>�sf �w��� ½ "�¾ ?B� ½ 2 ¾ � ?D) � ��?�°>±�8 Í _ Ú $ f Î � �Ð $>�sf �W� ? �) �Q�gf �W����?�°>±�8 Í _ Ú $ f Î = (8.7)

It is evident from (8.7) that . ��� $ 0 "e��$ �A
 . However, Ð $ does not have a limit

and it oscillates more and more rapidly in the interval © 
<� � « as ) ¤ 
 .
A standard integration method is bound to fail on this problem unless these

oscillations are damped somehow. The problem is illustrated in Figure 8.2 which

portraits the analytic solution of the constraint force which quickly becomes

intractable. The spook stepper of Section 4.2, without the stabilization and

damping terms introduced in Section 4.4 fares slightly better as shown in Fig-

ure 8.3. The averaging process used to construct this numerical method does

work in decreasing the amplitude of the oscillations but not their frequency,

which is problematic. The next section introduces damping and illustrates how

this helps the numerical method as well.

8.2 Damping the high frequency oscillations

Adding a Rayleigh function of the form R
��S N 2 h� Ú � ��� produces the drag force?�SkN 2 ^`^ a h� and after a few computations, using the same change of variables as

previously, the new equations of motion are|\¡��
|d V �S hd V � ) ��
O= (8.8)

To analyze these new equations of motion, set Ô $ � u �{�;) and introduce the

damping ratio Ï���S N 2 Ô N 2$ . Changing the time variable to � � Ô $�f , and intro-

ducing < �#� �W�Ad � Ô $Íf � , the differential equation for d transforms to:|< V ��Ï h< V <4��
O� (8.9)

where the h<4� � <%� � � is now the natural time derivative. The solutions of (8.9)

is easily verified to be< �#� �W� ��,>& � ?DÏ � � Í < � 
��O°M±;8 �s¥�� � V h< � 
�� V Ï�< � 
��¥ 8 � � �s¥�� � Î � (8.10)
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8 Bagatelle V: High Oscillations
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Figure 8.2: High oscillations in the analytic solution of a constraint realization

problem in two dimensions.
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Figure 8.3: High oscillations in a regularized but unstabilized stepping scheme.
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8.2 Damping the high frequency oscillations

where � �AÔ $�f is the natural time, and where ¥ � u ��?�Ï Ú is allowed to take

imaginary values. For the case ¥ � 
 , the second term in (8.10) reduces toh< � 
�� V < � 
T� � .
Note that the variable \ �gf � is unaffected by the damping term. The solution

of the problem now involves the following variablesd �sf �W�A< �#� �,��k� � �gf ���¸�Ad �gf �â?B)��A< �#� �3?B)�h�Q� � �sf �8�¸� hd �sf �w�*Ô $�h< ��� �~�Ð $ � ? � �L�;),� �k�sf �#? � �L�¥Sk� h�k�gf �����? Ô Ú$� Ø < ��� �â?B��Ï h< �#� �ÉÚ¸= (8.11)

By taking ) ¤ 
 limits of various terms in (8.11) for fixed damping ratio Ï
(and fixed ¥ � u ��?�Ï Ú ), the conclusion is that for any Ï�C5
 , the functions< $~�#� �,�:d $M�gf �~� ��$>�sf �,� Ð $M�gf � all converge uniformly as ) ¤ 
 . All that is needed is the

known fact that the following expression. ���: 032 Ô p ��,'& � ?�Ô f �3� ¢¤ 
O� (8.12)

converges uniformly, over any finite interval © 
O� � « , for any power � C*
 , and for

any scalar � with positive real part.

To compare this with the stabilization strategy of Section 4.4, note the follow-

ing identity �S ��Ï�Ô $ ��Ï � � ) � (8.13)

and from this, the parameter � of Section 4.4 is computed to be� � )S ��Ï � ��)� (8.14)

so that a fixed value of the numerical damping rate � � R corresponds to an in-

creasing damping ratio Ïo� �â� � ) . Likewise, if the damping ratio Ï is fixed,

the numerical damping rate � � R decreases as the square root of the compliance

parameter ) .
Simulations were made using the spook stepper for different values of compli-

ance and damping ratio, and compared with the exact result. Several cases are

now illustrated in which the initial conditions are either consistent or not.

For moderate frequency, using )(� �
 N Ú and damping ratios of either Ïy� �
or Ï�� 
<=Ã� , the exact trajectories are shown in Figure 8.4 and the result of

simulations with the spook stepper in Figure 8.5. These graphs offer little

surprise, since oscillations are suppressed as one would expect from looking at

the equations. Numerically, these equations are not very stiff either.

However, when the compliance is reduced to )K�m�M
 NQP , the picture becomes

more interesting. Of course, the analytic solution immediately reaches equilib-

rium in Figure 8.6 but so does the numerical method in Figure 8.7, provided the
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8 Bagatelle V: High Oscillations
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Figure 8.4: The effect of damping with regularization )i� �
 N Ú for the exact

solution.

damping ration is set to Ï��£� . Note also that in the numerical implementation,

the case ÏÈ��� is not critically damped but slightly under damped. Nevertheless,

oscillations quickly die out.

Fixing the compliance to )¡�À�
 N ¦ , Figures 8.8, 8.9 and 8.10 illustrate the

behavior of the exact solution for the cases where the initial position, initial

velocity, or both initial position and velocity violate the constraint. As expected

from the analytic formulation, the transients quickly die out, especially for critical

damping Ï��£� , and the unperturbed solution is recovered.

For the same value )6� �
 N ¦ , Figures 8.11, 8.12, and 8.13 illustrate the nu-

merical solution computed by the spook stepper and these reflect precisely the

behavior of the exact solution. The value of ) could easily be decreased much

further in this case, as demonstrated in the analysis of Section 4.6, without any

concern for stability. The graphs would not be so instructive though as all the

stabilization dynamics would occur in one or two steps when using ÏÈ��� .
This is an example of a bona fide stiff system of differential equations as it has

both high oscillations and high damping. Discretization of such systems requires

great care to avoid instabilities and to separate the fast dissipative modes from

the rest of the dynamics.

But the interesting conclusion is that suitable damping will extract the correct

slow motion from the highly oscillatory parts and remove sensitivity to the initial

conditions.

The spook stepper of Section 4.4 is successful at extracting the correct slow

motion without much tuning.
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Figure 8.5: The effect of damping with regularization )����M
 N Ú for the numerical

solution of the spook stepper.
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Figure 8.6: The effect of damping with regularization )i� �
 NQP for the exact

solution.
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Figure 8.7: The effect of damping with regularization )����M
 NQP for the numerical

solution of the spook stepper.
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Figure 8.8: The effect of damping with regularization )�� �M
 N ¦ on the exact

solution when starting from an inconsistent initial condition.
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8.2 Damping the high frequency oscillations
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Figure 8.9: The effect of damping with regularization )�� �M
 N ¦ on the exact

solution in the case of inconsistent initial velocity.
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Figure 8.10: The effect of damping with regularization )¡�À�M
 N ¦ on the exact

solution when both the initial position and velocity are inconsistent.
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Figure 8.11: The effect of damping with regularization )H� �
 N ¦ on the varia-

tional solution when the initial position is inconsistent.
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Figure 8.12: The effect of damping with regularization )H� �
 N ¦ on the varia-

tional solution when the initial velocity is inconsistent.
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Figure 8.13: The effect of damping with regularization )H� �M
 N ¦ on the varia-

tional solution when both the initial position and velocity are in-

consistent.

8.3 End notes

The theory of constraint realization of Rubin and Ungar [241] predicts that

penalty forces suffer from high oscillations in the absence of damping. As this

was considered in the development of the constraint stabilization scheme of Sec-

tion 4.4, simple numerical experiments show that indeed, the spook stepper does

suppress these oscillations in a stable way. This shows that, at least for linear

cases, the spook stepper can handle constraint inconsistencies and recover from

large constraint violations.
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9 Bagatelle VI:

Smooth Impacts

Impacts are physical phenomena best idealized as instantaneous events resulting

in discontinuous velocity changes, at least in the context of interactive simula-

tions. A simple damped harmonic oscillator model is introduced to illustrate

how it is possible to summarize the result of fast dynamics into macroscopic

constitutive laws. Section 9.1 presents the model and the analytic solution. This

is followed by analysis for the analytic behavior for the oscillatory regime in

Section 9.2, the critically damped regime in Section 9.3, and the overdamped

regime in Section 9.4. The limitations of the model and the need for the nons-

mooth models of Chapter 10 are discussed in Section 9.5.

9.1 Introduction

The surface of solids is a physical system which is at equilibrium under normal

circumstances. But when the surfaces of two solids come into near proximity,

the disturbances produce forces which act to prevent any penetration. For many

solids such as steel, wood, or glass, these forces become so strong so quickly that

hardly any visible deformation is produced. When two billiard balls collide for

instance, the time taken by the surface forces to change the velocities is of the

order of microseconds and therefore, essentially instantaneous. The deformations

are so small that a linear analysis of surface forces is sufficient.

When two solids impact at a high incident velocity, some of the energy of

the impacting momentum is transferred to vibrational modes and from there, to

sound and heat. Though the incident velocities are considered large, the analysis

still starts with a linear dissipation process as this is sufficient for the present

purpose.

Consider a point particle with mass 7 and position �   / ¢¤ /
in one spa-

tial dimension. Subject this particle to a one-sided spring damper system with

stiffness F and damping constant ¯ so the force generated isj�� ´· ¸ ? F �D?B¯ h� when �È'E

 otherwise.
(9.1)

Consider the initial conditions � � 
��Y�m
O� h� � 
T�6�:?�� " �:� " C 
 , i.e., the particle

starts at the origin but moving towards the �E'm
 forbidden region. In this

region, the spring-damper force is active and the trajectory for this system is

now computed from f ��
 up to the time when the force becomes inactive again,

151



9 Bagatelle VI: Smooth Impacts

i.e., when � �gf �È� 
<� h� �gf �6C 
 . This corresponds to one full cycle of the spring-

damper system.

Using Newton’s second law of motion (3.2), the trajectory must satisfy the

equation 7 |� V ¯ h� V�F �Å��
<= (9.2)

To simplify the notation of the solution, write����¯~�L7B� Ô Ú � F �L7B� � �*Ô f � ÏÈ� ���Ô � ¯� � F �7 = (9.3)

After changing variables to \ ��� �W�º\ � Ô f �w��� �sf � , the canonical equation is recov-

ered |\ V ��Ï h\ V \��u
O� (9.4)

where the dots denote derivatives with respect to the natural time variable, � ,
and where Ï is called the damping ratio. Solutions for this are\ ��� �W� r �  �¥ö V ¯1�  � × � (9.5)

where Ð D are the roots of the indicial equationÐ Ú V �TÏ�Ð V �1�u
Ð D ��?DÏ � u Ï Ú ?	�D� ?DÏ � ¥¥ � u Ï Ú ?E�;= (9.6)

For the initial conditions under considerations, this leads to\ �#� �w� � "¥ � N�?� 8 � � Ê �s¥�� �e= (9.7)

In turn, this produces an oscillatory regime for 
baEÏ6'J� , a critically damped

regime for Ï��£� , and an overdamped regime for Ï6CJ� .
9.2 Oscillatory regime

When the damping ratio is in the range 
Ra�Ïi' � , the solution satisfying the

initial conditions \ � 
T�â�u
O� h\ � 
T�w� ?�� " �Ô is\ �#� �w��? � " u ��?BÏ ÚÔ � N�?: 8 � � � u ��?BÏ Ú � �,= (9.8)

The second zero occurs when
u ��?BÏ Ú � 0 ��« at which point the velocity is� 0 � h� � Ô N 2 � 0 �W�EÔ h\ �#� 0 �W�A� " � NA@�BC " × B � = (9.9)

Setting the restitution coefficient �	' � as the exponential in this expression,

labeling �kN���?�� " , the Newton impact restitution law is recovered� 0 ��?���� N �õ�(� �1,'& � ? «%Ïu ��?�Ï Ú � = (9.10)
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9.3 Critical damping

Now, the damping ratio is defined asÏ�� ¯� � F �7 � (9.11)

so that for fixed 7 , it is possible to let ¯ ¤ �
, F ¤ �

with constant Ï without

changing any of the behavior. Therefore, provided the response time is small

compared to other time scales in the system—and it is—the contact physics

which changes the incident velocity � N to � 0 can be considered as instantaneous.

The maximum penetration is proportional to � " �Ô and is of course small for a

high frequency oscillator.

It is also clear that using a simple spring-damper model for contacts and

impacts is a bad idea because of the mass dependence of the damping ratio

and the very high frequencies involved. If the frequencies are allowed to be

moderate, then, the penetration will be large. A mass-independent solution is

better in general and this is constructed in Chapter 10.

9.3 Critical damping

When the damping ratio reaches unity, Ï�� � , the solution is an exponential

decay \ �#� �W� ? � "Ô � � N~ a*
O= (9.12)

Therefore, this contact never becomes free again and the velocity goes to 0 asymp-

totically, with a maximum penetration at � ���\ � ��ÔZ�3� ? � "Ô �� � (9.13)

which can be made arbitrarily small by choosing a very large frequency.

9.4 Overdamping

When the damping ratio Ï increases beyond unity, the solutions of (9.4) is\ ��� �W� ? � "Ô u Ï Ú ?	� � N�?� 8 � � Ê � u Ï Ú ?E� � �~� (9.14)

and again, this is always negative and never escapes. With this process, the

incident velocity quickly vanishes and the point particle stays near �Å��
 .
9.5 End notes

Though a linear spring and damper model of contacts is easily analyzed and

easily implemented, correctly yielding known phenomenology of impacts, the

frequencies typically involved are too high for simple explicit or semi-implicit

integration methods. In addition, the behavior of this model depends critically
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9 Bagatelle VI: Smooth Impacts

on the mass of the bodies in contact, since both the frequency Ô and damping

ratio Ï depend on the impinging mass, and thus requires careful tuning. For

multibody systems, though the mass of each component is known, the effective

mass at a contact point depends on the configuration of the system and can vary

greatly between that of a single component and that of all of them. For instance,

the effective mass of a well aligned stack of books resting on a table is the sum

of the individual masses. But if this is knocked away from equilibrium, the mass

effective inertia felt at the point of contact with the table decreases to that of

the books at the bottom of the pile.

But the spring and damper model teaches one important lesson. The exact

details of the contact dynamics are irrelevant and the net effect can be modeled

using a single mass independent impact parameter. There are alternatives for

impact models [56] but the Newtonian restitution coefficient and the impact

law (9.10) suffice for the present purposes. This is good news for the applicability

of the spook stepper as well since the linear stability analysis of Section 4.6 shows

that it can in fact process linear systems with both high frequencies and high

damping coefficients in a stable way, without tuning. Chapter 10 goes into the

details of this.
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10 Nonsmooth Problems:

Contacts and Friction

Nonsmooth phenomena arising from impacts and dry friction are investigated in

the context of the variational method. After introducing the general context of

contacts and other nonsmooth problems in Section 10.1, a geometric formulation

of nonpenetration conditions and the description of impact discontinuities are

described in Section 10.2. This is followed by a review of essential elements of

nonsmooth analysis in Section 10.2, and this theory is then used to present the

exact variational impact resolution method of [87] in Section 10.4. This is then

approximated to yield a two stage impact resolution process that is guaranteed

to be dissipative in Section 10.5 and the results are illustrated and compared

with numerical experiments in Section 10.6.

Nonsmooth forces and nonideal constraints are introduced in Section 10.7 us-

ing the variational framework developed in Section 3.12. This is used to build

dry friction models in stages. Velocity limit constraints are first considered in

Section 10.8 which are found to be strictly dissipative in Section 10.9. This is

followed with an analysis of ghost constraints—general constraints on the ghost

variables themselves—in Section 10.10. Both the phenomenology of dry fric-

tion and the variational modeling using all the previously defined elements are

presented in Section 10.11 which contains a novel, isotropic, regularized and

solvable dry friction model, and a solvability analysis for it. Short descriptions

of alternative dry friction models are provided in Section 10.12. The results of

a well-known one dimensional numerical experiment and general comments are

provided in Section 10.13

10.1 Introduction

Surface interactions between electrically neutral solids are combinations of elec-

trostatic and quantum-mechanical phenomena of great complexity as the source

of much scientific and technological interest. However, these interactions take

place over such small distances and time scales that they are entirely irrelevant

in the context of interactive simulations except in their geometrical and consti-

tutive aspects, such as non-penetration conditions and dry friction laws. The

exact time and length scales are not relevant here but they are several orders of

magnitude smaller than the ten millisecond and ten millimeter resolution used in

the interactive simulations. In this context, impacts are instantaneous and occur

in-place. This means that when two bodies meet with a non-vanishing normal

velocity for instance and, very shortly thereafter depart or stick together, the
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10 Nonsmooth Problems

change in velocity is considered to happen instantaneously and without produc-

ing any change in position.

Also, solid bodies in resting contacts are subject to normal separation forces

as well as dry friction forces which lie in the plane tangent to the contact normal.

The normal of this plane is given by the gradient of the separating distance func-

tion. Dry friction exhibits two modes, namely, a stiction, rolling, or static mode,

wherein the relative tangential velocity vanishes, and a friction, sliding, or kinetic

mode mode wherein the tangential contact forces have magnitude proportional to

the normal contact forces and directly oppose the finite relative tangential veloc-

ity. The normal forces are presumed to arise from localized surface deformations

but these are assumed to be so small as to be entirely negligible.

Impacts and dry friction are nonsmooth phenomena, producing jump discon-

tinuities in the velocities of the system. They are naturally best analyzed from

a discrete viewpoint dealing only with the continuous positions and impacts—

time integrals of forces. This is precisely the framework provided by the discrete

variational formulation exposed in Chapter 3.

This formulation is extended in the present chapter to introduce an economical,

dissipative impact resolution algorithm, as well as an isotropic friction formula-

tion based on NCP which is proved to be solvable. The linearization of this NCP

is showed to correspond to previously known linear complementarity problem

(LCP) models except for the physics motivated diagonal regularization terms.

10.2 Normal contact forces and impacts

When the surfaces of solids come into close proximity, the very strong microscopic

interactions and bulk elastic forces translate essentially to unilateral constraints

at the macroscopic level, imposing non-penetration conditions between the bod-

ies. Considering any two bodies, given a point � ½ " ¾ fixed on body 
 , say, and�D½ 2 ¾ fixed on body � , the signed distance between these two points should be

non-negative: ïL� � ½ "�¾ ��� ½ 2 ¾ �È� 
 . Such inequality constraints necessarily lead to

impacts, i.e., forces which are so large and vary so rapidly as to cause jump dis-

continuities in the velocities h� , at least for any reasonable observation scale. To

clearly separate the time scales, impacts are idealized as true mathematical jump

discontinuities and so that if an impact occurs at time f ¦ , then. �Ã��%D:� � h� �gf �W� h� N ï� h�~0B�A. ����%E�� � h� �sf �,� (10.1)

i.e., the velocity before and after the impact differ.

For such impacts, the trajectories � �sf � remain continuous but the velocities h� �gf �
exhibit jump discontinuities, implying that accelerations

|� �sf � are not defined at

impact times, f8¦ .
The first thing to consider is the treatment of the impact impulses and contact

forces arising from the non-penetration conditions ïL� � ½ ¦¿¾ ��� ½ ª,¾ �ã�º
 between any

two points � ½ ¦¿¾ ��� ½ ª,¾ fixed on bodies § and Ä , respectively. Though this constraint

is expressed in terms of body coordinates, it is not strictly holonomic since there
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10.2 Normal contact forces and impacts

is no global change of coordinates which can remove this degree of freedom from

the system. Consider a spherical rigid body and an infinite plane for instance.

From the convexity of the geometries involved, the closest point between these

two objects can be identified uniquely. The signed distance function can be

written directly in terms of the rigid body center of mass position, \ �sf � , say, asïL� � �sf �8��� �ïL�8� \ �sf �8�D��
 . When the sphere contacts the plane so that �ïL� \ �sf �8���@
 ,
the vertical motion of the sphere can be eliminated. When the sphere is in

free flight, the vertical motion must be added. Such an approach would lead to

two configuration manifolds, namely,
� 2GF / Ú ���wIK��î � for the planar motion,

and
� ÚHF /ZÉ �B�wIK��î � for the spatial motion, and where �wIK��î � is the group

of rigid rotations in three dimensions. Selecting between these two manifolds is

cumbersome and becomes quickly intractable if one considers a large collection

of contacting rigid bodies. This is where the extended coordinate formulation

becomes advantageous for its simplicity and uniformity.

Continuing with the simple example of a solid sphere and an infinite plane,

our configuration manifold remains
� - /�É �4�wIK��î � , but a Lagrange multiplierÑá- /

must also be added. This multiplier is the magnitude of the force acting in

the normal direction at the contact. However, a further restriction is imposed onÑ given the inequality constraint ï�� �����E
 . To see this, start from the regularized

constraint formulation of (4.7). Choose )áC 
 , so that ïL� ��� is now allowed to

become negative, producing a restoring force Ñy�A?D)MN 2 ïL� ��� , which shows again

that ) is much like the inverse of a spring constant. But typical contact forces

have very little adhesion and it is expected that Ñá�@
 whenever the separation

is positive, i.e., ï�� ����CE
 .
Another perspective on this is the consideration of the augmented discrete

Lagrangian and the discrete principle of least action. Ignoring regularization for

the moment and discretizing the coupling term withq v" � z Ñ a ïL� � � z �8� GuR Ñ " a ï�" � (10.2)

the least action principle demands that the discrete action
C = � � " �M=>=>=M� �>éÅ� R � be

minimized over the allowed trajectories, namely, ï�� � ¬ �Z�*
 . Using the well known

theorem of Karush-Kuhn-Tucker [49], the stationarity conditions read� 2 B = � � ¬ � � ¬ 0â2� R � V � Ú B = � � ¬ N 2L� � ¬ � R � V�R  a ¬ Ñ ¬ ��

Ãa ï ¬ 032 c Ñ ¬ �E
O� (10.3)

where the perpendicularity sign c is understood component-wise in the case

where ïÎ  � ¢¤ / + �87ªa �¨���E� � is a vector function leading to Ñá- / + 0 .

Now, though the formulation of (10.3) clearly imposes the desired constraintï ¬ � 
 and clearly demonstrates the complementarity condition between the

components of the Lagrange multiplier Ñ and the components of the distance

function ïL� ��� , this strategy does not conserve energy at all. In addition, it does

not allow for a description of the physics of impacts which usually includes energy

dissipation.
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10 Nonsmooth Problems

This can be remedied in several different ways. For instance, in the strategy

exposed in [87], the times f8¦ at which the signed distance function ïL� ��� crosses

zero are located using a binary search and an impact resolution stage is performed

at these instants so that the energy is kept constant before and after, c6�gf 0¦ �D�c6�gf N¦ � , and the outbound velocity is in the normal cone of the restriction manifoldïL� �;�Z�E
 at the impact location, i.e.,  � � �gf8¦ ���7� �sf 0¦ �Z�E
 . In other words, the final

velocity is receding and the energy is preserved. Such a strategy is expensive to

implement as observed by the authors of [87].

Instead, the intention here is to construct a fixed time-step strategy. This

implies that penetration constraint violation are detected post facto or, if a pre-

dictor estimate is used, preemptively, since impacts have zero probability to occur

precisely at time F¨R , for some integer F . This has two implications. The first is

that a constraint stabilization strategy is required so that violations ïL� � ¬ ��'E
 are
quickly stabilized back to ïL� � ¬ 0 ª �Z�*
 for some integer Ä CE
 . The second is that

impacting velocity must be resolved without regards to the actual penetration

depth as the two aspects are treated independently.

The strategy proposed here hinges on the dissipative physical constraint stabi-

lization scheme introduced in Section 4.4 and the known complementarity con-

ditions of (10.3). The idea here is that a stabilization parameter � is chosen

so that � � R � � , there should be almost instantaneous dissipation of the inci-

dent velocity  h�¡C�
 which violates the constraint at the time of impact. The

constraint stabilization scheme should then produce ïL� � ¬ � G 
 after a few steps.

Modifying the stepping equations for the spook steeper of (4.27) to restrict both

the Lagrange multiplier and the constraint violation to be non-negative, as done

further below, should yield a reasonable approximation for non-adhesive contact

forces. The drawback is that this model leads to totally inelastic collisions. This

remedied by an impact stage during which a simplified version of the energy pre-

serving impact resolution of [87] is performed. The overall scheme is proven to

be is strictly dissipative, though experiments show that the artificial dissipation

rate is small. Given the linear stability Theorem 4.4, the constraint violations

are expected to quickly disappear in a stable way.

10.3 Essential notions of nonsmooth analysis

Before delving in the analysis of nonsmooth contacts, it is necessary to under-

stand the generalization of concepts of tangents and normals to cover nonsmooth

surfaces. A very short overview is provided here. The reader is referred to the

monograph of Clarke [66], from which the present section is adapted, for a thor-

ough treatment of optimization problems on nonsmooth sets.

Considering that all geometrical objects of standard 3D graphics used in a

virtual environment (VE) are defined in terms of polygons and that these are

nonsmooth at all edges and all vertices, a suitable definition of contacting surfaces

for the scope of the present thesis must include the nonsmooth case.

First consider the a scalar function j   / p ¤ /
which satisfies a Lipschitz
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10.3 Essential notions of nonsmooth analysis

condition at point \ as follows4 j � \ Õ Õ �3?Bj � \ Õ � 4 a � 4 \ Õ Õ ?�\ Õ 4 � for all \ Õ � \ Õ Õ -y\ V ) d , (10.4)

where d is the unit radius ball centered at the origin, and )DC*
 is a small positive

number. Here, \ Õ merely means “a point other than \ ”, and \ Õ Õ means “ a point

other than \ or \�Õ ”.
Note that j need not be continuous to have this Lipschitz property. Next,

instead of using standard one sided derivative, the notion of a generalized direc-

tional derivative of the function j evaluated at the point \ in the direction of�¡- / p
is introduced j�I � \?ÀV�¨�w�A. ��� 8$J &K 0 �� E " j � \ V ÐV���3?�j � d¨�Ð = (10.5)

This limit exists at any point \ where the function j � \Q� satisfies the Lipschitz

property (10.4). The properties of the subderivative (10.5) are such that a gen-

eralized gradient can be defined as´ j � \Q�W� � dá- / p &;j I � \KÀ��¨�Z�i� a \ for all � in
/ p � = (10.6)

For a piecewise continuous function which has discontinuities in the derivative

at a point \ , and such that it has 7 distinct one sided gradients, namely, the

row vectors ¥ 2� ¥ Ú��M=>=>=>� ¥ + , the definition in (10.6) expresses the fact that
´ j is

the convex hull of the row vectors ¥M¦ �8§w���;���O�>=>=M=~�87 .

Consider that function j � \Q� satisfies the Lipschitz condition (10.4) for a given

ball \ V ) d , and has countably many discontinuities within that same ball. These

discontinuities are located in a set
^�L

which has measure zero so that j is dif-

ferentiable almost everywhere in the Lebesgue sense. Assume also that there is

another set � of measure zero which is to be avoided (for reasons clarified in [66]),

then, the generalized gradient can be expressed as´ j � \k�W��°>± � . ���¦ 032 ´ j � \ ¦ � � ´ \ ¦ &;\ ¦ ¤ \���\ ¦ �- ^ML ��\ ¦ �- � � � (10.7)

where °>± � � � is the convex hull of a given set.

The meaning of this definition is that the generalized gradient is the convex

hull of all the gradients found within a small ball of a given neighborhood of

dimension ) . Of course, for a continuous function, the gradient is the same

within I6� ),� for all sample points \ ¦ and thus, the generalized gradient coincides

with the standard one.

To apply this to the familiar notion of tangents and normals, start with the

definition of the distance to a given set ] î - / p
, defined, for instance, as the

following set ] î � � \y- / p & ï�¦ � \Q�Z�E
O��§â���;���O�>=>=>=>�87 � � (10.8)

for 7 continuous functions ï,¦W  / p ¢¤ /
. With this or any other definition of an

allowed region ] î , the distance function x)NPO is defined as followsx)NQO � \k�W� �Y� �K�R NQO � 4 \Y?�d 4 �~= (10.9)
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The notion of a tangent to a smooth surface defined with ïL� \Q�á�:
 is the

normalized vector � which can be followed so that ïL� \ V Ð	�¨��� 
 for small

enough Ð . In other words, the directional derivative of ïL� \Q� in the direction of

the tangent vanishes. Using the generalized directional derivative, the following

definition for the tangent cone is produced� NPO � \k�w� � �¡- / p & x INQO � \KÀV�¨�w��
 � = (10.10)

Now, the usual definition of a normal is that it should be orthogonal to the

tangent. But the strict orthogonality must be relaxed here and replaced with an

inequality to obtain the normal cone definition¶ NPO � \Q�w� � ¥ & ¥ �TaE
 for all � in
� NQO � \Q� � � (10.11)

where ¥ are now row vectors. The set
¶ NPO � \Q� can also be understood to be the

closed convex cone of
´ xSNQO � \Q� using the definition (10.6), so that all directions

making x)NQO increase should be included.

The definition (10.11) is important in that it establishes a fundamental in-

equality for the product between the row vectors in
¶ NQO � \k� and the vectors�¡- � NQO and at a given point. However, Clarke [66] does provide a more intuitive

definition of this set based on the notion of perpendicularity. Consider a point\ Õ which is outside of the manifold ] î . If point \ is the unique vector on the

boundary
´ ] î closest to \�Õ , then vector <4��\�Õ<?�\ is perpendicular to ] î at \ ,

and this is written as < ¦ c ] î .
Now, choosing a point \ on the boundary

´ ] î , collect all such perpendicular

vectors < ¦ obtained from points \ ¦ -�\ V ) d �8§â���;� �<�>=>=>=>� in the vicinity of \ and

build the closure of the convex hull¶ NQO � \Q�w� [°M± � Ð < a ¦4 < ¦ 4 &�Ðy�E
O��< ¦ c ] î at \ , \ ¦ ¤ \%��< ¦ ¤ 
 � � (10.12)

where [ � denotes the closure of a set.

The inequality in the original definition of (10.11) is now easily understood.

Consider one of the candidate points \ ¦ in the definition of the set (10.12). The

distance of that point to the set ] î is simply the norm
4 < ¦ 4 . If point \y- ] î is the

closet point to \ ¦ , it follows that for any vector in the tangent cone, � ¬ - � NPO � \k� ,
the distance between \ ¦ and a point \ � � \ V �KdA- ] is greater than the

distance
4 \ ¦ ?�\ 4 . Now, for any vector in the tangent cone, � ¬ - � NPO � \k� , the

vector \ � � \ V �K� ¬ � �*Cu
 is also in ] î for sufficiently small �ECu
 . The non-

negativity of � follows from the definition of the tangent cone as the generalized

directional derivative (10.5). Explicitly, the following inequality must hold4 \ ¦ ? � \ V �K� ¬ � 4 Ú � 4 \ ¦ ?�\ 4 Ú � 4 < ¦ 4 Ú � (10.13)

for small ��Cº
 , any vector < ¦ c ] î , and any vector � ¬ - � NPO . Now, expanding

the terms on the left hand side of (10.13),4 < ¦ 4 Ú V � Ú 4 � ¬Æ4 ?B���K< a ¦ � ¬ � 4 < ¦ 4 Ú � (10.14)
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10.3 Essential notions of nonsmooth analysis

and after neglecting the term in � Ú
, this yields�K< a ¦ � ¬ aE
O� (10.15)

for any normal vector < ¦ c ] î � \Q� and any tangent vector � ¬ - � NPO � \k� , at any

given boundary point \y- ´ ] î .
A picture of the the different cases which can be encountered is provided in

Figure 10.1.
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Figure 10.1: The different cases for tangent and normal sets of a nonsmooth

curve. Here, perpendicular vectors to ] î have solid black arrows

and tangent vectors have white arrows. This picture is adapted

from Fig 1.5 in [66].

Referring to Figure 10.1, the first case with label _ is the usual one, namely,

there is a unique normal and a unique tangent at � · so that the normal cone is

the single row vector
¶ NQO � � · �Z� � ´ ï�� � · ��� ´ � � and likewise for the tangent cone� NPO � � · � .

The points labeled �WV , � Å and � ê illustrate different types of kinks in which

the normal cone
¶ NQO � ��� is the convex hull between the normals of the curve ïL� ���

evaluated on each side of the discontinuity, and similarly for the tangent cone� NPO � ��� at these points.

The point labeled �WX is an extreme case where the normal and tangential cones

consist of a single vector but they are in the opposite direction of what would

normally be expected, the normal being the horizontal line and the tangent the

vertical one.

As exposed in [66], optimization problems are readily generalized to nonsmooth

and nonconvex sets such as the boundary illustrated in Figure 10.1. The reason

to adopt these concepts here is to emphasize that the result of [87] are valid for

the case of a nonsmooth boundary.

These observations now serve to establish an equality condition in the discrete,

nonsmooth principle of least action of Section 10.4.
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10 Nonsmooth Problems

10.4 Accurate discrete nonsmooth mechanics

In a recent paper by Fetecau et al. [87], the discrete variational principle is ex-

tended to include impacts. This formulation is important because it is strictly

energy preserving and establishes a solvable numerical procedure to compute

impact impulses. In particular, the formulation covers the case where a point

particle is restricted to move in a region of space defined by a nonsmooth bound-

ary. The case of nonsmooth contact surfaces was already analyzed by Marsden

and co-workers in [152] and in [225], where a representation of Coulomb’s dry

friction model is constructed as well.

A different strategy for handling impacts and contacts, also based on varia-

tional principle, is found in Modin and Führer [206] where the time scales are not

separated as is done here. Instead, very strong potentials are combined with an

adaptive time step strategy to resolve the fast dynamics. As argued previously,

this is not well-suited for the interactive physics context though.

A simplified version of the construction found in [87] is presented here with

emphasis on the computational method, and with the explicit intention of con-

structing the approximation presented in Section 10.5. The details of the exten-

sion of the variational principle and its discretization to include finitely many

impact points—isolated instants in time at when the velocity h� suffers a jump

discontinuity—are well covered in [87] and it would not be particularly useful to

reproduce the long, technical proof here.

Consider a sub manifold of the configuration space
�

so that ] î F �
. This

manifold of allowed configurations is constructed with a piecewise continuous

function ïL� �;� of the configuration variables �6- �
. For simplicity and to closely

follow close the argument in [87], first consider a single scalar function ï`  � ¢¤ /
.

The generalization to a vector valued function ï	  � ¢¤ / p O , with piecewise

continuous components ï,¦ � ��� is straight forward.
The restriction manifold ] î is the set of points �Y- �

such that the functionïL� �;� is non-negative, i.e., ] î � � ��- � & ï�� �����E
 � � (10.16)

and the boundary of this manifold is written´ ] î � � ��- � & ïL� ���W��
 � = (10.17)

Note that this is a manifold with a closed boundary.

Consider a trajectory:� � " � fÍ" �~� � ��2� f 2��~�>=>=>=M� � � ¦ � fÍ¦ �,� � �� � �f �~� � � ¦ 0â2� fÍ¦ 032,�~�>=>=>=M� � �>é`� f é1�~� (10.18)

so that ��y- ´  , i.e., �f is the location of the impact. The extended variational

principle applies as before but contributions from the variation of �� and �f must

now be included so that �� V ÿ ���- ´  . Likewise, the variation of �f will lead to

conservation of energy at the impact location. Simplify this by setting f ¦ �@§ R ,
where R is the fixed time step for all steps other than the one containing the
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impact. The impact time �f is then parametrized as �f � � §ã? �M� RáV � R , with�B- � 
O�M�� . The action then readsC = � � " � �L2�>=>=M=>� �MéÅ� �� � �3�W� ¦ N ÚÑ¬,q " B = � � ¬ � � ¬ 0â2� R � V B = � � ¦ N 2L� ��{��� R �
V B = � �� � � ¦ � � �ã?��3� R � V é N 2Ñ ¬,q ¦ B = � � ¬ � � ¬ 0â2� R �~= (10.19)

In order to compute the variation of the action, follow the procedure devel-

oped in Section 3.14.3 for holonomic constraints where restrictions on the al-

lowed variations
ÿ � were considered. Concentrating on the collision event atF � § , the discretized action principle requires that variations of the actionC = � � " � �L2�M=>=>=M� �>é`� ��{� �3� vanishes with respect to the allowed variations of each of

the variables of interest, namely
ÿ � ¦ N 2� ÿ �� � ÿ � ¦ and ÿ � . A straight forward com-

putation on the definition (10.19) produces the following four termsØ � Ú B = � � ¦ N ÚT� � ¦ N 2� R � V � 2 B = � � ¦ N 2L� ��{� � R �7Ú ÿ � ¦ N 2Z��
<�Ø � Ú B = � � ¦ N 2� ��{� � R � V � 2 B = � ��{��� ¦ � � ��?B�3� R � Ú ÿ �� aE
<�Ø � É B = � � ¦ N 2� �� � � R �3? � É B = � ��{��� ¦ � � ��?B�#� R �7Ú R ÿ ����
<�Ø � Ú B = � ��{��� ¦ � � ��?B�3� R � V � 2 B = � � ¦ � � ¦ 032� R �ÉÚ ÿ � ¦ ��
<� (10.20)

which must be satisfied simultaneously. The inequality of the second line is the

Fourier principle of virtual work stating that when the configuration space has

a closed boundary, virtual work must be nonpositive [173]. To extract the exact

meaning of these equations, it is necessary to compute the allowed variations in

terms of unconstrained variables, as was done in Section 3.14 for the derivation

of the constrained, discrete, Euler-Lagrange equations (3.96).

Of course, for all other time steps F ï�*§ , the standard stepping equations (3.22)

apply. Now, in the first line of (10.20), the variations
ÿ � ¦ are unrestricted since

it is assumed that � ¦ is away from the constraint surface. For � � �<���E�
, this

produces � nonlinear equations to be solved for �� and � . However, it is already

known that ��á- ´ ] î and so, when this boundary has codimension � , there are�¸V � equations to solve for the � components of vector �� and the scalar � , namely,

the � equations from the first line of (10.20) and one equation for ïL� ����w�u
 .
Next, since ��Y- ´ ] î � ���� , the allowed variations of

ÿ �� must therefore be in the

tangent cone
� NQO � ��;� defined in (10.10). Using the definitions of the normal cone¶ NQO � ��� from (10.11), the second line of (10.20) will be satisfied when� aÚ B = � � ¦ N 2L� ��{� � R � V � a 2 B = � ��{��� ¦ � � ��?B�#� R ��- ¶ NPO � ����~= (10.21)

For a smooth boundary, this can be rewritten as� aÚ B = � � ¦ N 2� ��{��� R � V � a 2 B = � �� � � ¦ � � ��?B�3� R � V ´ ïL� ��;�´ � a ÑH��

ÃaE � ��;� � � ¦ ? ��;� c Ñá�E
O� (10.22)

163



10 Nonsmooth Problems

if the restriction manifold is defined as ïL� �����*
 . If the boundary is nonsmooth,

then, there are multiple tangent Jacobians  ½ ª,¾ and multiple positive Lagrange

multipliers Ñ ½ ª,¾ .
Next, consider the third line in (10.20). There are no restrictions on � other

than ��- © 
<�M� « and thus, the following scalar relation holds� É B = � � ¦ N 2L� ��{��� R �â? � É B = � �� � � ¦ � � �ã?��3� R �¸��
O= (10.23)

This is a nonlinear condition between for � ¦ , since � and �� are known at this

point. Recalling the theory of Section 3.10 and the definition of discrete energy

of (3.61), the second and third line of (10.20) have a clear meaning, namely, that

we are looking for a position vector � ¦ such that the discrete velocity R N 2 � � ¦ ? ��L�
lies in the normal cone

¶ NPO � ���� , and so that the discrete energy is preserved.

Finally, the fourth line of (10.20) tells us how to restart the standard stepping

at time index F �*§ V � , using the corrected velocity appearing in the term� aÚ B = � ��{��� ¦ � � ��?B�3� R �,= (10.24)

Applying this analysis on the constant mass matrix Lagrangian (3.12) with the

simple discretization of (3.25), the procedure is as follows. First, find ��¡- ´ ] î
and ��- � 
<�M�M� to solve Í ��Î?�� ¦ N 2� R Î ?  Í � ¦ N 2W?B� ¦ N ÚR Î V � R~
 ! � � ¦ N 2~�w��
ïL� ��;�w��
<= (10.25)

Defining the incident velocity as: � N ��� N 2 R N 2 � ��3?�� ¦ N 2�� , this step computes the

exact location of the impact as well as the incident velocity � N .
The next step is the impulse response which will compute the outward velocity� 0 so that it lies in the normal cone

¶ NQO � ��;� and so that the energy before and

after the impact are identical. Of course, a dissipative energy model could be

added here as well. What is thus needed is the solution of Í � ¦ ? ��� ��?B�3� R Î ?  Í ��Î?�� ¦ N 2� R Î Vº� ��?B�3� R~
 ! � ���� - ¶ Å � ��;��� �{0 a  �{0 V ! � ��;�w� �� � N a  � N V ! � � ¦ N 2,� V Ä � � N �,� (10.26)

where
Ä � � N � is a dissipative term which is normally dependent on the incident

velocity.

Finally, the stepping continues with Í � ¦ 032W?B� ¦R Î ?  Í � ¦ ? ��� ��?B�#� R Î � ? R~
 ! � � ¦ �~= (10.27)

The different processes are illustrated in Figure 10.2.

The theory exposed in [87] justifying this model is impeccable. However, lo-

cating all impacts one at a time in this fashion is far from desirable. In addition,

the occurrence of multiple simultaneous impacts leaves much to be desired. Also,

exactly locating �� is not feasible except for very simple cases such as collisions

with a plane for instance. Simplifications of this model are now investigated.
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Disallowed region, ïL� ����'E
Contact manifold, ï�� ���W��

Rejected prediction

Figure 10.2: Schematics of the exact impulse model described in this section.

10.5 A two step approximate impulse model

An approximation strategy is now constructed to avoid locating �� precisely and

skip many of the steps to compute the incident and outbound velocities, � N and�T0 . The first model considered is a post facto impulse resolution so that at step § ,� ¦ lies inside the restricted region. The constraint stabilization mechanism could

be used by itself to operate for a few steps to bring � ¦ 0 p near the boundary
´ ] î .

However, this leads to nearly zero outbound velocity, �O0E��
 , independently of

the incident velocity � N which is nice for stability but not good for accurate

modeling of elastic or nearly elastic impacts.

If the violation at � ¦ is not too big, a good approximation of the incident

velocity is: � N G � ¦ ?B� ¦ N 2R = (10.28)

To estimate the outbound velocity � 0 , first impose a discrete impulsive Newton

impact law [56] on the system. In one spatial dimension, this law is usually

stated as �{0�� ? ý � N � (10.29)

where
ý - © 
O�M� « is called the restitution coefficient. A perfectly elastic collision

corresponds to
ý �.� in which case the outbound velocity is just a reflection of

the incoming one. Now, given that impulses occur at fixed location � , the only

change in energy is a kinetic energy change. For the Newton-Poisson impact law

in the context of a one-dimensional impact of a point particle of mass 7 , the

change in energy is have:c 0�? c N � � � �{���{0w�3? � � �{�:� N �w� � ý Ú ?E�M� � � �{��� N ��a*
O� (10.30)
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Figure 10.3: Schematics of the approximate impulse model described in this sec-

tion. The case illustrated here is the preemptive impact resolution

where the incident velocity � N is changed before impact has oc-

curred.

for an impact at location � and where
� � �¨� is the kinetic energy, defined earlier

in (3.11).

This is illustrated schematically in Figure 10.3 for the preemptive impact de-

tection case and in Figure 10.4 for post facto detection.

To generalize this to higher dimensions, an estimate of the part of the incident

velocity that is normal to—or approximately so—the contact manifold is needed.

This is precisely  ¬ � N where  ¬
is the � î �6� Jacobian matrix of the � î contact

surface evaluated at the discrete time F . A strict equivalent of the Newton impact

law would state  �{0*� ?�]Å � N , where ] is a diagonal matrix of size � î �y� î ,]u� �¨�Ì* 9 � ý 2� ý ÚT�>=>=>=M� ý p O � , ý ¦ - © 
O�M� « being the Newton restitution parameter of

the § th contact manifold. However considering that impulsive contact forces must

be non-adhesive leads directly to a complementarity formulation (an analysis of

this is found in [224]). Thus, the second stage of the exact procedure presented

in the last section, assuming also the presence of other equality constraints with

agglomerated Jacobian ^ , and adding regularization parameters with diagonal,

non-negative matrices � and ^ , for the equality and contact constraints, respec-

tively, the discrete Euler-Lagrange equations (10.26) are approximated with the

following LCP  �T0�? ^ a ¬ ÐY?B a ¬ ÑH�  � N^ ¬ �T0 V ��Ð�� ^ ¬ � N ¬ �{0 V ]Å � N V_^ ÑH� é
Ãa*Ñ c é �E
O� (10.31)

where the potential forces R Ú 
 ! were neglected. Indeed, impulsive forces suffi-
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Figure 10.4: Schematics of the approximate impulse model described in this sec-

tion. The case illustrated here is the post facto impact resolution

where the incident velocity � N is changed after impact has occurred.

Constraint stabilization is then used to stabilize back to the contact

surface.

cient to revert the incident velocity must be very large in comparison to other

forces in the system. Note that this update only affects the velocity variables so

the energy change from this update is restricted to kinetic energy change. This

is now evaluated:� 0B�A� a0  �T0B�A� a0  � aN V � a0 ^ a Ð V � a0  a Ñ�A� aN  � N V Ð a ^ � N V Ñ a  � N V Ñ a  �{0 V � a0 ^ a Ð� � N ?BÐ a ��Ð V Ñ a �  �T0 V ]Å � N � V Ñ a � � ?�]Å�� � N� � N ?BÐ a ��Ð V Ñ a é ?�Ñ a ^ Ñ V Ñ a � � ?�]Å��ò� Na � N = (10.32)

The last inequality is derived from the following facts?DÐ a ��Ð±a*
 since � is symmetric and positive definite �Ñ a é �u
 from the complementarity condition in (10.32) �?DÑ a ^ Ñ a*
 since ^ is symmetric and positive definite � � N a*
 by assumption on the contact conditions �� � ?�]Å�� � N a*
 from the definition of ] since 
Ãa ý ª aJ��� Ä ����� �O�>=M=>=~� � î �Ñá�*
 in the solution of LCP (10.32) =
(10.33)

Therefore, this impulsive stage can only decrease the kinetic energy. Since the

positions are not changed in this stage, the total energy can only decrease.
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10 Nonsmooth Problems

Once the impulsive stage is computed and velocities updated, the integration

proceeds using the computed velocities, �O0 , and the previous positions.

Observe that impact conditions are caught a posteriori, i.e., after detecting a

non-zero penetration for one or several of the nonpenetration conditions. Stabi-

lization back to the contact surface is handled using the constraint stabilization

mechanism described in Chapter 4. This strategy is not very good for cases in-

volving a combination of high incident velocities and deep penetration. For some

cases, one can implement a preemptive impact strategy. This is left for future

work.

This model still lacks friction forces in the direction tangential to the contact

plane. The friction model derived in Section 10.11.4 can be added to the present

formulation without changing the dissipative properties.

Other work related to impacts and friction is discussed in Section 10.12.

10.6 Numerical comparison

The behaviors of different impact models described in the previous sections are

now illustrated. First in Figure 10.5, a short simulation using the exact model

of Section 10.4 is portrayed. For a one-dimensional problem, this method is fast

and very simple to implement. Modifying the energy conservation stage (10.26)

to dissipate a fraction of the incident kinetic energy is easily done, requiring

that the outgoing kinetic energy be a fraction of the incident one. This amounts

to Newton’s law of impacts. This is parametrized with a restitution coefficient,ý - © 
O�M� « . Data on the graphs has been sub-sampled (due to a technical problem)

which is why the lines do not touch the plane \¡��
 exactly.

In Figure 10.6, the long term behavior for unit restitution as computed by

the exact, preemptive and post facto methods is illustrated. The approximate

methods loose energy linearly in the case of post facto detection and exponentially

for the preemptive method. For the post facto case, the decay is small and

tolerable since in practice, there is no perfectly elastic collision. Preliminary

experiments show that this decay can be made very small if one makes a better

estimate of the impact location parameter � .
In Figure 10.7, the regularized stepper of Section 4.2 is used without any con-

straint stabilization. This leads to unpredictable impact restitution, depending

on exactly when and how deep a penetrating configuration is caught. This is

clearly not a usable scheme.

In Figure 10.8, different values of the normalized constraint stabilization pa-

rameter x � � � R of Section 4.4 are used to stabilize the regularized contact

constraint. This is strongly dissipative from x ��� and can in fact be made to

absorb all the impact energy for x �.�M
T
 , if desired. Such an impact processing

scheme is stable for x ��� but the observed restitution coefficient is random, and

very close to 
 .
Finally, in Figure 10.9, one step before and a few step after impact are illus-

trated with each of the methods at zero restitution
ü � 
 . For the post facto
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ý ��
O=ë�ý ��
O=b(ý ���One-dimensional impact with exact method, different restitutions

time

-+ c.

yñî��


�M
ü
Sñ �


Figure 10.5: One-dimensional impact simulated with the exact method of Sec-

tion 10.4 but with different restitution coefficients. Initial conditions

are � � 
��w� ?��
O��\ � 
T�3��� , and the time step is R �����S�
 .
method, the point penetrates deeply and is then stabilized, with some compar-

atively small overshoot. For the preemptive case, the trajectory is modified to

avoid penetration and is made to graze the contact surface instead. The exact

method locates the time step when penetration would have occurred and puts

the particle on the surface \¡��
 and the end of that step, with zero energy.

The post facto strategy offers a good compromise. For complicated cases with

very fast moving objects, a combined preemptive and post-facto scheme should

be considered, and this is left for future work.
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Figure 10.6: Long time integration of the exact, preemptive and post facto meth-

ods using unit restitution,
ý � � , which leads to elastic impacts.

The post facto method still looses energy slowly but does a better

job than the preemptive method.
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Figure 10.7: Long time simulation using only the regularized stepper. Even with

zero restitution, this produces erratic behavior which can be unsta-

ble. Note that changing the initial position causes wildly different

behavior. The initial velocity is fixed at � � 
��w� ?��M
 .
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Figure 10.8: Integrating over impacts using only the spook stepper of Sec-

tion 4.4, the stabilization parameter x � � � R is varied. Note that

for x CE� , the collisions are completely inelastic.

exact

preemptive

post-facto

One-dimensional impact with different methods, restitution
ý ��


time

-+ c.


<= �T

O=�� y
O=��M

O=ë
 y
O=ë
�


�O=ë
�;= y�;=ë

O= y
O=ë
?Î
O= y
Figure 10.9: A few integration steps before and after an impact with zero resti-

tution, illustrating how the different methods behave. As expected,

the exact method finds the contact manifolds and stays on it. The

other methods quickly converge to it.
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10 Nonsmooth Problems

10.7 Nonsmooth forces and nonideal constraints

Impacts arising from non-penetration conditions are but one instance of a non-

smooth phenomenon in physics and they are distinguished for being based on

position only. In this respect, non-penetration conditions are very much like

holonomic constraints when they are active. By contrast, friction forces and

other nonsmooth phenomena are expressed in terms of velocities and this fact

suggests that the correct strategy is to construct appropriate Rayleigh dissipation

functions.

Noting that for a given Rayleigh function R � �{� h� � f � , the effect on the dynamics

of a system with Lagrangian function | � �{� h� � f � is via the integral term appearing

in d’Alembert’s principle, namely:? q v" � z ´
R´ h� a ÿ �`��j ½gN ¾= � � " � �L2� R � ÿ � "�V j ½ 0 ¾= � � " � �L2� R � ÿ �L2L= (10.34)

This integral term is well behaved even for nonsmooth functions R, as long as

the velocity partial derivatives are integrable functions.

Also, when applying d’Alembert’s principle to nonsmooth systems which have

hard boundaries, so the virtual displacements
ÿ � might be restricted, the equality

sign of (3.77) is replaced by Fourier’s inequality [173], namelyÿ q �#"�%$ � z>| � � � z �,� h� � z �8� V q �#"�%$ � z j a ÿ � aE
O= (10.35)

In the following sections, several nonsmooth Rayleigh functions are constructed

to model different forms of dry friction.

10.8 Velocity limits

First consider a dissipation force which restricts the magnitude of the velocity

vector h� so that
4 h� 4 amÒk�8Ò@C 
 . Clearly, it is possible force

4 h� 4 �:
 using

the dissipation function R � �{� h� � �¸� h�â�b�5? � � � ������� h� a�h� V h� a�h� � , where the ghost

variables � have the same dimensionality as � . However, limiting the magnitude

of h� away from h�Å��
 requires only a one-dimensional Lagrange multiplier.

What is needed here is a dissipation force which is switched on whenever
4 h� 4

exceeds the limit Ò . The regularization parameter
ÿ �*
 will control how quickly

the velocity is brought back within bounds. To do this, introduce the nonsmooth

function: � 0�� ´· ¸ 
 when \y'E
 ,\ otherwise = (10.36)

This function extracts the positive part of any scalar \�- /
. The derivative of� 0 is well defined away from the origin but nonsmooth analysis [66] reveals that
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10.8 Velocity limits

the proper definition is�V� 0 � \Q�� \ � � Õ0 � \Q�w� ´¶¶· ¶¶¸

 when \y'E
 ,� when \yCE
 ,© 
<�M� « when \¡��
 . (10.37)

In other words,
� Õ0 � 
T� is undetermined as it can take any value in the interval© 
<�M� « . This appears problematic at first but it is shown below that the regulariza-

tion procedure picks a unique value for
� Õ0 � 
�� . Note carefully the use of

� Õ0 � \Q� to
denote the total \ derivative in order to avoid confusion with the time derivative

which is still written as hü � ��ü � � f .
The constraint being imposed now is simply

� 0 � 4 h� 4 ?�ÒO�`� 
 and therefore,

the regularized Rayleigh function needed here is

R ? ��? ÿ hÏ Ú� V hÏ � 0 � 4 h� 4 ?�Ò �~� (10.38)

where Ï4- /
is a scalar, and this generates forces on the � variables according

to (10.35) ? �� f Í ´ |´ h� a Î V ´ |´ � a ? ´
R ?´ h� a �u
O�j ] � ? ´
R ?´ h� a ��? hÏ � Õ0 � 4 h� 4 ?�ÒO� �4 h� 4 h�{� (10.39)

and for the ghost hÏ ,? �� f � ´ |´ hÏ a � V ´ |´ Ï a ? ´
R ?´ hÏ a ��j ? ��
j ? � ? ´

R ?´ hÏ � ÿ hÏ`? � 0 � 4 h� 4 Ú ?�Ò �W��
<= (10.40)

Note here that Fourier’s inequality (10.35) is not used since there is no restriction

on Ï or hÏ . Combining (10.39) and (10.40) leads to a nonsmooth nonlinear system

of equations to be solved when discretized though, in fact, it is simpler to use

an equivalent NCP formulation, as already suggested by Fourier’s inequality.

Indeed, the ghost equation (10.40) is identical to the complementarity condition
ba ÿ hÏ`? 4 h� 4 V Òbc hÏK�*
O= (10.41)

The inequality sign to the left of (10.41) accounts for the fact that
� 0 � \Q�y�
 . Now, the Rayleigh function in (10.38) produces change in energy as shown

in (3.88) and given the choice of signs in the definition of R ? in (10.38), it follows

that restricting hÏY�º
 leads to dissipation, which is the current intention. Next,

whenever
4 h� 4 ' Ò , the value of hÏ vanishes from the j ? equation in (10.39).

Therefore, as long as hÏÈ��
 , it follows that ÿ hÏÅ? 4 h� 4 V ÒHCE
 .
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To formulate the equations of motion (10.39) as a bona fide NCP, the derivative

term
� Õ0 in formulation of j ] must be considered carefully. Note first that if hÏ6CE
 ,

the j ? equation in (10.39) yieldshÏÈ� �ÿ Ø 4 h� 4 ?�Ò Ú � �ÿ � 0 � Ø 4 h� 4 ?�Ò Ú �,� (10.42)

which in turn implies that the j ] force isj ] � ? �ÿ 4 h� 4 � Õ0 � \k� � 0 � \k� h�{� (10.43)

where \i� 4 h� 4 ?BÒ . But since
� Õ0 � 
T� � 0 � 
��1�£
 , at which point hÏ��£
 , it follows

that hÏ � Õ0 � \Q�w� hÏ everywhere and the force term reduces toj ] � ? �4 h� 4 hÏ h�{� (10.44)

whenever
ÿ C 
 . Note that this force opposes the direction of motion and is

therefore dissipative.

For discretization, several choices are available as was described in Section 3.12.

Choosing the fully implicit discretization for the forces j ½ÌD ¾= � � " � ��2� R � , leads to

the stepping equations� a 2 B = � � ¬ � � ¬ 032L� R � V � aÚ B = � � ¬ N 2L� � ¬ � R �3? Ä a¬ 032 ÏÈ��

('u? Ä ¬ 032 � � ¬ 032W?B� ¬ � V Ò V ÿ Ï c�Ï6�E
<� (10.45)

with the definition:Ä ¬ 032ã� �4 � ¬ 032W?�� ¬}4 � � ¬ 032¸?�� ¬ � a � �4 � ¬ 032 4 � ¬ 0â2M= (10.46)

For the special case where the discrete Lagrangian
B = � � " � ��2� R � has the form,B = � � " � �L2� R �W� �� R � �L2W?B� " � a  � ��2W?�� " �3? R ! � � " �,� (10.47)

and approximating
Ä ¬ ø�G Ä ¬ 032 , the stepping equations in velocity form are the

solvable mixed linear complementarity problem (MLCP):ö  Ä a¬ ø? Ä ¬ ø úv ÷ ö � ¬ 032Ï ÷ V ö ?  � ¬ V	R ! ¬Ò ÷ � ö 
e ÷
Ãa*Ï c e��E
O� (10.48)

where the slack variable e was introduced. In practice, it is sufficient to takeÄ ¬ ø � Ä ¬
. Obviously, it would have been possible to define the Rayleigh function

using only parts of the velocity vector h� , using, e.g., ��� � � ��� h� where
� � ��� is

a projection operator. This would only change the definition of the matrix
Ä

in (10.46) but not the rest of the analysis and in particular, not the form of the

NCP for the stepping equations.
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10.9 Dissipative properties of velocity limits

In addition, the velocity variables h� can be replaced any ghost velocity hÐ and

thus impose a restriction on the magnitude of Lagrange multipliers corresponding

to nonholonomic constraints. In that latter case however, the sign of the Rayleigh

function must be reversed to preserve the dissipative property. This is shown

below in Section 10.9. Note finally that the
� � \k� function can in fact be removed

by using the restriction hÏ6�E
 with the Rayleigh functionf
R ? � ÿ � hÏ Ú V hÏ � ÒÈ? 4 h� 4 �,� (10.49)

and using the Fourier inequality (10.35) leads directly toj ] � ? hÏ �4 h� 4 h�
Ãau?Dj ? � ÿ hÏ V ÒÈ? 4 h� 4 c hÏK�E
<= (10.50)

Both the unrestricted formulation using the filter function
� 0 � \k� and the re-

stricted formulation with hÏ6�E
 have their advantages.

10.9 Dissipative properties of velocity limits

Velocity limits described in the previous section are now shown to be strictly

dissipative. It was shown in Section 3.12, particularly in (3.88), that for any

Lagrangian system with time independent Lagrangian function | �#� � h� � and any

Rayleigh function R, the energy dissipation rate is� c� f � ? h� a ´
R´ h� a = (3.88 Õ )

For the case at hand, the generalized coordinates � consist of � � � �{� ÏT� and thus

the dissipation rate is � c� f � ? h� a ´
R ?´ h� a ? hÏ ´

R ?´ hÏ� ? hÏ � Õ0 � 4 h� 4 ?B�#� 4 h� 4 V hÏTj ?au? hÏ 4 h� 4 V 
ÃaE
<� (10.51)

since j ? ��
 and hÏ6�E
 by construction, and
� 0 � \Q�Z�E
 .

In the discrete case, given initial conditions � " and � " , write �¨2 and ��2 for the
velocity and position that would be found without the additional term, and set

the actual computed updates as�H�A�<2W?  N 2 Ä a¬ ø Ï�Å���L2W? R  N 2 Ä a¬ ø ÏO= (10.52)

Then, the difference between the energy that is found at �e��� and that which

would be found at �¨2M���L2 if the velocity limit was not active, given the discrete
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Figure 10.10: Simulation of the dynamics of a one-dimensional particle subject

to a speed constraint and a harmonic potential.

Lagrangian of (3.25) and the corresponding discrete energy (3.61), is computed

to be 3 c �A� a  �K?�� a 2  � a 2 ? R j a2 Ä a¬ ø Ï� ? ÿR Ï a ÏÅ?BÏ a Ç Ä ¬ ø  N 2 Ä a¬ ø Ï V � V�R Ä ¬ ø  N 2 j " È� ? ÿR Ï a ÏÅ?BÏ a eaE
<� (10.53)

where j " �m? ´ ! � � " ��� ´ � a . Since ÏB� 
 , and since the term in parenthesis on

the second line is recognized as the reduced equation for Ï after eliminating

the velocity equation in (10.48), the expression is strictly negative when the

constraint is active and when
ÿ CE
 .

Thus, this formulation is strictly dissipative and therefore models some form

of friction phenomena.

An illustration of the effect of this type of velocity limit constraint is provided

in Figure 10.10. Here, a point particle with unit mass is hooked to a simple

harmonic oscillator with unit frequency at position \¡� î �;� and �Y� î ��� , moving

away from the origin. The velocity limit imposes a speed of
4 h� 4 aJ� . The velocity

is too high at f � 
 and the constraint activates and reverses it. The particle

reaches back toward the origin with velocity h�H� ?�� until it is within a region

where
4 h� 4 aJ� under the action of the harmonic oscillator.
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10.10 Range limits on pseudo-particle coordinates

10.10 Range limits on pseudo-particle coordinates

An analysis of range limits on position variables was presented in Sections 10.2,

10.4, and 10.5 which included details of the kinetic energy before and after im-

pacts. Such limits arise naturally from non-penetration constraints for instance.

However, it is also useful to model range limits on the coordinates of the pseudo-

particles themselves. The need for this sort of model is clear when considering

the idealization of a massless rope with finite break tension for instance. If such

a rope attaches two rigid bodies for instance, it will keep them at a distancex aE� " as long as the tension Ð is less than the break threshold Ð " but will cease

to generate any force if Ð �gf ��CEÐ " at any point in time as the rope is then broken.

As an alternative example, consider a hinge joint between two rigid bodies

made out of some metal assembly. Metals typically behave elastically under

stress up to some maximum—the yield point. Thus, hard bounds on constraints

are desirable and these can be enforced with a technique identical to standard

impacts, though with even simpler Jacobians since in general, what is imposed

is the simple constraint
4 Ð 4 '�Ð

max or just Ð
min
� a�Ð ¦ a�Ð

max
�
, there Ð is the

ghost variable of a given constraint.

These additional constraints are dissipative in general using the two stage

impulse model described in Section 10.5. Adding them to the stepping model is

straight forward so it is safe to omit the full details.

10.11 Dry friction and the Coulomb model

Rayleigh dissipation functions of the form R
� � �L�;��� h� a � h� were introduced in

Section 3.12 as the archetype polygenic force. This Rayleigh function generates

a force of the form j
R

� ? � h� which is linear in the velocities h� and therefore,

generates no force at all when h�º� 
 . This type of friction proportional to

velocity is an example of a viscous drag which is typical of the dissipation forces

encountered when moving a solid body through a fluid such as air or water where

this is known as Stoke’s law [175]. More accurate viscous drag forces for high

velocity motion in a fluid involves higher powers of the velocity but the fact

remains that viscous drag forces vanish for zero velocity.

By contrast, dry friction forces are nearly independent of velocity and in par-

ticular, they do not vanish at zero contact velocity. The usefulness of this in

daily life is tremendous since otherwise, it would be impossible to walk, sit still

on a chair, hold a glass of wine, or keep clothing on.

10.11.1 Phenomenology of dry friction

Dry friction arises when two solids come in contact and no fluid is present at the

contact area. The exact details of the contact forces can be very complicated

especially if one accounts for elastic and plastic deformations and in fact, a com-

plete explanation of dry friction starting from molecular forces is still missing

though much progress has been made in that direction recently [231]. Not too
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surprisingly, the explanation of dry friction comes from quantum mechanics as

all other classical explanations, based on surface roughness for instance, have

proved to be wrong. Since the details of such models are not particularly rele-

vant to simulation of the macroscopic phenomena, they are not pursued further.

Good macroscopic constitutive models describing the tangential contact forces

of contacting bodies do exist as described now.

The most striking characteristic of dry friction is that it exhibits two distinct

modes. The first is know alternately as stiction, stick mode, rolling friction, or

static friction, and refers to the situation where the tangential contact forces

maintain zero relative contact velocity between two contacting bodies. Different

names are used in different branches of the literature and can be conflicting,

though static friction is universally understood. Rolling friction, in particular,

means both static friction—which allows rolling as opposed to sliding [266]—and

the additional friction forces observed when a circular object rolls steadily on

a contacting plane. Since stiction forces maintain zero relative velocity, they

produce no work. The second is known alternately as sliding, kinetic friction, or

dynamic friction, and refers to the situation where the relative contact velocity is

non-zero and where the tangential contact force has constant magnitude, directly

opposing the sliding velocity. The transition between the two modes is known as

the stick slip transition.

The principles of dry friction were suggested by Leonardo da Vinci and pre-

sented first by Guillaume Amontons in 1699 and verified by by Charles-Augustin

Coulomb in 1781. The following conclusions were reached regarding the tangen-

tial friction forces at the interface between two contacting bodies:

Area independence: the net friction force is nearly independent of the contact-

ing area;

Kinetic friction force depends on magnitude of normal: the magnitude of the

kinetic friction force is directly proportional to the normal force between

the contacting bodies;

Stick-slip transition depends on magnitude of normal: the magnitude of the

tangential force when the contacting bodies start to move is directly pro-

portional to the normal force;

Kinetic friction depends on sliding speed: the magnitude of the friction force

decreases slightly when the relative sliding speed at the contact increases;

Kinetic friction is maximally dissipative: the kinetic friction force acts in a di-

rection directly opposing the sliding velocity in the case of isotropic fric-

tional contacts. In the anisotropic case, kinetic friction acts in a direction

causing maximum dissipation.

Modern investigations of dry friction have provided partial explanations of these

observation [231]. It is reported that Coulomb did in fact suspect the velocity

dependence of the kinetic friction coefficient but his data was not accurate enough

to make the claim at the time.
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To formulate this more accurately, consider a mechanical system with gen-

eralized coordinates �   / ¢¤ �
, where

�
is an � -dimensional manifold. As-

sume the existence of a contact point at time f8" so the contact constraint is

active: ïL� � �gfÍ" �8�`�A
 . Now, assume that
� ½Eî ¾ � ���   / p ¢¤ / Ú

is a projection op-

erator so that � ½Eî ¾ � � ½Eî ¾ h� is the relative sliding velocity at the contact point� �gfÍ" � . Obviously, the rows of matrix
� ½Eî ¾ are orthogonal to the contact normal:.� ´ ïL� � �gfÍ" ��� ´ � . Let j ½Eî ¾p

be the magnitude of the normal force at the contact

point and let j ½Eî ¾� be the tangential force acting in the contact plane. With this

notation, dry friction is formulated as follows� ½Eî ¾ � � ½Eî ¾ h�Å��
hgh� 4 j ½Eî ¾� 4 a � ½Eî ¾Æ 4 j î ¾p 4 � static frictionh� a � ½Ìî ¾ a j ½Ìî ¾�4 � ½Eî ¾ h� 4;4 j ½Eî ¾� 4 � ?���gh� 4 j ½Eî ¾� 4 � � ½Eî ¾¬ 4 j ½Eî ¾p 4 � kinetic friction,
(10.54)

where � ½Eî ¾Æ C�
 is the coefficient of static friction, and � ½Eî ¾¬ C�
 is the coefficient

of kinetic friction. These relations are true for each contact point. In general� ½Eî ¾Æ � � ½Ìî ¾¬ , and the discrepancy is of the order of 10-20% [232].

The formulation (10.54) is obviously a complementarity condition as either one

of the two sets of constraint is active at any given time. The case of
� ½Eî ¾ h�K� 


can be handled using the methods of Section 3.14.5 and Section 4.3, but the

second condition and the transition between the two requires new analysis.

A reasonable approximation of the dependence of the friction coefficient on

the relative contact velocity � - / Ú
, is given by either of the following two

models [103]:

analytic model: � � � �¨�w� � Æ � ��?�� 4 � 4u S Ú V 4 � 4 Ú � �
discrete model: � = � �¨�w� ´· ¸ � Æ Ç ��?�� 1 Ç 1å È when

4 � 4 aiS��� Æ � ��?B�3� when
4 � 4 CiS , (10.55)

where, in both cases, the kinetic and static friction coefficients are related by:� ¬ � � Æ � �Å?E�3�,� � - � 
O�M�� , and the parameter S*C 
 is a creep threshold. Of

course, all these parameters are dependent on the specific contact properties.

Note that the transition from � Æ to � ¬ is very rapid and in fact, at the time scale

used in interactive simulations, it might be too quick to catch and thus, one can

generally use � Æ if the contact is in stiction, and � ¬ otherwise. Nevertheless,

the conclusion to draw is that the friction coefficient is a velocity dependent

parameter.

The complementarity conditions described in (10.54) and (10.55) define the

friction cone in which the contact forces are constrained to be. To see this, think

of the contact plane with orthogonal directions f 2 and f Ú as shown in Figure 10.11

below. Normal to that surface is the normal force of contact, j
nor, pointing

upward since the contacts are assumed to be non-adhesive. The magnitude of

the normal force,
4 j
nor
4
provides the budget for the magnitude of the tangential
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Contact plane
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Figure 10.11: The Coulomb friction cone.

force according to
4 j
tan
4 a � Æ 4 j nor 4 , which means that tangential forces are

within a disk of radius � Æ 4 j nor 4 for the isotropic case. The net contact force

is the vector sum j
nor V j

tan which must lie within the cone. Two cases are

illustrated in Figure 10.11, namely, one in which the tangential force j
tan lies

strictly in the interior of the cone—a case of static friction—, and one which lies

on the boundary—a case of kinetic friction.

The Coulomb friction cone poses difficulties because it is quadratic, unlike the

linear convex cones defined in Section 16.3. Several approximations of this cone

can simplify the problem of solving for friction forces in multibody multicontact

configurations, as described below in Sections 10.11.3 and 10.12.

10.11.2 An analytic model of Coulomb friction.

A novel model for Coulomb friction using Rayleigh dissipation functions is now

derived. This model is the first instance of a standard NCP formulation which is

motivated by physics and solvable for any value of friction coefficients. Previously

known models are often restricted to a small friction coefficient near zero as

in the Trinkle, Pang, Sudarsky, and Lo model [266], or constructed directly

from the stepping equations as in the models of Anitescu, Potra, Stewart, and

Trinkle [17, 261, 19], this latter family of models being solvable for all positive

values of friction coefficient, when the problems are nondegenerate.

In its nonlinear form, the new model is rigorously isotropic but could easily be

also extended to anisotropic friction as well—fabrics such as velvet are notorious

for being strongly anisotropic. It also includes the possibility of velocity depen-

dence of the friction coefficients as described in (10.55) for instance. Finally, in

the nonlinear formulation, the number of complementarity conditions in the new

model is minimal when compared with the solvable linear formulation [19]. Nev-

ertheless, a linearization of the new model does reduce to a slight modification
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10.11 Dry friction and the Coulomb model

of the standard LCP model [19], which is then regularized with small positive

terms along the diagonal. This makes it solvable by the Lemke algorithm [179]

in all cases, including degenerate ones.

To make this section simpler to read, all subscripts indicating contact index

are dropped. A single contact constraint of the form ïL� �����E
 which produces the

Lagrange multiplier Ñá�*
 is considered. The projection into the plane tangent to

the contact is the � �Î� projection operator
� � ��� so that �Y� � � ��� h� is the relative

tangential velocity at the contact point. An extension to multiple simultaneous

contacts is described at the end of this section.

First recall that a Rayleigh function of the form

R � �{� h�;�W� ��¥� 4 � � �;� h�Î? éK�gf � 4 Ú � (10.56)

eventually produces the constraint
� � ��� h�`� éK�sf � if the damping constant � N 2

is

large enough. This is true for any generalized velocity, including the velocities

corresponding to the ghost variables. The driving velocity é6�gf � will be set to 

in what follows but it is an interesting addition to the modeling vocabulary, as it

can be used to model a drive belt such as that found on grocery store checkout

counters. This is easily reintroduced at the end of the derivation though.

Given the phenomenology described in Section 10.11.1, a pair of complemen-

tary constraints must be imposed as follows

Zero contact velocity: impose �Y� � � ��� h� G 
 using ghost velocity h�*- / Ú
;

Friction cone condition: impose
4 h� 4 a �W��h����Ñ where � is the friction coefficient

and Ñ is the normal force for the given contact ïL� �����E
 .
For the first constraint, introduce the regularized Rayleigh function

Rè � ? � � 4 h� 4 Ú� V h� a � � ��� h� � � (10.57)

which was used before to model the kinematic constraint
� � ��� h�`��
 .

To impose a limit on the magnitude of the friction force, introduce the nega-

tive of the Rayleigh function constructed in Section 10.8, using the form given

in (10.49) which restricts the ghost hÓi�E

R i � ÿ hÓ Ú� V hÓ � Ñ �W�¨h�;�#? 4 h� 4 �,= (10.58)

As shown below, this negative sign is necessary to preserve the dissipation prop-

erty in the case where the velocity limit is applied to a ghost, the variable � in

this case, as opposed to the coordinates � directly.

The combination of these dissipation functions generates the following nonlin-

ear complementarity force terms on the generalized variables � and ghosts Ñ<��� ,
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and Ó , after considering Fourier’s inequality (10.35), equations are foundj ] � � a h�B? Ñ � Õ4 � � ��� h� 4 � � ��� h� hÓ#�j è ��� h� V � � ��� h� V hÓ �4 h� 4 h����
<�
bau?Dj i � ÿ hÓ¡? 4 h� 4 V Ñ �¸�<h��� c hÓi�E
<�jkj���
<� (10.59)

where it is assumed that the Lagrangian does not depend on the ghosts � andÓ to justify j è �£
 and ?Dj i C@
 . The nonlinearity is confined to the Jacobian

matrices
Ä

and d defined as follows:Ä � � �L� 4 � � ��� h� 4 � � � ��� h� a �d � � �L� 4 h� 4 � h� a � (10.60)

so that the rows of
Ä

and d are normalized row vectors.

A few observations can be made on this model at this point. First off, it is

strictly dissipative since a simple computation reveals� c� f � h� a j ] V h� a j èYV hÓej iÅV hÑ�jkj�uÑ � Õ 4 � � ��� h� 4 hÓ�?�� 4 h� 4 Ú ? 4 h� 4 hÓ V hÓ�j ia*
O= (10.61)

The friction coefficient derivative is non-positive, a known experimental fact, so

that � Õ a 
 . The term ?�� 4 h� 4 Ú is negative for �oC 
 as assumed here, and the

same goes for ? hÓ 4 h� 4 Ú ' 
 since hÓ�� 
 . Fourier’s inequality guarantees thatj i aE
 but in fact here, hÓ�j i ��
 by the complementarity rule.

Next, the following two sets of identities are revealed using simple algebraic

manipulations on (10.59), first for the case of stiction when hÓ4�@
 the following

conditions hold hÓy��
O�4 h� 4 'EÑ �W�¨h���,�� � ��� h�`� ?�� h����
 V�IK� �e�,�
(' 4 � � ��� h� 4 't�eÑ �W�¨h���,�h� a � � ��� h�`� ? 4 h� 4;4 � � ��� h� 4 � (10.62)

and then for the sliding case when hÓA� 
 and the following conditions hold

instead hÓ�CE
O�4 h� 4 � ÿ hÓ V Ñ �W�¨h�L�W��Ñ�Ñ �<h��� V�IK� ÿ �,�4 � � ��� h� 4 � � � V � ÿ � hÓ V �eÑ � � hÓ V�IK� ���,�h� a � � ��� h�`� ? 4 h� 4;4 � � ��� h� 4 = (10.63)
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Taken together, these two sets of relations exactly match the definition of

Coulomb friction of (10.54) when
ÿ ���*� 
 . In the case where �uCA
 , there

is no true stiction mode there is a creep velocity of magnitude
4 � h� 4 ��� 4 h� 4 .

However since the regularization parameters are only introduced for numerical

reasons and since they are kept near � G �M
 NQP , this anomaly is not a big issue and

definitely commensurate with observed creep as reported in [231], Chapter 11,

for instance. The direct opposition of the friction force to the velocity is always

exactly verified however, no matter the values of the regularization parameters.

This analytic formulation of the Coulomb friction problem is a standard NCP

formulation with a single scalar complementarity condition. Indeed, the full

equations of motion become�� f ´ |´ h� a ? ´ |´ � a ?�j ] ��
j è ��

Ãa ïL� ��� c Ñá�*

ÃaJ?Dj i c hÓ��E
<� (10.64)

where the definitions of j ] � j è and j i of (10.59) were used. The system (10.64)

is a standard NCP in the variables h�{� |�{� Ñ¨� h� , and hÓ . In fact, at this stage, time

derivatives for � and Ó are deleted in the notation, since they play no role what-

soever in the definition of the equations of motion, though they were essential in

finding the correct formulation via Rayleigh functions and d’Alembert’s princi-

ple. In doing this, a set of non-linear differential algebraic inequalitys (DAI) in

the dynamics variables of the physical system is recovered.

By contrast, the formulation of Pang et al. [266] and subsequent analysis by

Pang and co-workers [62, 8, 269] was never formulated as a standard NCP.

Ignoring the contribution of the derivative of the friction coefficient � Õ in the

definition of j ] of (10.59), the conclusion is that the NCP (10.64) is solvable

for Lagrangians | which have positive definite kinetic energy since for any ap-

proximation of the Jacobian d , as defined in the second line of (10.60), the

corresponding MLCP is solvable. The full solvability proof is deferred so that it

can be presented together with the equivalent result of the discretized problem

as they are similar.

10.11.3 Linearized analytic Coulomb friction model

Nonlinear complementarity problems are a phenomenal beast to wrestle and

thus, it makes sense to revise the analysis to introduce a linearized version of the

analytic friction model. The culprit for nonlinearity is the norm operator
4 � 4

that was needed to limit the tangential friction coefficient within the friction cone.

This can be linearized with the following clever trick, known as the polygonal

approximation. Consider a non-orthogonal basis in x ½ ¦¿¾ - / Ú �8§K� �;� �<�>=>=>=>� � =
such that any vector � can be decomposed as a non-negative linear combination�Y� Ñ ¦ � ¦ x ¦ � � ¦ �E
<�8§â����� �O�>=>=M=~� � =T� (10.65)
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� �
x ½¿P ¾

x ½ ¦ ¾ x ½l7 ¾x ½ É ¾x ½ Ú ¾ x ½ É ¾
x ½ Ú ¾ x ½ 2 ¾x ½ 2 ¾

Figure 10.12: Non-orthogonal bases in
/ Ú

and the decomposition of a vector �
on the basis elements. Only three vectors are needed but having

a larger basis improves the approximation of the norm of � as the

sum of the nonnegative projections.

so the Euclidean norm
4 � 4 is approximately4 � 4 G Ñ ¦ � ¦ � c a �¸� (10.66)

with the definitions

��� ×ØØØØÙ
�W2�#Ú
...� p I

Ü ÝÝÝÝß � and c � ×ØØØØÙ
��
...�
Ü ÝÝÝÝß = (10.67)

This is illustrated in Figure 10.12. The difference between the exact norm de-

pends on how closely the vector � is to a basis vector. Given a large basis, this

error is small. Now, modify the definition of the projection operator
� � ��� h� to

read
� � �;� h� which, instead of being a projection in

/ Ú
decomposed on the usual

orthonormal basis, is now the vector containing the � = projections of the tangen-
tial contact velocity—the sliding velocity—along � = basis vectors x ½ ¦¿¾ . Let the

norm of
4 h� 4 be simply c a h� , which is correct when h�*�E
 , the linearized Rayleigh

functions (10.57) and (10.58) defining the friction model are now replaced with

Rè � ?nmo � 4 h� 4 Ú� V h� a � � ��� h�;pq�� (10.68)

and the dissipation for the Ó ghost restricted to hÓ�CE
 is

R i � ÿ hÓ Ú� V hÓ � Ñ �W�¨h���3? c a h���,= (10.69)
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Given that both ghosts are now restricted with h� � 
 and hÓ£�5
 , the forces

satisfy the following systemj ] � � a h� V Ñ � Õ Ä a hÓ
bau?Dj è �A� h� V � � ��� h� V�cohÓ c h� �E

bau?Dj i � ÿ hÓ¡? c a h� V Ñ �¸�<h��� c hÓ �*
O� (10.70)

according to Fourier’s inequality (10.35). This is recognized as the Anitescu-

Potra-Stewart-Trinkle solvable LCP model [259, 262, 19, 261], with the excep-

tion of the regularization parameters �#� ÿ , which correspond to small diagonal

perturbation. This difference is investigated further in Section 10.11.5.

10.11.4 A discretized model of Coulomb friction

As in the previous sections dealing with polygenic forces and dissipation forces,

e.g., Section 3.12, the main issue is to choose an appropriate discretization of the

integral ?4t v" ´
R

� ´ h� ÿ � , where � is the agglomerated vector of regular and ghost

coordinates. As was done in Section 4.3 in the discretization of strong Rayleigh

functions corresponding to regularized holonomic constraints, an implicit dis-

cretization is chosen for most terms with the exception of the term proportional

to the derivative of the friction coefficient, � Õ , in (10.59). The reason is that this

term is small and that, as shown in the next section, discretizing it implicitly

breaks a symmetry in the NCP or LCP formulation, jarring with the solvability

argument.

The Rayleigh function Rè of (10.57) was discretized in Section 4.3 and the

same method is used here. Looking at the force terms generated by R i of (10.58),
the following discretizations are usedj ½ 0 ¾= i-Á ] � �� � ÑO2 V Ñ " � � Õ � �¨2�� Ä 2,Ó�2M�j ½gN ¾= i-Á ] ��
<�j ½ 0 ¾= i-Á è ��
<�j ½gN ¾= i-Á è � d a 2 Óe2�?Dj ½ 0 ¾= i-Á i ��
<�?Dj ½gN ¾= i-Á i � ÿ hÓ�2 V �� � Ñ 2 V Ñ " � �W� � " �3? d 2 h�W2M�

(10.71)

with the definitions hÓ�2�� R N 2 � Ó�2`?@Ó " � and similarly for h�¸2 , as well as the

velocity �¨2�� R N 2 � �L2�?@� " � , and the normalized velocity projection matricesÄ 2�� 4 �¨2 4 N 2 � a 2 and d 2Z� & �W2 4 N 2 � a2 . The negative sign in the last two equations

are there for convenience in writing the complementarity condition. Since there

are no other terms in the Lagrangian involving Ó , this is purely notational.

For the linearized model of Section 10.11.3, the force terms are computed
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similarly to yield j ½ 0 ¾= i-Á ] � �� � ÑO2 V Ñ " � � Õ � �<2,� Ä 2,Ó�2M�j ½gN ¾= i-Á ] ��
<�j ½ 0 ¾= i-Á è ��
<�j ½gN ¾= i-Á è � c Ó�2M�? j ½ 0 ¾= i-Á i ��
<�? j ½sN ¾= i-Á i � ÿ hÓ�2 V �� � Ñ 2 V Ñ " � �W� � " �3? c a h�¸2M�
(10.72)

and all terms with the exception of
Ä 2 involve only linear operators.

10.11.5 Solvability of analytic and discretized Coulomb friction

models

First introduce the notation necessary to consider multiple frictional contact

points. Consider a set of nonpenetration conditions given by � î scalar functionsï ½ ¦¿¾ � �;�á� 
 , each describing a single contact with index § whenever ï ½ ¦¿¾ � �����
 . Contact surface § has normal  ½ ¦¿¾ � ´ ï ½ ¦¿¾ � ´ � and local tangent projection

operator
� ½ ¦¿¾ � �;� or � ½ ¦¿¾ � ��� . For the latter case of non-orthonormal projections,

the number of directions for each contact is � ½ ¦�¾= . The physical properties are

given by the friction coefficient function � ½ ¦¿¾ and the regularization parameters

are given by ) ½ ¦¿¾ �É� ½ ¦¿¾ and
ÿ ½ ¦¿¾ for the contact, zero velocity and friction cone

dissipation functions, respectively. These parameters are agglomerated in the

diagonal matrices
� ���Î� 3 , and � , respectively, and have the explicit form� � �<�%* 9 ��� ½ 2 ¾ � � ½ Ú ¾ �M=>=>=>� � ½ p O ¾ �,��	� �<�%* 9 � ) ½ 2 ¾ � ) ½ Ú ¾ �>=>=>=�) ½ p O ¾ �,�3 � �<�%* 9 � ÿ ½ 2 ¾ � ÿ ½ Ú ¾ �>=>=>=M� ÿ ½ p O ¾ �,�� � �<�%* 9 � � ½ 2 ¾ � Ú;��� ½ Ú ¾ � Ú;�>=>=>=�� ½ p O ¾ � ÚM�,�� � �<�%* 9 � � ½ 2 ¾ � p�r I�s" �É� ½ Ú ¾ � p'r I�s� �>=>=>=M�É� ½ p O ¾ � p'r I�s� O �,=

(10.73)

Each active contact has a tangential velocity � ½ ¦¿¾ � � ½ ¦¿¾ h� and a tangen-

tial force � ½ ¦¿¾ , and in the linearized formulation, a norm estimator c ½ ¦�¾ �� ���M�;�>=M=>=>�M�M� a which is an � ½ ¦¿¾= � � matrix, leading to the diagonal block matricesÄ � �¨�%* 9 � Ä ½ 2 ¾ � Ä ½ Ú ¾ �>=>=>= Ä ½ p O ¾ �,�d � �¨�%* 9 ��d ½ 2 ¾ � d ½ Ú ¾ �>=>=>= d ½ p O ¾ �~�c � �¨�%* 9 ��c ½ 2 ¾ � c ½ Ú ¾ �M=>=>= c ½ p O ¾ �~� (10.74)

where
Ä

and d are matrices of size � î � � � î and c is of size l ¦ � ½ ¦¿¾= ��� î .
Putting all these elements together, the stepping equations take the quasilinear
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form ×ØØØÙ  ? � a¬ ?D a¬ 
� ¬ ø � 
 d a¬ ø ¬ ø 
 � 

 ? d ¬ ø � 3
ÜÞÝÝÝß

×ØØØÙ \� ÑÓ
ÜÞÝÝÝß V ×ØØØÙ � �� è�6j� i

ÜÞÝÝÝß � ×ØØØÙ 

 ¯ï
ÜÞÝÝÝß
ÃaEÑ¡c ¯D�E

baEÓ�c ï �E
<� (10.75)

for the case of the nonlinear friction model,×ØØØØÙ  ? � a ¬ ?D a¬ 
� ¬ ø � 
 c ¬ ø 
 � 

 ? cba � 3
ÜÞÝÝÝÝß

×ØØØÙ \� ÑÓ
Ü ÝÝÝß V ×ØØØÙ � �� è�tj� i

Ü ÝÝÝß � ×ØØØÙ 
r ¯ï
Ü ÝÝÝß
Ãa � c r �E

Ãa*Ñ c ¯D�*

ÃaEÓ�c ï �E
O�

(10.76)

for the linearized model.

Block vectors \�� � è � �tj and � i have different forms depending on whether the

position or velocity formulation is used, as discussed is Section 3.15 and Sec-

tion 4.5. This leads to either using \ � � ¬ 0â2 or \ �¤� ¬ 0â2 , and the block

components � � ��� è � �tj and � i vary accordingly. The ghost coordinates �b� Ñ<� andÓ also include either a factor of R Ú for the position formulation and R for the

velocity formulation.

The system (10.75) is quasi-linear in the sense that block matrices
� ¬ ø �  ¬ ø

and d ¬ ø should in fact be evaluated at the solution � ¬ 032L���Î� Ñ and Ó .
To understand the solvability of the MLCP defined in (10.75), start with the

case where all block matrices are evaluated at the beginning of the time step

so that F Õb� F . This introduces much symmetry in the block matrix on the

left hand side of (10.75) and leads to a solvable MLCP. Indeed, in reference to

the solvability theory discussed in Section 16.4, what is needed for either the

quasilinear or the linear formulation is an estimate of the size of �Oa3�T� where �
is the square matrix appearing in (10.75) or in (10.76). The estimates are� a � nonlin � �º\ a  \ V � a � � V Ñ a ��Ñ V Ó a 3 Ó V Ñ a � Ó?�\ a � � ¬ ? � ¬ ø �s��?�\ a �  ¬ ?� ¬ ø �8Ñ¨� (10.77)

for the nonlinear case, and� a � lin � �º\ a  \ V � a � � V Ñ a ��Ñ V Ó a 3 Ó V Ñ a � Ó?�\ a � � ¬ ? � ¬ ø �s��?�\ a �  ¬ ?� ¬ ø �8Ñ¨� (10.78)
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for the linear case. Choosing the approximation  ¬ ø �  ¬
,
� ¬ ø � � ¬

, and� ¬ ø � � ¬
, the conclusion is reached that unless the diagonal block matrices all

vanish simultaneously, there cannot be an exceptional family of elements, as per

Definition 16.12, for these complementarity problems and thus, they are both

solvable. The same conclusion is reached by applying the friction feasibility the-

ory of Pang and Stewart [227], which hinges also in the absence of an exceptional

family of elements, but requires also a number of additional assumptions. Since

solvability is proven already, there is no need to go over these.

A proof of the existence of a solution is hardly a solvability proof, however.

Solvability is now demonstrated for each model, starting with the nonlinear model

of (10.75). First, symmetrize by setting  ¬ ø �À ¬
and similarly,

� ¬ ø � � ¬
in (10.75). Drop all F and F Õ prime subscripts in the block matrices d �  and�
, and then take the Schur complement of the first line of (10.75), solving for\ , and evaluating and evaluating the following substitutions\¡� ?  N 2 � � V  N 2 � a � V  N 2 `Ñ<�� \¡� �  N 2 � a � V �  N 2 `Ñ6? �  N 2 � � �b\á��  N 2 � a � V   N 2 `Ñ6?B  N 2 � � = (10.79)

This yields the following reduced system×ØÙ � è è � è Å d� aè Å � Å>Å 
? d`a � 3
Ü Ýß ×ØÙ � ÑÓ Ü Ýß V ×ØÙ � è ? �  N 2 � ��6jb?B  N 2 � �� i

Ü Ýß � ×ØÙ 
 ¯ï
Ü Ýß
ÃaEÑ¡c ¯D�E

baEÓ�c ï �E
O� (10.80)

where the following definitions were used� è è � �  N 2 � a V � �� Å>Å ��  N 2  a V �Î�� è Å � �  N 2  a = (10.81)

Now, since � è è is symmetric and positive definite, it is possible to compute

another Schur complement, solving for � and substituting, to getö � 2 2 ? � a2�Ú� 2�Ú V � � Ú Ú ÷ ö ÑÓ ÷ V ö � j ?B  N 2 � � ? � aè Å � N 2è è � è� iÅV ¶ � N 2è è � è ÷ � ö ¯ï ÷
ÃaEÑ¡c ¯D�E

baEÓ�c ï �*
O� (10.82)

with following definitions for the block �(¦®ª matrices� 2�2Z� � Å>Å ? � aè Å � N 2è è � è Å� Ú~2Z� d a � N 2è è � è Å� Ú�ÚD� 3 Vod a � N 2è è d = (10.83)
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10.11 Dry friction and the Coulomb model

The problem defined by (10.82) is a pure LCP. This is solvable by Lemke’s

algorithm [179] because the matrix �vu � �5V �� is copositive plus, being the

sum of a positive definite matrix� � ö � 2 2 ? ��aÚ>2� Ú>2 � Ú Ú;� ÷ (10.84)

and a matrix with non-negative entries, ©M�� « ¦®ª �*
 , where �� is defined blockwise

as �� � ö 
 
� 
 ÷ � (10.85)

and the blocks of matrix �� have dimensions matching the blocks of matrix � .

The proof that �wu is copositive plus is found in [69] and is used as the main

proof in [14] but for a slightly different problem which is now described.

Consider now the linear model of (10.76). The matrix appearing in this model

is nearly identical to that of the Anitescu, Potra,Trinkle, and Stewart model [17,

261, 259, 19], except for the addition of a diagonal perturbation with non-negative

elements, and the neglect of holonomic constraints. Repeating the procedure

just described for the nonlinear case but taking only one Schur complement,

eliminating only the \ variables, the reduced system reads×ØÙ � è�è � è Å c� a è Å � Å?Å 
? cÎa � 3
Ü Ýß ×ØÙ � ÑÓ Ü Ýß V ×ØÙ � è ? �  N 2 � ��6jb?B  N 2 � �� i

Ü Ýß � ×ØÙ r ¯ï
Ü Ýß
Ãa � c r �E

ÃaEÑ¡c ¯D�E

baEÓ�c ï �E
O� (10.86)

with the definitions � è è � �  N 2 � a V � �� Å>Å ��  N 2  a V �Î�� è Å � �  N 2  a = (10.87)

Now defining

�3" � ×ØÙ � è è � è Å c� a è Å � Å>Å 
? c a 
 3
Ü Ýß � and

� � ×ØÙ 
 
 

 
 

 � 
 Ü Ýß�xu � �3"¸V � � (10.88)

it follows that �3" is positive definite, and since
�

contains only nonnegative ele-

ments, �yu is co-positive plus and thus solvable using the Lemke algorithm [179].

By contrast, the Anitescu-Potra-Stewart-Trinkle model matrix is only co-positive
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since it does not have any of the positive diagonal perturbations of the present

model. The Lemke algorithm is more robust when applied to co-positive plus

matrices since there cannot be any form of cycling then [69].

If the multibody system is subject to a mix of locally linearized, regularized

holonomic and nonholonomic constraints, as described in Section 4.5, the analysis

above holds with the replacement of the mass matrix  with the positive definite

matrix � defined in (4.32), and the vector \ is replaced with � \ a � � a � Ð a � a
of (4.29) for the position formulation or (4.31) for the velocity formulation, as

the case applies. In either case, all the conclusions just derived survive.

Solving either the nonlinear model (10.75) or the linearized version (10.76)

efficiently is a challenging task and often requires symmetric approximation and

splitting, as discussed in Chapter 17 and in Anitescu and Hart [16]. However,

having both an existence and a solvability proof is a good thing, indeed. As

shown in Chapter 11, other formulations of the Coulomb friction problem do not

enjoy a guaranteed existence proof and this allows to the existence paradoxical

configurations which do not have finite solutions for the contact forces.

10.12 Survey of numerical models of dry friction

Modeling of Coulomb friction using complementarity formulation in multibody

systems has a long history, going back to the work of Lötstedt [189] in the

early 1980s, followed by Baraff [34, 33] in the graphics literature, and Pana-

giotopoulos [1, 224], Glocker and Pfeiffer [232], and Anitescu, Stewart, Trinkle,

and Pang [229, 266, 228, 262, 17, 19], in the mathematical and engineering lit-

erature. Unfortunately, these are not solvable except in very low friction. Only

the formulations of Anitescu, Stewart, Trinkle, and Potra [17, 261, 259, 19], are

actually solvable for arbitrary non-negative friction coefficients.

NCP models have also been proposed by Pang and co-workers [266, 229, 269,

62], among many others, but without any proof that the NCP was solvable,

except in the limit of very small friction coefficients. Existence and solvability

are still open problems for the case of deformable bodies.

The problem here is that dry friction produces impulses during stick-slip tran-

sition and this actually means that accelerations are not well defined. A classical

two-dimensional example due to Painlevé [223], involving a rod contacting a

plane, can be used to demonstrate the existence of configurations with no fi-

nite solutions and others with multiple solutions, in addition to regular cases

with unique solutions. However, this paradox is lifted if an implicit time step-

ping formulation in terms of velocities is chosen, and the dry friction model

is discretized judiciously, as demonstrated in the work of Stewart and Trin-

kle [261, 259], and refined by Anitescu, Potra, and Stewart [17, 19]. Existence

and solvability is established for these models but only for non-degenerate cases.

The diagonal perturbations corresponding to the regularization of the Rayleigh

functions of Section 10.11.2 remove this non-degeneracy requirement, as shown

in Section 10.11.5.
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10.12 Survey of numerical models of dry friction

Except for the work of Pandolfi, Kane, Marsden, and Oritz [225], none of the

previously cited time stepping schemes are derived from a variational principle.

The formulation of Pandolfi et al. [225] shares similarity to the present in that

it also uses Rayleigh dissipation functions. However, instead of introducing the

tangential force explicitly with Lagrange multipliers, the Rayleigh functions are

defined as

R
� Ñ ¦ � ½ ¦¿¾ Ñ ½ ¦�¾ & � ½ ¦¿¾ � ��� h�	&®� (10.89)

where the sum extends over all contacts § , each of which has friction coefficient� ½ ¦¿¾ and tangential velocity projection
� ½ ¦¿¾ � �;� . This is possible since their ap-

proach relies on a nonsmooth optimization scheme which minimizes the Rayleigh

functions (10.89) at each step. The main issue with this work is that one needs

to solve nonsmooth, nonconvex, nonlinear optimization problems. A proof of the

existence of a solution was not provided in [225].

New friction models are routinely published in the literature. The reader is

referred to the monograph of Brogliato [56] for a broad survey.

Some notable approximations of dry frictional contacts are worth mentioning

though. The simplest is to only compute the normal forces and to then apply

a force j
tan

� ? � Ñ�8:9;� � � � �;� h��� for each contact. The problem here is to decide

what to do with 8:9;� � 
T� . One solution for this is to replace 8:9;� � \Q� with a similar

function that is not discontinuous, such as
�1* � Ê ��z \k� for instance, with z CE
 . For

large values of z , this produces something similar to 8:9;� � \Q� though it is always

the case that
��* � Ê ��z \Q�W��
 for \¡��
 and this leads to significant creep velocities

at contacts, an undesirable feature. Trying to fix this problem leads necessarily

to a nonsmooth function and this, in turn, requires solution of LCPs, as shown

in [258].

Assuming that one chooses a truly nonsmooth formulation, simplifications

come in two categories, namely, relaxing the coupling between the tangential

force budget and the magnitude of the normal force of (10.54), or decoupling the

components of the tangential force when estimating the magnitude. This leads

to the following models.

Using the usual Euclidean norm, bound the tangential contact force j
tan as4 j

tan
4 a � Ñ , for some Ñ�C�
 , such as the last known value, for instance. This

replaces the friction cone of Figure 10.11 with a cylinder. Depending on the size

of the current normal, this approximation produces an overestimate or underes-

timate of the tangential force budget, as shown in Figure 10.13. The resulting

stepping scheme for this is still nonlinear though. The main issue here is that for

a stacking problem, unless the estimates Ñ are adjusted dynamically, the tangen-

tial force budget for items at the bottom of the pile will tend to be insufficient,

whilst those at the top will be excessive.

One can also use a friction pyramid approximation to the friction cone, bound-

ing each component of the tangential force individually along the tangential di-

rections x 2 and x Ú specified by the projection operator
� � ��� h� , so that j

tan ¦ a� Ñ<��§W�.��� � , and Ñ is the normal force of the current computation. This is done

in [228] for instance. Figure 10.14 illustrates the situation. The coupling between
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{ { { { { {{ { { { { {{ { { { { {| | | | | || | | | | || | | | | | Friction cone

�
Friction
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Contact Planex 2 x Ú
Figure 10.13: The cylindrical approximation to the Coulomb friction cone.

the magnitude of the tangential force budget and the normal survives, but there

can be excessive friction when the external forces are aligned toward the corners

of the pyramid.

Combining the previous two strategies leads to box approximation of the fric-

tion cone in which each component of the tangential force is bounded by an

estimate of the normal force, so that j
tan ¦ a � Ñ��8§â�£�;� � , and Ñ is an estimate of

the corresponding normal force. This leads to anisotropy as in the case of pyra-

midal friction above, and the absence of scaling of the tangential force budget

described in the cylindrical approximation approximation to the friction cone.

However, the MLCP describing this problem is now a simple boxed, mixed linear

complementarity problem, and the matrix defining it is now positive definite,

provided the perturbation parameters are all positive.

For both the box and cylindrical friction models, the problems to solve are

equivalent to quadratic programs, as shown in Chapter 17. It is also possible to

perform iterations so the estimate Ñ is refined, and thus the cylinder or the box

can be scaled. Such schemes have been used several times in the literature at least

in [191, 273, 236, 2, 238, 142, 143], and probably numerous other instances. The

convergence of these techniques is often assumed [77], but as shown in Chapter 17,

it is not guaranteed.

For completeness, an illustration of the polygonal approximation of the friction

cone described in Section 10.11.3 is found in Figure 10.16. The directions x ¦ can
be chosen to reduce the anisotropy found in the pyramidal model, and strictly

scale the tangential force budget with the normal.

The cylindrical, pyramidal, box, and polygonal friction cone approximation

described above, are all solvable when discretized with the techniques of Sec-

tion 10.11.4, and moreover, they are all strictly dissipative, since they can all

be formulated as approximations of the Rayleigh functions (10.57) and (10.58),

which are dissipative analytically as shown in Section 10.11.2, and also when

discretized using a short calculation similar to that of (10.53).

In addition to the models provided above, several other models and algorithms

applicable to the quasi-static problem of deformable bodies were reviewed in
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Figure 10.14: A pyramidal approximation model to the Coulomb friction cone.

� � � �� � � �� � � �� � � �� � � �� � � �� � � �

� � �� � �� � �� � �� � �� � �� � �

� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �

� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � �� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �� � �� � �Friction coneFriction Box

� Contact Planex 2 x Ú
Figure 10.15: The box approximation model of the Coulomb friction cone.
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Figure 10.16: The Anitescu-Potra-Trinkle-Stewart approximation model of the

Coulomb friction cone.

Christensen, Klarbring, Pang, and Strömberg [62, 63, 64]. Generally, these al-

gorithms are reported to work well only when the friction coefficients are very

small.

More recently, Glowinski, Shiau, LieJune, Ming, and Nasser, constructed dry

friction models and solution methods in a series of articles [101, 102, 255, 103]

based on a non-standard complementarity formulation. The idea here is to com-

pute a Lagrange multiplier Ð such that, stated here in one dimension for simplic-

ity, Ð h�`� & h�}&Þ= (10.90)

This type of condition is not at all similar to the complementarity formulation

used here. It is not clear when such nonlinear conditions can be solved, even

though the idea itself is sound and correctly captures the physics. Whether this

formulation resolves the Painlevé paradox remains to be seen.

10.13 End notes

To get to grips with the issues related with friction, consider a classical example

of a point particle moving in one dimension subject the combined force of a

harmonic oscillator, dry friction, and a sinusoidal force. This example is found

in [113], example 6.5, for instance, and used recurrently in the literature. The

point particle has unit mass, it is attached to the origin with a spring of unit

strength, and it is subject to a viscous drag force of ?�� h� where ��C 
 . The

particle is also subject to dry friction which is represented here as � 8:9;� �¨h�;� ,
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where � is the effective friction coefficient and 8�9�� � \Q� is the signum function.

Using Newton’s law directly, the equation of motion reads|� V �¥� h� VÝ� 8�9�� �¨h�;� V �Å� _ °M±;8 � Ô f �,= (10.91)

The dry friction force is obviously nonsmooth, producing the term
� � wheneverh� ï� 
 . Resolving what happens when h�K� 
 is the main issue when solving dry

friction problems. Since formally, the signum function at the origin can take all

values in the interval © ?��;�M� « , system (10.91) is in fact a differential inclusion,

which should be written as
|�á-�� , where � is the set of possible values of the

forcing terms. An analysis of these in the particular context described here can

be found in in [258]. A simple strategy consists of analyzing the transition and

trying to pick the right value of 8�9�� � 
�� using consistency arguments.

The solution constructed in [113], for instance, requires adaptive time stepping

and switch conditions at each transition, as well as the solution of a small LCP to

pick the suitable value for 8:9;� � 
�� whenever the velocity crosses zero. By contrast,

using either the smoothed nonlinear or the LCP formulation for the friction model

presented in Section 10.11.4, one can compute a solution indistinguishable from

the one presented in [113], but using a large time step R � ���S�
 . The solution

computed using the nonlinear model or LCP model are shown in Figure 10.17.

The data is identical though it is much faster to compute a solution to the LCP

directly, at least for this case. Also, in comparison to alternative models such

as those of Glowinski [103] and references provided therein, there is no high

oscillation in the Lagrange multiplier term.
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10 Nonsmooth Problems

friction
velocity
position

nonlinear model, smoothing = �M
 N É

�M
üSñ�


Sñ �
?D�? ñ

friction
velocity
position

lcp model

�M
üSñ�


Sñ �
?D�? ñ

Figure 10.17: A one-dimensional dry friction example, integrated using both the

nonlinear formulation the linear complementarity problem reduc-

tion.
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11 Bagatelle VII:

The Painlevé Paradox

Dry friction is a non-standard force model defined as a mix of nonholonomic and

nonideal constraints. This formulation leads to paradoxical configurations where,

apparently, it is not possible to compute the acceleration of simple dynamical

systems. This paradox is easily analyzed in the case of a planar rod in dry

frictional contact with a line in the state of kinetic (sliding) friction.

Historical background of the problem is provided in Section 11.1, followed

by a kinematic description of the mechanical system. The equations of motion

are then derived for both the static and kinetic friction states in Section 11.3.

The paradox is discussed in details in Section 11.4 where numerical experiments

are also presented to illustrate that the dry friction formulation of Chapter 10

and the discretization of Section 10.11.4 successfully resolve the problem, as was

proved in Section 10.11.5. Other resolution techniques and models are discussed

in Section 11.5.

11.1 Introduction

Then French mathematician and politician Paul Painlevé observed that Cou-

lomb’s law of dry friction can be used to construct simple examples in two

dimensions which have either no finite solution, several solutions, or a unique

solution, depending on the details of the configuration, as first reported in [223].

This example is presented here in order to illustrate how the variational stepping

scheme combined with the friction model developed in Section 10.11.4 leads to a

resolution of this paradox.

The paradox is realized by a simple two-dimensional rod of length ��ç and mass7 subject to downward gravity and Coulomb friction at one contact point as

described below and in [259, 232, 34] for instance. A different version of this

paradox which has more to do with differential inclusions is also found in [108].

The two formulations will be compared briefly in Section 11.5.
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11 Bagatelle VII: The Painlevé Paradox

11.2 Basic configuration

Consider a two-dimensional thin rod of length ��ç , width � é and mass 7 , with

uniform density. The inertia of this system is easily computed to be

8 " � q��N � � \ ÚKq æN æ � \ 2 7ñ ç é Ç \ Ú 2 V \ ÚÚ È� 74ç Úî V 7 é Úî � (11.1)

where \�2M��\kÚ are the Cartesian coordinates of the points interior to the rod. In

the limit of vanishing thickness, this reduces to. �Ã�� 0 " 8 " � 74ç Úî = (11.2)

When the density is nonuniform and concentrated toward the center, the value of8 " can be made smaller and, as we show in Section 11.3.2, a smaller value of 8 "
allows to construct paradoxical examples for lower values of friction coefficients.

The value 8 " �º74ç Ú � î makes the algebra slightly simpler.

The coordinates of the system are the planar coordinates of the center of mass\ �sf �Z- / Ú
as well as the elevation angle

�
. This is agglomerated in the coordinate

vector �È- /¸É �`� ×ØÙ � ½ 2 ¾� ½ Ú ¾� ½ É ¾ Ü Ýß �Àö \ü ÷ �w\¡�Àö \ ½ 2 ¾\1½ Ú ¾ ÷ = (11.3)

The î6��î mass matrix for this system is � �¨�%* 9 � 7B�87B��8 " �~� (11.4)

and is constant. Introduce the unit vector < � ü ��- / Ú
as< � ü �W� ö °>±�8 ü8 � � ü ÷ = (11.5)

The 2D Cartesian coordinates of the two extremities of the rod are labeled with

a
�

label are are found at � ½ÌD ¾ �º\ � ç%< � ü �,� (11.6)

and these two points have velocity:� � � hü ç Ô 2�< � ü �,� (11.7)

where we introduced the � � � orthonormal matrix

Ô 2Z� ö 
 ?��� 
 ÷ � (11.8)

which is a root of the identity, i.e., Ô Ú2 � � Ú , where � Ú is the � � � identity matrix.
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11.2 Basic configuration

ü
�

j "

j p
hü j � �*7���

� ½ 0 ¾

� ½gN ¾j �
Figure 11.1: Schematics of a two-dimensional rod in frictional contact with a

plane. The contact point is either touching or separating in the

normal direction, and either sliding or sticking in the tangential

one.

To impose non-penetration constraints at the extremities of the rod, we simply

impose that the d coordinates of the extremities � ½ED ¾ be non-negative, namely,� ½ED ¾ � ���W��� ½ Ú ¾ � çp8 � � � � ½ É ¾ �w��� ½ Ú ¾ � çp8 � � ü �E
O� (11.9)

which produces the Jacobians^ ½ED ¾ � ò 
 � � ç�°M±;8 � �%½ É ¾ � ó � ò 
 � � çL°M±;8 ü ó = (11.10)

For any of these constraints, the projected tangential velocity at the contact

point along the �%½ 2 ¾ or \ direction is given by
� ½ED ¾ h�Å� � ��� 
��%�1½ÌD ¾ where� ½ED ¾ � ò � 
 g ç¥8 � � � � ½ É ¾ � ó �mò � 
 g çp8 � � ü ó = (11.11)

Since an acceleration formulation is used in what follows, the second time
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11 Bagatelle VII: The Painlevé Paradox

derivatives are needed. A simple computation yields the following terms|� ½ED ¾ � ���W� ^ ½ÌD ¾ � ��� |� V h^ ½ED ¾ � ��� h�`� ^ ½ED ¾ � ��� |� V ¯ ½ED ¾ � �{� h�;�~� (11.12)¯ ½ED ¾ � �{� h�;�w� g ç hü Ú 8 � � ü � (11.13)xx f ò � ½ÌD ¾ � �;� h� ó � � ½ED ¾ � ��� |� V h� ½ED ¾ � ��� h�`� � ½ED ¾ � ��� |� Voï ½ED ¾ � � � h�;�,� (11.14)ï ½ED ¾ � �{� h�;�w� g ç hü Ú °>±�8 ü = (11.15)

In addition, the values of the following matrices will be needed in what follows_ � ^ ½ED ¾  N 2 ^ ½ED ¾ a � �7 ö�� V ç Ú 78 " °>±;8 Ú ü ÷ � �7 ò � Voî °>±�8 Ú ü ó � (11.16)d � � ½ED ¾  N 2 � ½ED ¾ a � �7 ö � V ç Ú 78 " °>±;8 Ú ü ÷ � �7 ò�� Voî 8 � � Ú ü ó (11.17)@� � ½ED ¾  N 2 ^ ½ED ¾ a � ^ ½ÌD ¾  N 2 � ½ED ¾ a � ? ç Ú8 " 8 � � ü °>±;8 ü � ? î7 8 � � ü °>±�8 ü �
(11.18)

where the final expression on each line corresponds to the specific case where8 " �:74ç Ú � î . The configuration discussed in [34, 259, 232] corresponds to a

simple case where � ½sN ¾ � ���K� 
 and imposing Coulomb friction at that contact

point. This is illustrated in Figure 11.1.

11.3 Equations of motion in acceleration form

Let us assume that there is a contact point so that � ½gN ¾ � ���Î�.
 , which implies

that
ü - © 
<�:« « . We drop the � ?D� superscript form now on to simplify the notation.

In fact, most of the results derived here carry over to the analysis of the other

contact point with � ½ 0 ¾ � ���W��
 , as expected from symmetry.

When the contact �k� ���¡� 
 is active, there is net generalized normal forcej p � ^Îa Ñ where Ñ	- / 0 , and j p - /¸É
. This is the net effect—including the

torque—of the force [j p � � 
<� Ñ�� a applied at point � ½ED ¾ , i.e., the generalized forcej p includes both the force and the torque. The magnitude of the contact force

is thus
4 [j pK4 ��Ñ . Likewise, the generalized tangential force produced by friction

at the contact point is j � � � a h� . Recall that the ghost velocities are used for

nonholonomic constraint forces, as shown in Section 3.14.5 and the description of

the friction model in Section 10.11.2. The magnitude of the tangent force applied

to extremity point is thus � is
4 [j � 4 � h� . The Coulomb relation thus reads& h�[&Æa � Ñ<� (11.19)

where � is the friction coefficient. For simplicity, the same coefficient is used for

both static and kinetic friction here.

Assuming the only external influence is that of a constant gravitational field

producing the force j � �  �� with �� � � 
O� � � 
T� a , and � C�
 is the gravitational
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11.3 Equations of motion in acceleration form

acceleration, the equations of motion read |�`�  ��`V�^ a Ñ V � a h�� |� V�ïL� �{� h���W� hÓ
Ãa �Q� ����c Ñ��E

Ãa � ÑK? h� c Ó�aE

Ãa � Ñ V h� c Ó��E
<= (11.20)

These equations are usually simplified by explicitly distinguishing two cases,

namely, the stiction case for which
� h�Å��
 and the sliding case for which h�	� � Ñ ,

and therefore
� h� ï��
 .

Explicit equations are now derived for each of the cases and the conditions

for transition between them are characterized. The case of stiction is analyzed

in section 11.3.1 and the case of sliding motion is covered in section 11.3.2.

The nature of the Painlevé paradox is then analyzed in Section 11.4 which also

contains a discussion of how this is resolved using the techniques of Chapter 10,

as well as a numerical example.

11.3.1 Stiction case

Assuming that
� h�Y�.
 , we keep the equation

� � ��� |� V h� � ��� h�H� 
 satisfied and

this leads to the following MLCP×ØÙ  ? � a ? ^Îa� 
 
^ 
 
 ÜÞÝß ×ØÙ |� h� Ñ ÜÞÝß V ×ØÙ ?DjïL� �{� h�;�¯ � �{� h�;�
ÜÞÝß � ×ØÙ 

Ò ÜÞÝß
baEÑ c Ò��E
O� (11.21)

where j is the generalized external force applied on the system, including the

pull of gravity and any other force. Eliminating the variable
|� by taking a Schur

complement reduces this system to a LCP involving only the variable Ñ
� Ñ V �È�*Ò
Ãa*Ñ c Ò��E
O� (11.22)

where the � � � (a scalar) matrix
�

is the Schur complement

� �mò _ ?� a d N 2  ó � � V 74ç Ú �)8 "7 �� V�î 8 � � Ú ü � ñ7 �� V�î 8 � � Ú ü � �7 CE
O�
(11.23)

using the definitions of _ from (11.16), d from (11.17), and  from (11.18),

respectively, and using the definition of (11.2) for 8 " . The one-dimensional
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11 Bagatelle VII: The Painlevé Paradox

vector � , also a scalar�È�u¯ � �{� h��� V*��^ ?� d N 2 � �  N 2 j�?� d N 2 ï�� �{� h�;�� � mo g � ç hü Ú� � � V �� V � 8 � � Ú ü 8 � � ü ?E� pq
��? � mo � ç hü Ú� � ñ 8 � � ü� V�î 8 � � Ú ü V �Wpq (11.24)

where use was made that j � � j 2L� j�Ú�� j É � a � � 
O�>?ã7 � � 
T� . The second line

in (11.24) elicits the general case and the third line specializes to �*� î and a

contact at � ½sN ¾ .
The full solution is then recovered usingh�	� ? d N 2 `Ñ6? d N 2 �  N 2 j�? d N 2 ï ½ED ¾� °>±�8 ü� V�î 8 � � Ú ü Ç Ñ�8 � � ü � 74ç hü Ú È(�|�`�  N 2 j V  N 2 ^ a Ñ V  N 2 � a h�Î� (11.25)

ÑH� �+*-, � 
O�M?��{� � �h��� �Y�¿� � ? � Ñ<� °>±;8 ü� Voî 8 � � Ú ü Ç Ñ�8 � � ü � 74ç hü Ú È(� � Ñ��,� (11.26)

where the
�Y���

function is defined thus�Y�¿� � \%��de� � �W� ´¶¶· ¶¶¸
\ if d a	\ma � or � a	\maidd if \±ajd a � or � aid a �� if \±a � aid or d a � a	\�= (11.27)

Since the � � � matrix
�

is in fact a positive scalar, the value of the normal

force is positive whenever �6'E

Of course, if it is found that the magnitude of the tangential force is outside

of the allowed range, & h�[&â� � Ñ , then, this solution is not valid and a different

problem must be solved as described next.

11.3.2 Sliding case

Once the magnitude of the tangential force reaches the maximum, i.e., & �[&�� � Ñ ,
the contact point switches to sliding mode and there is only one variable to

determine, namely, the value of the normal force Ñ . Now, the net constraint

force is easily computed asj î � ^ a Ñ V � a h��� ò ^ a ? � 8:9;� � � h�;� � a ó Ñ<� (11.28)
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11.4 The paradox and its resolution

which means that the MLCP to solve is now:ö  ? ^ a V�� 8:9;� � � h�;� � a^ 
 ÷ ö |�Ñ ÷ V ö ?Dj? h^	h� ÷ � ö 
Ò ÷
baEÑ¡c ÒH�E
<= (11.29)

Eliminating the variable
|� , the pure LCP reduction is found to be� Ñ V z �*Ò
ÃaEÑ¡c Ò��E
O� (11.30)

with: � � ^  N 2 ^ a ? � 8:9;� �¨h�;� ^  N 2 � a� �7 ò � Voî °>±;8 Ú ü Voî�� 8�9�� � � h�;�O°>±�8 ü 8 � � ü óz � ^  N 2 j V h� h�Å� ? �`V�ï ½ED ¾ � ? � g ç hü Ú °M±;8 ü = (11.31)

This LCP has a unique solution as long as � � 
 but, however, there are

infinitely many solutions for � ��
O� z �E
 , and no solution for � '*
O� z 'E
 . This
can happen, for instance, with the configuration shown in Figure 11.1, where°>±;8 ü '£
 , 8�9�� � � � ��� h�;�Å�5� , choosing a large enough friction coefficient, and an

angle
ü
such that � � *¥h 9 �Y� �s � Voî °>±;8 Ú üî 8 � � ü °M±;8 ü � ñ î �ü - � ü & � Voî °>±;8 Ú üî 8 � � ü °M±;8 ü ' � � = (11.32)

To recover a solution, one would need to annihilate the finite sliding velocity� h� ¤ 
 instantly or let the contact separate.

This is illustrated in Figure 11.2 with the same parameters that we have used

so far in the analysis. This figure is similar to that found in [232]. Discussion for

this is provided in Section 11.4.

11.4 The paradox and its resolution

As observed in [232], for friction coefficient � � y � î —which corresponds to the

“path” marker in Figure 11.2—, a rod contacting the plane at � ½gN ¾ with angleü � î «3� ñDV ÿ � ÿ - � 
O�:«3� ñ � , sliding along towards the right is in a feasible region

so that LCP (11.31) has a unique solution with Ñ¡��? z � � ���E��? � Ñ . Assuming

now that the rotational velocity is negative but not too large, i.e., hü ' 
 , then
the inclination angle

ü
will increase to reach

ü � î «#� ñ at which point the LCP

defined in (11.31) has no finite solution. This will happen in finite time if the

tangential velocity � � CJ
 is large enough initially. The value of � � y � î might

seem unnaturally high but the paradox can also be reproduced for values of

friction � a£� if one chooses a different mass distribution for the rod to yield a
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11 Bagatelle VII: The Painlevé Paradox

r � ü �W�u


r � ü ��'*
 : no solutionr � ü ��CE
 : unique solution

Illustration of the Painlevé paradox

ü ?���= S?���= ü?D�?D�O=ë�?D�O= ñ?D�O=ëS?D�<= ü? î? î = �

� ñ�M��M
ü Sñ �
path

Figure 11.2: The paradoxical region for the problem of a planar rod in sliding

dry frictional contact.

lower value of 8 " . For instance, the paradox can be observed for 8 " ��74ç Ú � î �
and � ��� as reported by Stewart [260].

The formulation of the contact problem given in (10.75) is however always

solvable and thus, no paradox is ever observed. To see this, a few frames of an

animation driven by the spook stepper using the new Coulomb friction model—

which reduces to the LCP formulation of Anitescu et al. [17, 19] for the two

dimensional case—are presented in Figure 11.3. The friction coefficient is chosen

to be � � y � î to conform with the treatment in Pfeiffer and Glocker [232].

Since they could not simulate this problem with their methods, experimentation

produced the following set of initial conditions. The elevation angle starts atü � y «#�;S and the angular velocity is hü � ?D� . This configuration puts the point� ½gN ¾ in contact with the plane. The linear velocity is chosen as �Y� � �;= z � ç " hü °M±;8 ü �
so the contact velocity at � ½sN ¾ is zero in the vertical direction and 
O= z in the

horizontal direction. Using a fairly large time step of R �Á���S�
 G 
<=ë
<�MSTS�z
and simulating for �M�T
 steps, taking pictures every 20 steps, yields the sequence

of Figure 11.3. The rod is pictured with a simple line. At each step in the

simulation, the coefficients of the LCP formulation based on acceleration, which

leads to the paradox, were compute to see if the current configuration would be

soluble or not. As predicted by Pfeiffer and Glocker, the configuration is feasible

initially as the rod slides to the right and raises in altitude for a short while,

then becomes infeasible while it is near vertical and the contact velocity comes

to a halt, to become feasible again once the rod starts to fall back toward the

left. The important point to note here is that the discrete time-stepping scheme
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11.5 End notes

t=1.2, singlet=1.1, singlet=0.9, single

t=0.75, freet=0.6, freet=0.45, none

t=0.3, nonet=0.15, singlet= 0, single

Figure 11.3: Numerical illustration of the Painlevé paradox. Each frame is a

snapshot of the simulation, evenly spaced in time. The key on each

subfigure indicates the time and whether or not there is a classical

solution for the given configuration.

is always solvable and steps right over the problematic cases.

Part of the reason for the paradox is the acceleration formulation. Indeed, the

principle of least action leading to the differential equations of motions hinges on

the assumption that the trajectory � �sf � is twice continuously differentiable. But

friction is a non-smooth process which leads to impacts, i.e., sudden changes inh� at isolated times f ¬ , at which points the acceleration
|� is not well defined.

However, in approximating the trajectory with discrete samples � ¬ , we have

made no assumption on the velocity and the resulting discrete stepping equations

are well behaved and uniquely defined everywhere. In other words, the fact that

less smoothness is assumed in the derivation of the discrete stepping equations

from the variational principle removes potential singularity and non-uniqueness.

Note also that the present formulation does not require a formulation of the

equations of motion in terms of differential inclusions but enjoys the very same

benefits that were demonstrated by Stewart [259].

11.5 End notes

The configuration of [108] corresponds to fixing � ½ 0 ¾ � ���b�A
 and attaching the

other end � ½gN ¾ � ��� on a wire that runs parallel to the ground. This removes hü
from the equations.
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11 Bagatelle VII: The Painlevé Paradox

For the simpler one-dimensional case of a point particle with coordinate � �gf � ,
subject to the friction force Ñ � 8:9;� ��h��� , there is a simpler paradox in that the zero

velocity mode h�`��
 is a trap. For this case, the differential equations of motion

can be processed correctly if one interprets the signum function 8�9�� � 
T� correctly,
i.e., assigning it a value 8:9;� � 
T�Y- © ?��;�� « which makes the problem consistent.

This is done in [113] and in [258], for instance. The one-dimensional example

does contain discontinuities but these are mild and limited to h�Å��
 .
By contrast, the Painlevé paradox concerns the case where a finite sliding

velocity leads to a well behaved solution at one instant and nonexistence at the

next, if the elevation angle happens to be on the boundary of the forbidden curve

shown in Figure 11.2.
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12 Rigid Bodies I:

Fundamentals

The kinematic analysis of the motion of a rigid body is presented. In Sec-

tion 12.1, the body is first considered to be composed of point particles which

are constrained in their motion so that all pairwise distances between them are

preserved. This results in identifying the configuration manifold of rigid body

motion as the product
� � / É �H�wI6��î � , where �wIK��î � is the Lie group of special

orthogonal transformations in three dimensions. The form of the kinetic energy

term then provided in Section 12.2 and special attention is paid to the configu-

ration dependent mass matrix in Section 12.3. Two-dimensional rigid bodies are

then described in Section 12.4 and general discussion is provided in Section 12.5.

12.1 Basic motion of a rigid aggregate

Following a strategy credited to Euler, as mentioned in [105], consider a finite

collection of point particles. Each such particle has a constant mass, 7 ½ ¦�¾ , and
a time-dependent position, \ ½ ¦¿¾ �gf ��- /ZÉ

. For such a collection of points, rigidity

means that the Euclidean distance between any two points is preserved by the

motion so that x ½ ¦%Á ª,¾ �gf �b� 4 \ ½ ª,¾ �sf �3?�\ ½ ¦¿¾ �sf � 4 � x ½ ¦�Á ª�¾ � 
T� , where 4 � 4 is the Eu-

clidean norm. This definition implies that the motion described by the points is

an isometry of
/ZÉ

with respect to the Euclidean norm.

According to the Mazur-Ulam theorem [198], “every bijective isometry j  c ¢¤ (
between normed spaces is affine” (as cited in [270]). Therefore, the most

general motion of a collection of rigid points is the affine transformation\ ½ ¦¿¾ �sf �w��\ �sf � V	���sf �Í\ ½ ¦¿¾ � 
T�,� (12.1)

where \ �gf �Z- / É
is some reference point, and the î3��î matrix �È�gf � is orthonormal,

so that �1a3� � � É . From this definition, the distance between any two point

particles § and Ä at time f isx ½ ¦�Á ª�¾ �gf �W� 4 \ ½ ¦�¾ �sf �3?�\ ½ ª�¾ �gf � 4 � 4 �È�gf � � \ ½ ¦¿¾ � 
��3?�\ ½ ª,¾ � 
���� 4� x ½ ¦�Á ª�¾ � 
��,� (12.2)

as desired, provided �Da3� � � É . Assuming the motion is continuous near the

origin at f ��
 implies that
���,� ��� �ã� V � . Thus, � is a proper rotation and so� - �wIK��î � , where �wIK��î � is the Lie group of special orthogonal transformations

in three dimensions. An introduction to Lie groups and �wIK��î � in particular is

found in [193] for instance. The configuration manifold of rigid body motion is
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12 Rigid Bodies I: Fundamentals

thus
� � /ZÉ ���wI6��î � , in contrast with previous examples in this thesis where

the configuration manifold was usually
/ p

.

Define the center of mass, \ ½ " ¾ and the center of mass coordinates of each

particle, � ½ ¦¿¾ , as follows7m� Ñ ¦ 7 ½ ¦¿¾ � \ ½ " ¾ �º7 N 2 Ñ ¦ 7 ½ ¦�¾ \ ½ ¦¿¾ � and � ½ ¦¿¾ �º\ ½ ¦¿¾ ?�\ ½ "�¾ = (12.3)

Taken together, these definitions produce the identity l ¦ 7J½ ¦¿¾ �%½ ¦¿¾ �u
 . Assum-

ing that the point particles move according to an isometry as in (12.1), the time

evolution of the vectors �#½ ¦¿¾ �gf � satisfies� ½ ¦�¾ �gf �W�º\ �sf � V��È�gf �8� ½ ¦¿¾ � 
��,� (12.4)

but since l ¦ 7@½ ¦¿¾ �%½ ¦¿¾ � 
 , for any time f , it follows that \ �gf �(�5
 . Thus the

vectors \ ½ ¦¿¾ �sf � have the following form:\ ½ ¦¿¾ �gf �W�º\ ½ "�¾ �sf � V	���gf ��� ½ ¦¿¾ � 
��~= (12.5)

This defines the body or material coordinates � ½ ¦¿¾ � 
T� , which are fixed in the body

frame of reference. Any of the point particles has inertial frame coordinates

given by (12.5).

Since the kinematics of any of the point particles in the aggregate is related

ultimately to that of ���sf � , the time derivative of the latter is needed to compute

velocities. Matrix �È�gf � is orthogonal, ���sf � � a �sf �w�£� at all times f and thus
�� h�b� a V	� h� a � h�b� a V*� h�b� a � a � (12.6)

which means the î(��î matrix ÖÔ�� h�Î� a is antisymmetric. Any such matrix can

be written as ÖÔo� ×ØÙ 
 ?�Ô É Ô#ÚÔ É 
 ?�ÔW2?�Ô3Ú ÔW2 
 Ü Ýß � (12.7)

where r - /¸É
. In other word, any vector \ - /�É

can be promoted to the

corresponding îY�yî antisymmetric matrix Ö \ . With this notation, the time rate

of change of the rotation matrix � is thenh� ��ÖÔ � = (12.8)

This defines the angular velocity vector ÔE- /ãÉ
, which, as seen in Chapter 13, is

an axial vector defined in the inertial frame. In consequence, any point particle

in the aggregate with position \ ½ ¦¿¾ �gf � defined in (12.5) has velocity� ½ ¦�¾ �sf �W� h\ ½ ¦¿¾ �sf �w� h\ ½ "�¾ �gf � V ÖÔ¸� ½ ¦¿¾ �gf �,= (12.9)

Since the velocity of any of the point particle is linearly related to that of the

center of mass as well as the angular velocity of the aggregate, it is possible to

express the total kinetic energy in terms of h\ ½ "�¾ �sf � and Ô �gf � , the topic of the next
section.
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12.2 Kinetic energy

12.2 Kinetic energy

A simplifying feature of the motion of a rigid aggregate is the strict independence

of the kinetic energy of linear motion of the center of mass and that of rotations

about the center of mass. To see this, first recall that the kinetic energy of a

point mass is simply
� ½ ¦¿¾ � 2Ú 7 ½ ¦¿¾ 4 h\ ½ ¦�¾ 4 Ú , i.e., half the mass times the squared

magnitude of velocity, and that kinetic energy is additive so that
� � l ¦ � ½ ¦¿¾ .

Consider the squared magnitude of velocity (12.9) for one of the point mass in

our aggregate4 h\ ½ ¦¿¾ 4 � 4 h\ ½ " ¾ V ÖÔ¸� ½ ¦¿¾ 4 Ú � 4 h\ ½ " ¾ 4 Ú V � h\ ½ " ¾ a ÖÔ¸� ½ ¦¿¾ V Ç ÖÔ¸� ½ ¦¿¾ È a Ç ÖÔ¸� ½ ¦�¾ È(= (12.10)

The first two terms are easily summed to yieldÑ ¦ 7 ½ ¦¿¾ 4 h\ ½ "�¾ 4 Ú �º7 4 h\ ½ " ¾ 4 Ú � and (12.11)Ñ ¦ 7 ½ ¦¿¾ � h\ ½ " ¾ a ÖÔ¸� ½ ¦�¾ ��� h\ ½ " ¾ a ÖÔ Ñ ¦ 7 ½ ¦¿¾ � ½ ¦�¾ �u
O= (12.12)

For the last term, we use the well known identity Ö \	d��£?1Öd<\ and Ö \ a ��?ãÖ\ (this

is proven as Lemma 13.3 below) to arrive at the sumÑ ¦ 7 ½ ¦�¾ Ç ÖÔ¸� ½ ¦¿¾ È a Ç ÖÔ¸� ½ ¦¿¾ È���?�Ô a mo Ñ ¦ 7 ½ ¦¿¾ Ö � ½ ¦�¾ Ö � ½ ¦¿¾ pq*Ôo�EÔ a ù Ô1� (12.13)

where
ù
is the inertia tensor defined asù ��? Ñ ¦ 7 ½ ¦�¾ Ö � ½ ¦¿¾ Ö � ½ ¦¿¾ = (12.14)

Defining the reference inertia tensor
ù " � ù � 
�� , and then using the identity�� \�� �1a Ö \ � from Lemma 13.5 below, the inertia tensor has the formù ��? � a mo Ñ ¦ 7 ½ ¦¿¾ Ö � ½ ¦�¾ � 
��8Ö� ½ ¦¿¾ � 
�� pq � � � a ù "�� = (12.15)

Collecting the results and summing over all the particles in the aggregates yields

the kinetic energy � � �
trans V �

rot
� �� 7 4 h\ ½ " ¾ 4 V �� Ô a ù Ô1� (12.16)

which demonstrates that translational and rotational parts of the kinetic energy

are decoupled.

As an alternative derivation of the kinetic energy of rotation, following [178],

first note that for any two vectors <â���á- / É
, the following identity holds< a �H� ÉÑ ¦ q 2 < ¦ � ¦ � ��h � <�� a �w� ��h m��o ×ØÙ <32��¨2 <32:�{Ú <32:� É< Ú � 2 < Ú � Ú < Ú � É< É �¨2 < É �{Ú < É � É ÜÞÝß p���q = (12.17)
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12 Rigid Bodies I: Fundamentals

Considering the terms on the left hand side of (12.13) and noting thatÖÔ¸� ½ ¦¿¾ �gf �W�ºÖÔ ���sf �8� ½ ¦¿¾ � 
��w� h� � ½ ¦¿¾ � 
T�,� (12.18)

the kinetic energy can be expressed in terms of the time rate of change of the

rotation matrix � itself �
rot

� �� ��h � h�#�Î" h� a �~� (12.19)

with the definition � " � Ñ ¦ 7 ½ ¦¿¾ � ½ ¦¿¾ � 
T�8� ½ ¦¿¾ � 
T� a = (12.20)

Using the identity Ö \<Ö\E� \�\ a ?E\ a \ � É proved in Lemma 13.4, the following

identity relates
ù " and �Î"ù " � mo Ñ ¦ 7 ½ ¦¿¾ 4 � ½ ¦¿¾ � 
T� 4 Ú pq � É ? �D" = (12.21)

Definition (12.19) for the kinetic energy was used in the first variational for-

mulation of the discrete rigid body equations in [208]. This makes the nine

coefficients of the orthonormal matrix � the configuration variables which must

be subjected to the six constraint equations contained in the requirement that�b�1a � � É . A different strategy is adopted in Chapter 15 which relies on quater-

nion algebra instead, and this motivates the content of Chapter 13.

12.3 The inertia tensor

The inertia tensor is the first instance of a configuration dependent mass matrix.

Some of its properties are now analyzed.

The result of Lemma 13.4 states that given any two vector \%��dE- /1É
, thenÖ \�ÖdH� ?1\ a d � É V d<\ a . It follows that the inertia tensor can be expressed asù � Ñ ¦ 7 ½ ¦¿¾ Í 4 � ½ ¦¿¾ 4 � É ?B� ½ ¦�¾ � ½ ¦¿¾ a Î � (12.22)

from which it is clear that
ù

is symmetric. The same inertia tensor
ù " is also

positive definite provided the rigid aggregate contains at least three point masses

which are not collinear. To see this, take a vector \y- /ãÉ
and evaluate the product\ a ù \ \ a ù \¡� Ñ ¦ 7 ½ ¦¿¾ Ç 4 \ 4;4 � ½ ¦¿¾ 4 ? � \ a � ½ ¦¿¾ � Ú È = (12.23)

The term in parenthesis is non-negative from the Cauchy Schwartz identity. This

term vanishes if and only if \¡��Ðk� ½ ¦¿¾ for all § , which is not possible if the points

masses are not collinear.

Now, considering a rigid body in three dimensions occupying a finite volume,

it must be possible to find sample points � ½ ¦�¾ � 
�� which are not all collinear or

coplanar. Otherwise, the body would have zero volume. Thus, the inertia tensor
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of a rigid body with finite volume is symmetric and positive definite. Though it

can be interesting for certain applications to consider linear and planar bodies,

this is not considered further here.

Since the inertia tensor
ù

of a rigid body with finite volume is symmetric

positive definite, and it can therefore be diagonalized asù " �d� ½ 2 ¾ <�< a V � ½ Ú ¾ �}� a V � ½ É ¾ é é a � (12.24)

where the orthonormal eigenvectors <â��� and é are called the principal axes of the

rigid bodies, and the eigenvalues � ½ ¦¿¾ �8§w���;���O� î are called the principal inertiae.

12.4 The two-dimensional rigid body

It is often useful to consider two-dimensional examples to illustrate various as-

pects of the theory of multibody systems. The analysis of Sections 12.1 and 12.2

is thus repeated for two dimensions.

The observations made in Section 12.1 still apply though now, the rigid trans-

formation matrix � is a member of �wI6� ��� which is a one-dimensional Lie group

with representation ��� ü �w� ö °M±;8 � ü � ?m8 � � � ü �8 � � � ü � °>±�8 � ü � ÷ = (12.25)

For any
ü - /

, matrix ��� ü � is orthonormal and has positive determinant. The

time derivative is much simpler hereh��� ü �W� hü ö ?±8 � � � ü � ?y°>±�8 � ü �°>±;8 � ü � ?m8 � � � ü � ÷� hü ö 
 ?��� 
 ÷ ö ?m8 � � � ü � ?�°M±;8 � ü �°M±;8 � ü � ?±8 � � � ü � ÷� hü Ô 2 ��� ü �~� with:
Ô 2��Àö 
 ?��� 
 ÷ �

(12.26)

where matrix Ô 2 is the infinitesimal generator for the Lie group �wI6� ��� .
With this definition, the velocity of one of the points in the aggregate is now� ½ ¦¿¾ �gf �W� h\ ½ ¦¿¾ �gf �W� h\ ½ "�¾ �sf � V hü Ô 2,� ½ ¦�¾ �sf �,� (12.27)

and after a simple computation, the kinetic energy derived in Section 12.2 now

reads: � � ��  4 h\ ½ " ¾ �gf � 4 Ú V hü Ú� 8 " � (12.28)

where the inertia scalar was introduced as:8 " � Ñ ¦ 7 ½ ¦¿¾ 4 � ½ ¦¿¾ 4 Ú = (12.29)
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12 Rigid Bodies I: Fundamentals

The scalar nature of the angular degrees of freedom here greatly simplifies all the

analysis of two-dimensional rigid bodies as compared to their three dimensional

counterparts. Note in particular that the inertia tensor matrix is constant, i.e.,

independent of the configuration of the rigid body. This contrasts the three-

dimensional case where the inertia tensor is configuration dependent as shown

in (12.14).

12.5 End notes

The configuration manifold of three-dimensional rigid bodies is
/ãÉ ���wIK��î � and

this warrants and analysis of �wI6��î � to find suitable parametrization of the kine-

matics variables, since these are no longer simple � -dimensional real vectors.

The kinetic energy of a three-dimensional rigid body decouples into trans-

lational and angular terms which involve the total mass as well as the inertia

tensor, the latter being configuration dependent. The consequences of this on

the motion of a free rigid body are discussed in Chapter 15.
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13 Rigid Bodies II:

Kinematics and the Quaternion

Algebra

As shown in Chapter 12, the rigid body configuration manifold is
/ãÉ �Î�wI6��î � and

so the kinematics analysis requires an understanding of �wIK��î � and its tangent

bundle, wherein the velocities needed to express the kinetic energy terms lie.

A representation for this using a combination of quaternion and matrix algebra

is constructed in the present chapter. This representation is useful for the sys-

tematic analysis of both translational and rotational modes of rigid multibody

system. The motivation to use the four-dimensional quaternions to parametrize

the three dimensional Lie group �wIK��î � is that �wIK��î � is not a flat manifold and

thus, cannot be represented globally with three parameters only without encoun-

tering singularities. The quaternion representation is singularity free, however.

The main objectives are an explicit parametrization of proper orthonormalî¡��î matrices ��� ��� in terms of four real parameters � ¦ �8§Å� 
<�M�;� �<� î restricted

with l ¦ � Ú¦ � � , and an explicit, everywhere invertible relationship between the

observed angular velocity vector ÔE- /�É
and the time derivatives h� ¦ , so that the� ¦ �gf � can be integrated given known angular velocities Ô �sf � . To make this theory

useful for implementation purposes, care is taken to represent all operations in-

volving the parameters � ¦ as matrix-vector products, treating �Å� � � " � �L2���~Ú�� � É � a
either as a plain four-dimensional vector, or as a parameter defining the elements

of classes of matrices.

After introducing some historical background in Section 13.1, a number of

algebraic identities and simple theorems are derived in Section 13.2 before in-

troducing the quaternion algebra in Section 13.3, and characterizing the three-

dimensional vector subspace of it which corresponds to
/ãÉ

in Section 13.4. The

quaternion algebra is then represented in terms of real ñy��ñ matrices in Sec-

tion 13.5 with both left and right isomorphisms, a feature which allows reorder-

ing factors in complicated expressions. The representation of isometries in
/1É

using the quaternion algebra is established in Section 13.6, with special empha-

sis on the matrix representation. The special form of the rotation matrices and

factorization thereof is analyzed further in Section 13.8. After considering the

differential calculus of quaternions in Section 13.9, with special emphasis on the

consequences of the non-commutativity of the product operation, the connec-

tion between quaternion velocity and the angular velocity vector of proper î��Hî
orthonormal matrices is established in Section 13.10. Discussion of other repre-

sentations of �wIK��î � is found in Section 13.11. A summary of the most important
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13 Rigid Bodies II: Kinematics and Quaternions

formulae is provided in Section 13.12.

13.1 Historical background and motivation

Quaternions are an invention of William H. Hamilton in 1845. He was looking

for a type of vectors for which a division operation could be defined, especially

in three dimensions. The aim was to find a representation of rotations, similar

to what is found in two dimensions where complex vectors of unit magnitudes

can be used to perform planar rigid rotations using the multiplication operator

of complex algebra.

Hamilton did not quite succeed with his program and in fact, he started a

controversy which has lasted to this day [4]. As a consequence, the elements of

quaternion algebra which are useful for the study of the group of rigid rotations

in three dimensions are not often found in standard texts on mechanics and for

this reason, they are presented here.

There is more to quaternion algebra than the representation of the rotation

group suitable for parametrizing rigid body kinematics, but that is not covered

here.

Contrary to what is customary in 3D graphics literature, the aim here is to

describe quaternion algebra in terms of standard linear algebra operations. This

is done so that it is straightforward to translate the relevant formulae into com-

puter code for execution, even though it is not the most mathematically elegant

presentation.

13.2 Preliminary algebraic identities

A number of elementary identities are useful in manipulating the algebra of

quaternions, especially when using the ñ���ñ real matrix representation con-

structed in Section 13.5. The reader can skip this section on first reading and

refer back to it as needed.

Lemma 13.1. For any vector \�- /ZÉ
, the vector Ö \�\¡��
 .

Proof. Using the definition of Ö \ and direct computation,Ö \�\¡� ×ØÙ 
 ?1\ É \�Ú\ É 
 ?1\�2?1\kÚ \�2 
 ÜÞÝß ×ØÙ \�2\�Ú\ É ÜÞÝß � ×ØÙ ?1\ É \kÚ V \kÚ>\ É\ É \�2W?�\�2 \ É?1\kÚ~\�2 V \�2 \�Ú ÜÞÝß � ×ØÙ 


 ÜÞÝß = (13.1)

The converse also holds namely, that

Lemma 13.2. Given \%� é - /�É
, Ö \ é ��
 iff é ���#\���� /

.
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Proof. If é ���#\ , then, since Ö \ is a linear operator, Ö \ � �%\Q�w�u��Ö\k\¡��
 .
For the converse, assume without loss of generality that

4 \ 4 ��� and construct

a right handed orthonormal basis \%��de� � � 4 \ 4 � 4 d 4 � 4 � 4 �5� so that Ö \	d�� �
and Ö \ � � ?�d . Decompose the vector é - /�É

according to this basis so thaté ���#\ V �Jd V � � ���W���Î�É��- / � (13.2)

and then, evaluate Ö \ é � ?��~d V � � . Given the assumed linear independence of

the basis vectors \%��de� � , it follows that Ö \ é �.
 if and only if �B�u�J�.
 which

means that é ���#\ .
Lemma 13.3. Given two vectors \%��dá- /�É

, then, Ö \	dH� ?1Öd<\ .
Proof. Using the definition of Ö \ and computing both products directly,Ö \	dH� ×ØÙ 
 ?1\ É \kÚ\ É 
 ?1\�2?1\�Ú \�2 
 ÜÞÝß ×ØÙ d<2dTÚd É ÜÞÝß � ×ØÙ ?1\ É d{Ú V \kÚ�d É\ É d¨2W?�\�2:d É?1\kÚ1d¨2 V \�2:dTÚ ÜÞÝß � and

Öd<\¡� ×ØÙ 
 ?�d É d{Úd É 
 ?�d¨2?�dTÚ d<2 
 Ü Ýß ×ØÙ \�2\�Ú\ É Ü Ýß � ×ØÙ ?�d É \kÚ V d{ÚM\ Éd É \�2w?�d<2�\ É?�dTÚM\�2 V d¨2�\ É
Ü Ýß � (13.3)

and the result is found by inspection.

Considering column vectors as �¡� � matrices and using the standard multipli-

cation rules, the outer product \kd a can be formed for any two vectors \��:d¡- /�É
.

Definition 13.1 provides the explicit form of the resulting rank 1 matrix.

Definition 13.1. Given two vectors, \��:d�- / É
, the products \kd a and d a \ are

defined as\	d a � ×ØÙ \�2:d<2 \�2�dTÚ \�2:d É\kÚ�d<2 \�Ú�dTÚ \ É d É\ É d<2 \ É dTÚ \�Ú�d É Ü Ýß �ðd<\ a � ×ØÙ d¨2�\�2 d<2�\kÚ d<2�\ Éd{ÚM\�2 dTÚM\kÚ d É \ Éd É \�2 d É \kÚ dTÚM\ É Ü Ýß = (13.4)

This notation is used for the next identity on products of the form Ö \�Öd .
Lemma 13.4. Given two vectors \%��dá- /�É

, the following identity holds:Ö \�ÖdH� ?1\ a d � É V d<\ a .
Proof. Using the definition and direct computations,Ö \�ÖdH� ×ØÙ 
 ?1\ É \kÚ\ É 
 ?D\�2?1\�Ú \�2 
 Ü Ýß ×ØÙ 
 ?�d É dTÚd É 
 ?�d¨2?�d{Ú d¨2 
 Ü Ýß

� ×ØÙ ? � \ Ú d Ú V \ É d É � d 2 \ Ú d 2 \ ÉdTÚM\�2 ? � \�2:d¨2 V \ É d É � dTÚM\ Éd É \ 2 d É \ Ú ? � \ 2 d 2 V \ Ú d Ú � Ü Ýß� ?1\ a d � É V d<\ a =
(13.5)
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13 Rigid Bodies II: Kinematics and Quaternions

The last line is obtained by noting that each term on the diagonal is of the form?1\ a d V \ ¦ d ¦ �8§w���;� �<� î .
The identification of an antisymmetric î��Yî matrix _ � ? _1a with the vectorr via _ �EÖ r is slightly misleading in view of Lemma 13.5 below. Indeed, trans-

forming a coordinate system via a îH�4î orthonormal matrix � , the vector r is

not transformed to r ¢¤ � r like any other vector but rather, it is transformed to

an axial equivalent, the exact orientation of which depends on the handedness�¨�~� ��� � of the orthogonal transformation � .
Lemma 13.5. Given a vector \�- /�É

and a îK�áî orthonormal matrix � , then,� Ö \ �ãa � ���,� ��� � �� \ .
Proof. Without loss of generality, assume that

4 \ 4 ��� . Now, Ö \ is matrix of sizeî��Yî and thus, it defines a linear transformation Ö \   /¸É ¢¤ /ZÉ
. Change the basis

according to the orthonormal transformation � . The matrix representation of

this linear operator then becomes [U � � Ö \ �ãa , using the change of basis theorem

and observing that � N 2 � �1a .
Next, observe that matrix [U is antisymmetric since[U a � Ç � Ö \ � a È a � � Ö \ a � a � ? � Ö \ � a � ? [U a � (13.6)

which means that [U ��Ö r for some vector r - /ZÉ
.

Observe however that for é ��Ð � \ , we have [U � � Ö \ � a � Ð � \Q����Ð � Ö \�\4� 
 ,
which, using Lemma 13.2, that é ��� r ��Ð � \ . Combining these two relations,[U �oÖ r � r ��Ó � \%� for some scalar Ói- / = (13.7)

Computing the product [U [U ,[U [U � ? 4 r 4 Ú � É V rOr a � ?DÓ Ú 4 \ 4 Ú V Ó Ú � \k\ a � a��Ó Ú � Ç 4 \ 4 Ú � É V \k\ a È � a��Ó Ú � Ö \¨Ö\ � a ��Ó Ú � Ö \ � a � Ö \ � a��Ó Ú [U [U � (13.8)

which means that Ó Ú ��� and so Ó�� � � .
To compute Ó , consider the natural right handed basis with \�� � �;� 
O��
�� a ,dH� � 
O�M�;��
�� a and � � � 
O� 
<�M�M� a , and its transformation <y� � \%���6� � de� é � �'� .

The vectors <â���e� é are obviously the columns of matrix � . Given that for anyîY�yî matrix _ with columns r � ¯� ï - /ZÉ
, the determinant is the triple product�¨�~� ��_ �W� ï a Ö r ¯ , � a Ö \kdH���1� ���,� ò < � é ó � (13.9)

and after transforming each vector, this implies�1� � a � a � Ö \ � a � dH� éK� ÓeÖ<��7�H��Ó ���,� ò \ d � ó ��Ó ���,� ��� �,� (13.10)

Therefore, Ó N 2 ��Óy� �¨�~� ��� � , and the proof is complete.
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Lemma 13.6. Given any two vectors \%��dá- /�É
, then,

�Ö \	dH�Ad<\ a ?�\kd a .
Proof. First, write �H�*Ö\	d so that�H� ×ØÙ \ É dTÚã?�\�Ú�d É?1\ É d¨2 V \�2:d É?1\kÚ1d¨2 V \�2:d{Ú Ü Ýß � (13.11)

and then build the matrix

�Ö \	dH�	Ö �H� ×ØÙ 
 \kÚ�d<2W?�\�2�dTÚ \ É d¨2W?�\�2:d É\�2:d{Úã?�\kÚ�d<2 
 \ É d{Úã?�\kÚ�d É\ 2 d É ?�\ É d 2 \ Ú d É ?�\ É d Ú 
 Ü Ýß = (13.12)

The result is found by inspection using the definitions in (13.4).

Since Ö \�\¡��
 , the matrix Ö \ is singular and therefore, the determinant vanishes

so
���,� � Ö \k�¡� 
 . Likewise, matrices of the form \	d a are singular since all the

columns are scalar multiples of the vector \ . In fact, these latter matrices have

rank one for any dimension though the former have rank � . This rank deficiency

allows to compute the determinants of matrices with related forms.

Lemma 13.7. Given \5- /�É
and Ð5- /

, the matrix _`� Ðk��� Ð � É V Ö \ has

determinant
�¨�,� ��_`� Ð����¸��Ð É V Ð�\ a \ .

Proof. The determinant of _`� Ð�� is computed by expanding the minors down the

first column���,� � Ð � V Ö \Q�w� ììììììì Ð ?1\ É \�Ú\ É Ð ?1\�2?1\kÚ \�2 Ð ììììììì��Ð ììììì Ð ?1\�2\�2 Ð ììììì ?�\ É ììììì ?1\ É \kÚ\�2 Ð ììììì ?�\�Ú ììììì ?1\ É \kÚÐ ?1\�2 ììììì��Ð � Ð Ú V \ Ú 2 �3?�\ É � ?1\ É ÐY?�\�2 \kÚM�3?�\�Ú � \ É \�2W?�Ð�\kÚM���Ð É V Ð � \ Ú 2 V \ ÚÚ V \ ÚÉ ���Ð É V Ð¨\ a \�=
(13.13)

Lemma 13.8. For any two vectors \%��dá- / p
and Ðy- /

, \ is a right eigenvector

and d a is a left eigenvector of the matrix _`� Ð��¸��Ð � p V \kd a , both with the same

eigenvalue Ð V \ a d .
Proof. Direct computation shows that _`� Ðk�Í\�� � Ð V \ a d��Í\ and d a#_`� Ðk�W��d a¸� Ð V\ a d¨� .

For \��:d4- / p
and Ð�- /

, the matrix Ð � p V \kd a has non-zero determinant as

computed in Lemma 13.9 below.
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Lemma 13.9. Given ÐB- /
and \%��d�- / p

, the matrix _`� Ð��b�.Ð � p V \kd a has

determinant
�¨�~� ��_`� Ðk�8�¸��Ð p N 2 � Ð V \ a d¨� .

Proof. We proceed by induction, first noting the result for � �u� where�¨�~� � Ð � Ú V \	d a �w� ììììì Ð V \�2:d¨2 \�2:dTÚ\�Ú�d¨2 Ð V \kÚ�dTÚ ììììì�uÐ Ú V Ð � \�2�d<2 V \�Ú�dTÚ�w�uÐ Ú V Ð�\ a de= (13.14)

Next, partition the matrix _�� Ðk� as follows_`� Ðk�¸�Àö Ð � p N 2 V [\ [d a d p [\\ p [d a Ð V \ p d p ÷ � (13.15)

where the bar signifies projection by truncation of the last element, e.g., [<J�� <32�:<�Ú;�M=>=>=M��< p N 2,� a ��<�- / p
. Matrix _�� Ðk� can be factored as_`� Ð��¸� d J� ö � 
[éba Ó ÷ ö � p N 2 [�
 � ÷ � ö � � [�[éÎa [éÎaÎ[�`V Ó ÷ � (13.16)

with the definitions � ��Ð � p N 2 V [\ [d a � [� � d pÐ V [\ a [d [\[é �º\ p [d�� and Óy� Ð¨\ a d V Ð ÚÐ V [\ a [d = (13.17)

The result from of Lemma 13.8 was used in computing [� . Now,
�¨�~� ��d `�¡��¨�~� ��d � �¨�~� � `� for any square matrices d �  , and since

���,� � `���Á� , because

matrix  is upper triangular with unit diagonal,���,� ��_`� Ðk�8�Z� �¨�~� ��dH� Ðk�8�¸��Ó ���,� � � � Ðk�8�~= (13.18)

Now, by the induction hypothesis,
�¨�~� � � � Ðk�8�á� �¨�~� � Ð � p N 2 V [\ [d a ��� Ð p N 2 VÐ p N Ú [\ aÎ[d and therefore, we find that�¨�,� ��_`� Ð����¸� Ð�\ a d V Ð ÚÐ V [\ a [d Ç Ð p N 2 V Ð p N Ú [\ a [d	È���Ð p V Ð p N 2 \ a de� (13.19)

proving the result holds for any � CE� .
Another useful identity concerns ñY�áñ real antisymmetric matrices of the fol-
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13.2 Preliminary algebraic identities

lowing forms

_ 0B� ×ØØØÙ 
 r 2 r Ú r É? r 2 
 ? r É r Ú? r Ú r É 
 ? r 2? r É ? r Ú r 2 

ÜÞÝÝÝß � ö 
 r a? r Ö r ÷ �

and

_ N � ×ØØØÙ 
 r 2 r Ú r É? r 2 
 r É ? r Ú? r ÚÛ? r É 
 r 2? r É r Ú ? r 2 

Ü ÝÝÝß �Àö 
 r a? r ?wÖ r ÷ � (13.20)

where r - /ZÉ
is a real vector. The minimum polynomial of these matrices is

computed explicitly in Lemma 13.10 below.

Lemma 13.10. Given a real vector r - /�É
, the antisymmetric matrices _ D

defined in (13.20) have the minimum polynomial:7 � Ð��¸��Ð Ú V r a r = (13.21)

Proof. The computation is carried out explicitly only for _ 0 since it is similar

to that for _ N . Expanding the determinant
�¨�~� _ 0¡?yÐ � ¦ along the first column,�¨�~� ��_ 0�?�Ð � ¦ �w� ?DÐ �¨�,� � Ö r ?BÐ � É � V r 2 ���,� ×ØÙ r 2 r Ú r Ér É ?DÐ ? r 2? r Ú r 2 ?DÐ ÜÞÝß

? r Ú �¨�,� ×ØÙ r 2 r Ú r É?DÐ ? r É r Ú? r Ú r 2 ?DÐ ÜÞÝß V r É ���,� ×ØÙ r 2 r Ú r É?DÐ ? r É r Úr É ?DÐ ? r 2
ÜÞÝß =
(13.22)

After using Lemma 13.7 for the first term and simple algebraic manipulations,�¨�,� ��_ 0�?BÐ � ¦ �W� � Ð Ú V r a r � Ú � (13.23)

and therefore, the minimum polynomial is 7 � Ðk�Y� Ð Ú V 4 r 4 Ú . Repeating the

computation for _ N produces the desired result.

The Cayley Hamilton theorem can be used to compute any power of the ma-

trices _ p D � � C5� , by recursively substituting _ ÚD � ? 4 r 4 Ú � ¦ , leading to Corol-

lary 13.11 below.

Corollary 13.11. Given a vector r - /�É
and the matrices _ D defined above

in (13.20), the following identities hold_ ÚD � ? 4 r 4 Ú � ¦ �_ Ú pD � � ?D� p 4 r 4 Ú p �_ Ú p 032D � � ?D� p 4 r 4 Ú p _ D = (13.24)
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13 Rigid Bodies II: Kinematics and Quaternions

Proof. The Cayley-Hamilton theorem states that any complex matrix _ satisfies

it’s minimum polynomial equation. For matrices _ D , this is 7 � Ð����@Ð Ú V 4 r 4 Ú ,
meaning that _ ÚD � ? 4 r 4 Ú � ¦ .

This can in turn be used to look at matrices of the form d D � r " � ¦ Vº_ D
since for these, the minimum polynomial is simply �W� Ðk�á� � Ði? r " � Ú V 4 r 4 Ú .
Agglomerate r " and r - /ZÉ

into a four dimensional vector ¯�� © r " � r 2� r Ú�� r É « a -/ ¦ . For unit ¯ vector, the minimum polynomial simply reads: Ð Ú ?E�T¯ " Ð V � .
And for this case, we can compute the powers of d pD in terms of the Chebyschev

polynomials of the second kind,
� p �#� � for some � - / �-& � &Va@� , defined as� p �#� �W� 8 � � ��© �áV � « ü �8 � � ü � with the definition °M±;8 ü � � � (13.25)

as is done in [21], or for instance. These observations prove Lemma 13.12 below.

Lemma 13.12. Given a unit vector ¯ã� © ¯ " � ¯M2L� ¯�Ú�� ¯ É « - / ¦ , the matrices

d 0�� ×ØØØÙ ¯ " ¯M2 ¯�Ú ¯ É?D¯ 2 ¯ " ?D¯ É ¯ Ú?D¯�Ú ¯ É ¯ " ?D¯M2?D¯ É ?D¯ Ú ¯ 2 ¯ "
ÜÞÝÝÝß � d N � ×ØØØÙ ¯ " ¯M2 ¯�Ú ¯ É?D¯ 2 ¯ " ¯ É ?D¯ Ú?D¯�ÚÛ?D¯ É ¯ " ¯M2?D¯ É ¯ Ú ?D¯ 2 ?D¯ "

ÜÞÝÝÝß (13.26)

satisfy: d pD � � p N 2 � ¯ " � d ? � p N Ú � ¦ � (13.27)

for any integer � �*� .
Proof. From the Cayley-Hamilton theorem, d ÚD � ��¯ "Ld D ? � ¦ . Proceeding by

induction, assume for the moment that d pD � � p N 2 d D V � p N Ú � ¦ where � p ��� p �
are polynomials in ¯ " . From the definition of the Chebyschev polynomials [21],� " � \k�Y�:��� � 2 � \Q�6�m�;\ . Write \º� ¯ " and verify that � 2 � � 2 � ¯ " � and � " �? � "�� ¯ " � . Now, d p 032D can be computed asd p 032D ��� p N 2 d ÚD V � p N Ú d D ��� p N 2 © ��¯ "Ld D ? � ¦ «OV � p N Ú d D� � ��¯ " � p N 2 V � p N ÚM� d ? � p N 2 � ¦ = (13.28)

From this, it follows that the recurrence relations are� p � ? � p N 2M� and� p ����¯ " � p N 2W?T� p N Ú�= (13.29)

This is precisely the recurrence relation which applies for the Chebyschev poly-

nomials of the first and second kind. Since the result is valid for � � � , the
recurrences (13.29) validate the result by induction.

If vector ¯ is not normalized, simply set \¡��¯ " � 4 ¯ 4 and recompute the recur-

rence to find the following.

220



13.2 Preliminary algebraic identities

Corollary 13.13. For a non-zero real vector ¯b- / ¦ and the matrices d D con-

sidered in Lemma 13.12, setting \¡��¯ " � 4 ¯ 4 yieldsd pD � 4 ¯ 4 p N 2 � p N 2 � \Q� d D ? 4 ¯ 4 p � p N Ú � \Q� � ¦ = (13.30)

Proof. Since �¯�� � �� 4 ¯ 4 �8¯ and �d D � � �� 4 ¯ 4 � d D satisfy all the conditions of

Lemma 13.12, the result follows by direct substitution.

When manipulating the rigid body equations of motion, some matrices of the

form � V�_ 0 � r � , where �	� �<�%* 9 � Óe2� Ó�Ú;� Ó É � Ó ¦ �,� Ó ¦ C*
O�8§â�£�;� �<� î � ñ � is a positive

definite diagonal matrix, and the antisymmetric ñ��6ñ matrix _ 0 � r � was defined
in (13.20). Of particular interest are the eigenvalues of such matrices which are

computed in Lemma 13.14 below.

Lemma 13.14. Given an antisymmetric �D�â� matrix _ 0 � r � as defined in (13.20)

for some real vector r - /�É
, and a diagonal positive definite ñB�Eñ matrix� � �<�%* 9 � Ó�2M� Ó�Ú;� Ó É � Ó ¦ �~� Ó ¦ C 
<�8§�� �;� �<� î � ñ , the four eigenvalues of the ñ���ñ

matrix @�d� Vo_ 0 � r � are given by the following formulaeÐ D Á D ø ��� � Õ � �� _ 4 � V�é 4 � 4 � VÝé 4 � 4 �(? é 4 �#?B�p� a é � (13.31)

where the following definitions were used�����Ó�2 �<�%* 9 � Ó�Ú;��Ó É � Ó ¦ �~��Y� �� 276 Ú r �é � ���,� � ��� 276�Ú �� N 276�Ú r = (13.32)

Proof. First note that � N 276�Ú d � N 276�Ú � � ¦ V � N 276�Ú _ � N 2�6 Ú
. Applying this trans-

formation to the determinant of d ?�Ð � ¦ yields�¨�~� ��d ?�Ð � ¦ �w� ���,� � ��� �¨�,� � �Î?���;� ��d ?�Ð � ¦ � N 276�Ú �8�� �¨�~� � ��� ���,� � �Î?��L�;� _ 0y� N 276 Ú ? � ÐY?E�M� � ¦ �,� (13.33)

and therefore, if � is an eigenvalue of �_ 0o���Î?���;� _ 0y� N 276 Ú
, then, Ðá� �¡V � is

an eigenvalue of matrix d �d� Vo_ 0 . Now, a simple computation yields�_ �d� N 276�Ú _ �Î?��L�;�Å� ö 
 � a� Öé ÷ � (13.34)

with the definitions of (13.32). Repeating the computation of Lemma 13.10 with

the vectors �e� é instead produces the principal polynomial� ��� �W� �?¦ZV�� Ú � 4 � 4 Ú V 4 é 4 Ú � V*� � a é � Ú � (13.35)

and after some simple algebraic manipulations, the roots Ð D Á D ø of (13.31) are

found. Note that at least one of the roots of � ��� � in (13.35) is positive and so at

least two of the eigenvalues of matrix d are real.
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13 Rigid Bodies II: Kinematics and Quaternions

The final type of special matrices we consider is the case of îÅ�6î real matrices

of the forms d � � É V � _ and @� � É V � _ Ú
, where � and � are scalars and theîH�yî matrix _ has either the form � Ö \ or Ö \ � for some real vector \�- /ãÉ

and

a symmetric positive definite îK�¡î matrix � . These matrices frequently appear

in the analysis of discrete stepping equations for the free rigid body problem.

Observe first that since � is symmetric, it can be diagonalized as � � � � � a �
where the real î(�¡î matrix

�
is diagonal and real î(�¡î matrix

�
is orthogonal

so that
� a � � ��� a � � É . Define the vector vector dJ- /�É

, dº� � a \ and

so according to Lemma 13.5, ÖdB� � a Ö \ � . Using _ � � Ö \ , it follows that _ �� � � a Ö \�� � � Öd � a . Matrix _ is thus the similarity transform of a îÈ�Hî matrix

of the form ^ � � Öd , where � � �¨�%* 9 � x 2� x Ú�� x É �,� x ¦ C£
O�8§Î� �;� �<� î , is diagonal

and positive definite. The same holds if using _ �*Ö\ � instead.

Under the same similarity transformation by an orthogonal î¡�iî matrix
�
,

the scalar z � �¨�~� ��� �Í\ a#� N 2 \ is invariant since
�¨�,� � � � � a ��� ���,� � � � and\ a � � N 2 � a \J� d a � N 2 d . Combining these observations yields Lemma 13.15

below.

Lemma 13.15. Given a symmetric, positive definite îH�4î matrix � , a vector\*- /ZÉ
, and real scalars �¸��� - /

. Define the matrix _ � � Ö \ and the scalarz � �¨�~� ��� �8\ a3� N 2 \ . Then, the following two identities holdÇ � V � _ Ú È N 2 � � ? �� V � z _ Ú � and (13.36)� � V � _ � N 2 � � ? �� V � Ú z _oV � Ú� V � Ú z _ Ú = (13.37)

Proof. Consider first a positive definite diagonal î��4î matrix of the form
� ��<�%* 9 � x 2� x Ú;� x É � with x ¦ C�
 , and a real vector d�- /ZÉ

. The matrix
� Öd has the

following characteristic polynomial, as found from a short computation7 � Ð��¸� ���,� � � Öd6?BÐ � É �W��Ð Ç Ð Ú V �¨�~� � � �Éd a � N 2 d È = (13.38)

From the Cayley-Hamilton theorem, it follows that matrix  � � Öd is a matrix

root of 7 � Ðk� so that  É ��? z  � where z � �¨�,� � � �Éd a � N 2 d . Since � is diagonal

with positive entries, the inverse is
� N 2 � �¨�Ì* 9 � �� x 2M�M�� x Ú;�M�� x É � . Since the

characteristic polynomial of a matrix is invariant under similarity transforms,

and since the scalar z is also invariant under similarity transforms, the result

applies to any positive definite îK�áî matrix � and real vector \y- / É
using the

observations preceding this lemma.

This completes the set of identities needed to construct the matrix represen-

tation of the quaternion algebra.

13.3 Elementary quaternion algebra

The quaternion division ring
�
, is a four-dimensional algebra over

/ ¦ in which

non-zero elements have a multiplicative inverse.
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13.3 Elementary quaternion algebra

To construct the ring
�
, start with the elements ��- / ¦ with the standard

vector addition, subtraction, and scalar multiplication operations. Therefore,

given two elements �%� �È- �
, define addition and scalar multiplication as follows

�Å� ×ØØØÙ � "��2�>Ú� É
Ü ÝÝÝß ���á� ×ØØØÙ � "�%2�QÚ� É

Ü ÝÝÝß � � V �k�á���k� V �Å� ×ØØØÙ � "ZV �k� "�L2 V �k��2�~Ú V �k�kÚ� É V �k� É
Ü ÝÝÝß � for any ��- /

.

(13.39)

The addition operation is commutative.

For the multiplication operation, consider four basic elements,
Ê � � ��Ë~�ÍÌE- � �

and define the following multiplication rulesÊ Ú � Ê ���;� Ê¨� � � � Ê Ëw��Ë~� Ê ÌY�EÌe�� Ú �BË Ú �EÌ Ú � ? Ê ��?��� Ëw� ?âË � �EÌQ� Ë�ÌH� ?�Ì�Ëw� � �ÁÌ � � ? � ÌY�BË~= (13.40)

These multiplication rules are summarized Table 13.1 below.Ê � Ë ÌÊ Ê � Ë Ì� � ?�� Ì ?âËË Ë ?�Ì ?�� �Ì Ì Ë ? � ?�� .

Table 13.1: The quaternion algebra multiplication table.

Clearly, the element
Ê
is the multiplicative unit and it will sometimes be writ-

ten as
Ê �£� as there is little chance of confusion.

The vector representation of these elements is defined as:

Ê � ×ØØØÙ �



ÜÞÝÝÝß � � � ×ØØØÙ 
 �



ÜÞÝÝÝß � ËW� ×ØØØÙ 

 �

ÜÞÝÝÝß �9ÌH� ×ØØØÙ 


 �

ÜÞÝÝÝß � (13.41)

which implies the following representation for any element �È- ��Å��� " Ê V �L2 � V �>Ú8Ë V � É Ìe� (13.42)

where � ¦ - / �8§ã- � 
O��;� �<� î � .
To avoid confusion with regular vectors, we introduce the operator � to denote

multiplication between arbitrary quaternions and this operation is now defined

by distribution over the basic elements
Ê � � �sË>�ÍÌ . Given two elements �%� ��- �

,
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13 Rigid Bodies II: Kinematics and Quaternions

defined as �á�Ý� " Ê V ��2 � V �kÚ8Ë V � É Ì , and �Å��� " Ê V �L2 � V �>Ú8Ë V � É Ì , we find�ò�`�Å� � � " Ê V ��2 � V �QÚ8Ë V � É Ì¨� � � " Ê V �L2 � V �~Ú8Ë V � É Ì¨���� " Ê � � " Ê V �L2 � V �~Ú8Ë V � É Ì¨� V �%2 � � � " Ê V �L2 � V �~Ú8Ë V � É Ì¨�V �QÚÍË � � " Ê V �L2 � V �~Ú8Ë V � É Ì¨� V � É Ì � � " Ê V �L2 � V �~Ú8Ë V � É Ì¨�� � � " � " ? ��2,�L2W? �kÚ�~Ú� Ê Vº� � " ��2 V �%2�� "ZV �QÚM� É ? � É �>Ú� �Vº� � " �~Ú V �kÚ� "ZV � É �L2W? ��2,� É �gË Vº� � " � É V � É � "ZV ��2,�~Úã? ��2,�~Ú��Ìe= (13.43)

The complex conjugate of �È- �
is denoted as � ¼ and is defined as followsÊ ¼ � Ê � � ¼ � ? � �kË ¼ � ?âË~�#Ì ¼ � ?�Ìe�� ¼ ��� " Ë3?���2 � ?B�~Ú8Ë3?B� É Ìe= (13.44)

From these definitions, it follows that���`� ¼ ��� Ú" V � Ú 2 V � ÚÚ V � ÚÉ � (13.45)

so that �`�`� ¼ is real and non-negative. In fact, �`�Å� ¼ is the same as the squared

Euclidean norm of �È- / ¦ . For any quaternion �È- �
, we write

4 � 4 Ú ���`�`� ¼ .
It is often convenient to partition quaternions into scalar and vector parts as

follows �Å� ö �>Æ� ÇM÷ � �>Æ���� " � � Ç � ×ØÙ �L2�~Ú� É Ü Ýß = (13.46)

Alternately, �MÆ is called the real part and � Ç is called the imaginary part. This

nomenclature makes sense from the definition of the complex conjugate and the

observation that �L¼Æ ���>Æ , and �L¼Ç � ?D� Ç .
Using this partition, the quaternion product can be rewritten in terms of stan-

dard vector operators as follows�ò�`�Å�Àö �QÆ,�>Æ¸?T� a Ç � Ç�QÆ,� Ç V �>Æ�� Ç V Ö� Ç � Ç÷ = (13.47)

Now, since � ¼ - �
, and since ���`� ¼ CE
 for �È- � � � ï��
 , it follows that�`� Í �4 � 4 � ¼ Î �£�;= (13.48)

This means that any non-zero quaternion �*- �
has a unique multiplicative

inverse in
�
, written � N 2

. In particular, for an element ��- �
with unit norm,4 � 4 �£� , the inverse is the complex conjugate � N 2 ��� ¼ , as is the case for complex

numbers.

However, as can be seen from the multiplication table, since
� ËH�:?âË � � Ì ,

quaternion multiplication is non-commutative (though it is associative), except

for the case of scalar multiplication, i.e., for �º- � � �º� � " Ê V 
 � V 
,Ë V 
LÌ .
Therefore,

�
is a division ring but not a field [138], since fields must have a

commutative multiplication operator.
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The following two identities are easily verified using elementary algebraic ma-

nipulations: � � �`���8¼Z��� ¼ ��� ¼ (13.49)� �ò�`��� N 2 ��� N 2 �J� N 2 = (13.50)

The second of these follows from the first and the definition of the multiplicative

inverse.

13.4 A three-dimensional subspace

Consider a set � - �
containing all quaternions �*- �

such that � ¼ � ?D� .
Obviously, since 
6�A?Î
 , we have 
�- � . Now, given �K���;2 � V �>Ú8Ë V � É Ì where� ¦ - /

, then, � ¼ � ?D� . Likewise, given any scalar Ó�- /
and �4- � , Ó��y- � .

Finally, given �{���B- � and Óe� � - /
, Ó�� Vi� �B- � . Therefore, we conclude that

the subset � - �
with the addition operator forms a three-dimensional vector

space over
/

isomorphic to
/ZÉ

.

This consideration is in fact what motivated Hamilton originally to associate

vectors in
/ZÉ

with pure imaginary quaternions, and persists to this day in the

notation \��º\�2 � V \kÚ�Ë V \ É Ì , for \y- / É
, which is common in vector calculus [195].

13.5 Matrix representation of quaternion algebra

A matrix representation of the quaternion product defined in (13.47) can be read

off directly producing either

�³���b� � � �Q���b� ×ØØØÙ � " ? ��2 ? �kÚÛ? � É�%2 � " ? � É �kÚ�QÚ � É � " ? ��2� É ? �kÚ ��2 � "
Ü ÝÝÝß

×ØØØÙ � "�L2�~Ú� É
Ü ÝÝÝß � ö �eÆ ? � a Ç� Ç �eÆ � É V Ö� ÇM÷ ö �>Æ� Ç÷ � (13.51)

or

� �W�Å� !(� ���Ì��� ×ØØØÙ � " ? �%2 ? �QÚ ? � É�%2 � " � É ? �QÚ�QÚÛ? � É � " �%2� É �kÚ ? �%2 � "
ÜÞÝÝÝß

×ØØØÙ � "��2�>Ú� É
ÜÞÝÝÝß � ö �>Æ ?D� aÇ� Ç �>Æ � É ?�Ö� ÇM÷ ö �eÆ� ÇM÷ � (13.52)

where the first form defines a right ordered product, and the second defines a left

ordered product. In addition, the complex conjugate operation can be expressed

as � ¼ � ×ØØØÙ � "?D�L2?D�~Ú?D� É
Ü ÝÝÝß �Àö �>Æ?D� ÇM÷ �Àö � 

 ? � É ÷ ö �>Æ� Ç÷ ��`�{= (13.53)
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13 Rigid Bodies II: Kinematics and Quaternions

where ñY�áñ matrix  is defined as@�Àö � 

 ? � É�÷ = (13.54)

Using the definitions for
� � ���,� !(� ��� and  , two isomorphisms can be con-

structed between
�

and ^`} ¦ � / � , so that
�

is represented as a sub-algebra of the

set of ñY�áñ matrices over
/

with the usual addition and multiplication rules.

Consider first the right ordered product defined by the map
ü Ö�  � ¢¤ ^`} ¦ � / �

with the definition ü ÖT� ���W� � � ���~�ü Ö�� �����Q�w� � � ��� � � �e�w� � � �`���e�,= (13.55)

The second equality will be demonstrated in what follows.

It is clear from the definitions of matrices
�

and ! in (13.51) and (13.52) that

that
� � ��� V � � �e�â� � � � V ��� and therefore,

ü Ö defines a representation of
�

using

standard linear algebra.

Remains to show that
� � �?�3���w� � � �Q� � � �;� . First, compute directly the matrix

product� � �e� � � ���w� ö �eÆ ? � a Ç� Ç �eÆ � É V Ö� ÇM÷ ö �>Æ ?D� aÇ� Ç �>Æ � É V Ö � Ç÷� ö �QÆ,�MÆW?T� a Ç � Ç ? �QÆ�� aÇ ?B�>Æ�� a Ç ?T� a Ç Ö � Ç�eÆ,� Ç V �>Æ�� Ç V Ö� Ç � Ç �QÆ,�>Æ � É ?T� Ç � aÇ V Ö� Ç Ö � Ç V �QÆ�Ö� Ç V �>Æ~Ö� ÇM÷�Àö � ?�� a� d ÷ �
(13.56)

with the definitions ��� � � �`��� Æ � and�H� � � �`��� Ç � (13.57)

as per (13.47). Remains to show that matrix d satisfies the identity d �A�{Æ � É ?ÎÖ � Ç
for ��� �Ã�6� . This follows from the two tensor identities of Lemma 13.4 and

Lemma 13.6, leading tod ���eÆ��MÆ � É ? � Ç � aÇ V Ö� Ç Ö � Ç V �eÆ�Ö� Ç V �>Æ,Ö� Ç� Ç �QÆ,�>Æ¸?T� a Ç � Ç È � É ? Ç � Ç � aÇ ?B� Ç � a Ç ? �QÆ�Ö� Ç ?B�>Æ~Ö� Ç È��� � É ?4Ö �H�A� Æ � É ?�Ö � Ç � (13.58)

as required. This completes the proof and therefore, the mapping
ü Ö is an iso-

morphism from
�

into a subgroup of ^`} ¦ � / �
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13.5 Matrix representation of quaternion algebra

Next, consider the map
ü æ3  � ¢¤ ^`} ¦ � / � with the definitionü æÍ� ���W� !K� �;�ü æ�� � �Å�;�w� !K� �;� !(� �Q�W� !K� �����e�,= (13.59)

As in the case for the map
ü Ö , the map

ü æ preserves the additive structure of�
. However, the map

ü æ reverses the order of the product and that feature will

be useful in the definition of rigid rotations in what follows. The proof that!(� �;� !K� �e�w� !K� ���`�e� is almost identical to the one above for the
ü Ö isomorphism

so it is omitted.

Note also the following identities which follow directly from the definition� � � ¼ �W� � a � ���,� and!(� � ¼ �W� ! a � �;�,� (13.60)

and the useful order exchanging formulae� a � ���Ì���� � a � �e�8�{�! a � ���Ì���� ! a � �Q���{� (13.61)

for any two quaternions �#� �È- �
.

To simplify computations, matrices !(� ��� and � � ��� are often partitioned� � ���w� ö � Æ ?D� aÇ� Ç �MÆ � É V Ö � ÇM÷ �mò � ô a¸� ��� ó � (13.62)

and !(� ���W� ö �>Æ ?D� aÇ� Ç �>Æ � É ?�Ö� ÇM÷ �mò � ð a¸� ��� ó � (13.63)

which defines the î6�¡ñ real matrices
ð � ��� and ô � ��� :ð � ���W� ò ?D� Ç �MÆ � É V Ö � Ç ó �ô � ���¸� ò ?D� Ç �MÆ � É ?�Ö� Ç ó = (13.64)

It is easy to verify that
ð � �������J
 , and similarly,

ô � �����È�J
 . This fact will be

used extensively.

The matrices !(� ��� and � � �e� actually commute with each other for any �{�#�4- �
as proved in Theorem 13.16 below.

Theorem 13.16. The matrices !(� �Q�~� � � ��� defined in (13.62), commute for any

quaternions �#� �È- �
.
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13 Rigid Bodies II: Kinematics and Quaternions

Proof. Explicitly computing the product in both order, the result is!K� �e� � � ���W�Àö �QÆ ? � a Ç� Ç �QÆ � É ?BÖ� Ç ÷ ö �MÆ ?D� aÇ� Ç �MÆ � É V Ö � Ç ÷�Àö �eÆ,�>ÆW? � a Ç � Ç ? �QÆ�� aÇ ?��MÆ�� a Ç ? � a Ç Ö � Ç�>Æ�� Ç V �eÆ�� aÇ ?BÖ� Ç � Ç ? � Ç � aÇ V �eÆ��MÆ � É V �eÆ Ö� Ç ?��MÆ,Ö� Ç ?BÖ� Ç Ö � ÇM÷� ö � < a� _ ÷ �
(13.65)

and similarly� � ��� !(� �e�W� ö �>Æ ?D� aÇ� Ç �>Æ � É V Ö � Ç÷ ö �eÆ ? � a Ç� Ç �QÆ � É ?BÖ� ÇM÷�Àö �MÆ��QÆW?B� aÇ � Ç ?D�>Æ�� a Ç ? �QÆ,� aÇ V � aÇ Ö� Ç�QÆ,� Ç V �>Æ�� Ç V Ö � Ç � Ç ?D� Ç � a Ç V �MÆ��QÆ � É ?��MÆ,Ö� Ç V �eÆ�Ö� Ç ?�Ö� Ç Ö� Ç÷� ö � éÎa\ d ÷ =
(13.66)

Inspection yields �E��� , <o� é , and �4�£\ . By inspection as well, matrices _
and d are equal as the following identity holds� Ç � aÇ V Ö� Ç Ö � Ç �u� Ç � a Ç V Ö � Ç Ö� Ç � (13.67)

as per Lemma 13.4.

This fact is very interesting since it allows reordering quaternion product ex-

pressions.

Finally, the determinants matrices ! and
�

matrices are computed to be�¨�~� � � � ���8�(� �¨�~� ��!K� �����(� 4 � 4 ¦ as seen from (13.23) with Ð��5� " . This means

that as long as
4 � 4 ��� , all products involving � � ��� or !(� ��� are well behaved.

13.6 Length preserving transformations

Consider an element ��- �
with unit length,

4 � 4 � � , and the isomorphismý ]   � ¢¤ �
defined with ý ] � �Q�W�����J�#= (13.68)

The norm of the transformed element is
4 ý ] � �Q� 4 Ú ���`���°��� ¼ �Å� ¼ � 4 � 4 Ú 4 � 4 Ú �4 � 4 Ú , and is thus unchanged by the action of

ý ] . However, the subspace � is not

invariant under the action of
ý ] since for �á� � - � and �Å� ? � - �

,
4 � 4 �£� andý ] � �Q�1� �y�- � . As reported in[4], this is what caused controversy. The correct
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13.6 Length preserving transformations

formulation which leaves � invariant is the map
ü ]   � ¢¤ � � for an element�È- �

such that
4 � 4 ��� , defined withü ] � �e�w�u�`���ò�`� ¼ = (13.69)

This is length preserving since4 ü ] � �e� 4 Ú ���`��� �`� ¼ �`����� ¼ �`� ¼ ��� � �p� ��� ¼ �V�`� ¼ � 4 � 4 Ú ���`� ¼ � 4 � 4 Ú = (13.70)

In addition, this transformation leaves the linear sub-space � invariant since for

any �4- � , the conjugate of the transformed element isü ] � �e�8¼Z� Ç �����ò�`� ¼ È ¼ ���`��� ¼ �`� ¼ ��?D�`���ò�`� ¼ ��? ü ] � �Q�~= (13.71)

Therefore, if �º- � , then, ü ] � �e�K- � for any �i- �
and the transformation is

length preserving when
4 � 4 �£� .

The matrix representation of the map
ü ] is computed using the matrices� � ���~� !(� ��� defined above. First, note that the left-most part of the product

can be represented as the left product: �È�����1� ¼ � !(� � ¼ �%�á� !ÎaW� ���Ì� , and then,�`���ò�`� ¼ �����ò�ü ] � �e�w����� � � �`� ¼ �w� � � ��� ��!(� � ¼ �%�Q�W� Ç � � ��� ! a � �;� È �#= (13.72)

Given the definitions for matrices
� � ��� and !K� ��� , the following explicit formula

for the product is found� � ��� ! a � ���W� ! a � ��� � � ���W� ö � að � ��� ÷ ò � ô a¸� ��� ó� ö � a � � a ô a¸� ���ð � �;�8� ð � ��� ô aZ� �;� ÷�Àö � 

 ð � ��� ô aZ� �;� ÷ �Àö � 

 �È� ��� ÷ � (13.73)

with the definition ��� ���w� ð � ��� ô aZ� ��� , and where the facts that
ð � ���8�`� ô � �;�8�`�
 and � a �Å��� , where used. Expanding this further,��� ���w� ð � ��� ô a � ���W� ò ?D� Ç �>Æ � É V Ö � ÇLó ö ?D� Ç a�MÆ � É V Ö� Ç÷� Ç � ÚÆ ?B� aÇ � Ç È � É V �T� Ç � aÇ V �T�>Æ Ö� Ç� � ��� ÚÆ ?E�M� � É V ��� Ç � aÇ V �T�>Æ�Ö� Ç � (13.74)

where � a �Å��� was used again. The last expression in (13.74) is a useful definition

when performing algebraic manipulations, but it can also be simplified further

by using Lemma 13.4 to yield��� ���w� � É V ���>Æ�Ö� Ç V �;Ö� Ç Ö � Ç = (13.75)
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13 Rigid Bodies II: Kinematics and Quaternions

Using this form makes it easy to verify that ��� �;�8� Ç ��Ðk� Ç with Ð¡��� .
Also from (13.75), one can easily recover the limit of small rotations in which�>Æ�����? IK� ) Ú � and � Ç ��)�< , where <�- /ZÉ

is a unit vector, yielding the limit�È� ),�W� � É V ��)�Ö<â= (13.76)

Given the known fact that
� � � � ) ¤ ÖÔ as ) ¤ 
 and where Ô is the angular

velocity vector in the inertial frame of reference, it is already possible to deduce

that �T) N 2 � � ),� Ç ¤ Ô as ) ¤ 
 .
For implementation purposes and to provide for explicitly computing a qua-

ternion � which corresponds to a given orthonormal matrix � , the components

of either (13.75) or (13.74) can be resolved further in terms of the elements of �
as follows��� ���w� ×ØÙ � �T� Ú" ?	�� V ��� Ú2 � � �L2,�~Úã?B� " � É � V � � � " �~Ú V �L2,� É �� � � " � É V �~Ú��2,� � �T� Ú" ?	�� V ��� ÚÚ � � �~Ú� É ?B� " �L2,�� � �L2,� É ?B� " �>Ú� � � � " �L2 V � É �>ÚM� � ��� Ú" ?E�M� V �T� ÚÉ

ÜÞÝß = (13.77)

The properties of the result of two consecutive transformation are established

in Theorem 13.17 and Corollary 13.18 below.

Theorem 13.17. The transformations
ü ]   � ¢¤ �

defined with
ü ] � �e�w�����	�?�3� ¼

form a group so that
ü Ö þ�ü Æ�� ü Ö U Æ .

Proof. We start with the quaternion representation of the transformation and

evaluate the map
ü Ö þ�ü Æ on �4- �ü ÖT� ü Æ � �e�8�W�A�H� � z ���ò� z ¼ �V� � ¼� � �H� z �	���ò� � z ¼ � � ¼ �� � �H� z �	���ò� � �H� z ��¼� ü Ö U Æ � �Q�~= (13.78)

Corollary 13.18. The matrix representation of the map
ü ]   � ¢¤ �

given by� � �;� !Da¸� ��� satisfies the group property.

Proof. Compute the action of the map
ü Ö þ�ü Æ on �4- / ¦ü ÖT� ü Æ � �Q���W� � � �{� ! a � �{� � � � z � ! a � z �%�Q�� � � �{� � � z � ! a � �T� ! a � z �%�� � � �H� z � Ø !(� z � !(� �T�ÉÚ a �� � � �H� z � Ø !(� �Ê� z �ÉÚ a �� ü Ö U Æ � �e�,� (13.79)

where use was made of the identities
� � �T� � � z �i� � � �[� z � and !(� z � !(� �T�i�!(� �H� z � .
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13.7 Properties of the rotation matrices

The representation of the rotation matrix given in (13.74) can be reformulated

in terms of a unit vector � �@� Ç � 4 � Ç 4 and an angle
ü
with °>±�8 � ü �;���Z� � Ç . This

representation implies that
4 � Ç 4 ��8 � � � ü �;��� and so we have the following identity��� �;�w� � �â°>±;8 Ú � ü �;���3?	�� � É V � 8 � � Ú � ü �;�T� ��� a V �â°>±�8 � ü �;�T�}8 � � � ü ������Ö� = (13.80)

Using trigonometric identities, this can be rewritten as��� ���w��°>±;8 ü � É Vº� �ã?�°M±;8 ü � �%� a V 8 � � ü Ö�� � É Vº� °M±;8 ü ?	�� Ç � É ? ��� a È V 8 � � ü Ö � = (13.81)

This is a well known formula for a rotation by
ü
about a unit axis � - /ãÉ � 4 � 4 �� . This representation makes it clear that � is an eigenvector of ��� ��� with unit

eigenvalue. The other two eigenvalues are generally complex conjugates.

The effect of the transformation on a given vector is to rotate the component

orthogonal to the normal vector � by the angle � R § in the orthogonal plane. To

see this, define a right handed coordinate basis <â����� � - /ãÉ
, with

4 < 4 � 4 � 4 �4 � 4 � � and Ö<���� � , Ö� <º� � , and Ö� ���m?�< . Then, decompose an arbitrary

vector \�- /ZÉ
according to this basis so that \i���?< V �J� V � � . Applying the

transformation (13.81) to this yields�È� ���8\¡���K< V �J� V � ��V 8 � � ü � �K�6?��J<�� Vº� °M±;8 ü ?E�M� � �K< V �J�¨���� �áV � � °M±;8 ü < V 8 � � ü �¨� V � � ?±8 � � ü < V °>±;8 ü �¨�,� (13.82)

which is easily recognized as a plane rotation by angle
ü
in the <á?�� plane.

This is illustrated in Figure 13.1 where the axis of the cone is collinear with

the vector � . The same axis is the normal of the orthogonal plane which lies at

the top of the cone. The tip of the original vector \ , showed with the dashed

line, is rotated in the plane by the angle
ü
to result in the final vector dH� �È� ���8\

showed with a solid line. The projection onto the normal plane, shown with a

dotted line is what gets rotated by the angle.

13.7 Properties of the rotation matrices

The set of matrices
� ��� ����& ��- / ¦ � 4 � 4 � � � defined in (13.74) is the restriction

on � of length preserving linear transformations on
�
. They form a group under

multiplication as per Corollary 13.18.

The correspondence between unit quaternions and the rotation group is not a

bijection however, since �È� ���¸� ��� ?D��� which is clear from (13.77). The quater-

nion group therefore provides a double coverage of �wI6��î � Theorem 13.19 below

establishes the direct correspondence between any given real orthonormal îY��î
matrix

�
of unit determinant and unit quaternion

� � .
Theorem 13.19. Given any real îÎ�(î orthonormal

�
, there are two �È- �

with4 � 4 ��� such that �È� ���W� �
.
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13 Rigid Bodies II: Kinematics and Quaternions

dH� ��� ���Í\
� <\ü

Figure 13.1: A three-dimensional rotation by an angle
ü
about an axis � .

Proof. Direct computation yields the following formulae� Ú" � �ñ � ��h ��� � VBñ �,� � " ��2 � �ñ ��� É Ú�? � Ú É �,�� " �~ÚÎ� �ñ ��� 2 É ? � É 2��,� � " � É � �ñ ��� Ú>2w? � 2�Ú�,� (13.83)

which can be solved for � " � ��2� �~Ú���� É provided � " ï��
 . There are two solutions to

this system depending on the sign of � " .
If � " ��
 , the value of the diagonal elements becomes� 2 2 V �1�u��� Ú2 �� Ú Ú V �1�u��� ÚÚ �� É É V �1�u��� ÚÉ = (13.84)

Now, if � " �J
 , at least one of these must be non-zero since l ¦ � Ú¦ �.� . Assume

that � ¬~¬ V �Î�J��� Ú¬ ï�u
 for some F - � �;���O� î � , then, the other two elements can

be recovered from the relations � ¬ ¦ ����� ¬ � ¦ (13.85)

where §È- � Ä - � �;� �<� î � & Ä ï� F � . There are two solutions to this system corre-

sponding whether the plus or minus sign is chosen in solving � ¬ from � ¬~¬
.

This cover all cases. Note that for any �Y- � � 4 � 4 � � , the following identity

holds: �È� ���W� ��� ?D��� and therefore, the multiplicative group of unit quaternions

is a double coverage of the group �wIK��î � .
13.8 Algebraic identities of rotation factors

The factor matrices
ð � ���~� ô � ��� of (13.62) obey a number of identities which are

useful in the construction of kinematic constraints and so they are presented

232



13.8 Algebraic identities of rotation factors

here.

Lemma 13.20. For any two vectors �%����- / ¦ , the following identities holdô � ���Ì�y� ? ô � �Q���{� ð � ���Ì��� ? ð � �e�8�{= (13.86)

Proof. First look at the expression involving
ð � ���ð � ���%�á�mò ?D� Ç �>Æ � É V Ö � Çó ö �eÆ� ÇM÷� ? � Æ � Ç V � Æ � Ç V Ö � Ç � Ç���MÆ�� Ç ? �QÆ,� Ç ?BÖ� Ç � Ç� ? ò ? � Ç �eÆ � É V Ö� Ç ó ö �MÆ� Ç÷� ? ð � �e�8� =

(13.87)

A nearly identical computation yields the companion identity
ô � ���Ì��� ? ô � �e�8� .

Corollary 13.21. For any vector �È- / ¦ , ô � �;�8�`�u
 and
ð � �����`��
 .

Proof. Since
ð � �;�8�`� ? ð � ����� as per Lemma 13.20, all components of �6- /ãÉ ���È�ð � ���8� , must vanish.

The converse result holds as well now shown.

Lemma 13.22. Given unit quaternions �#� �J- � � 4 � 4 � 4 � 4 �û� , ô � �Q�����ð � �Q���Å��
 if and only if �Å� � � .
Proof. Concentrate on

ð � ��� matrices since the corresponding result for
ô � ��� has

an identical proof. The “if” part is given from Corollary 13.21. For the “only if

part”, note first that if �Æb��
 , then, ð � ���Ì��� ? �eÆ�� Ç V Ö � Ç ����
 . But since � Ç is

orthogonal to the cross product Ö � Ç � , it must be that ��ÆZ��
 as well. In turn, this

implies that Ö � Ç ��� 
 and therefore, � Ç � Ð�� Ç � ÐE- /
. Since

4 � Ç 4 � 4 � Ç 4 �m� ,Ð�� � � .
Likewise, if � Æ �5� , then, � Ç � 
 since

4 � 4 �5� . Therefore, we have
ð � �;�Ì�B�� Ç �J
 , since the other two terms are linear in � Ç and thus vanish. This implies

that � Æ � � � since
4 � 4 � & � Æ ��� . So, again, �Å� � � .

Now, assuming that both �MÆ���eÆ1- � 
O��M� , then, the scalar products of � Ç and � Ç
with

ð � ���%� yield the two relations�>Æ 4 � Ç 4 Ú �Ý�QÆ,� aÇ � Ç � and �>Æ,� aÇ � Ç ���eÆ 4 � Ç 4 Ú = (13.88)

Since
4 � Ç 4 Ú � � �D?�� ÚÆ � and 4 � Ç 4 Ú � � �D?m� Ú Æ � , a simple manipulation yields the

relation � ÚÆ��?B� ÚÆ � � Ú Æ��?T� Ú Æ = (13.89)
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13 Rigid Bodies II: Kinematics and Quaternions

Given that the scalar function j � \Q�1��\e� � �ã?�\Q� is monotone increasing on the

interval \y- � 
<�M�M� , since jkÕ � \Q�w���� � �e?6\Q� Ú , we have j � \k�W��j � d��y�:\¡�Ade� for all\��:d¡- � 
O�M�� . Therefore, � ÚÆ ��� Ú Æ and so �MÆ�� � �eÆ . This implies that
4 � Ç 4 � 4 � Ç 4

as well.

Writing � a Ç � Ç � 4 � Ç 4;4 � Ç 4 °>±;8 � for some angle
�
, the first identity of (13.88)

now reads �D� � °>±;8 � = (13.90)

Now, assume that �eÆ�� � �>Æ and � Ç � � ÕÃ� Ç . The product
ð � ���Ì� now readsð � ���%�á� � Õ �MÆ,� Ç ? � �>Æ,� Ç ��
O� (13.91)

which means that
� � � Õs� which completes the proof.

Lemma 13.23. For any vector �È- / ¦ , the following identities holdð a � ��� ð � ���W� ô a � ��� ô � ���¸� 4 � 4 Ú � ¦ ?B��� a � andð � ��� ð a � ���W� ô � ��� ô a � ���W� 4 � 4 Ú � É (13.92)

Proof. The algebraic manipulations are performed for
ð
matrices only since the

results are easy to verify for
ô
matrices. Expand the products as followsð a � ��� ð � ���¸� ö ?D� aÇ�>Æ � É ?�Ö� Ç÷ ò ?D� Ç �>Æ � É V Ö � ÇLó � ö � aÇ � Ç ?D�>Æ,� aÇ?D�>Æ,� Ç � ÚÆ � É ?�Ö� Ç Ö � Ç÷� ö � a �Î?�� ÚÆ ?D�>Æ,� aÇ?D�>Æ,� Ç � a �D?B� Ç � aÇ ÷� 4 � 4 Ú � ¦ ?B��� a � (13.93)

and likewise for the other orderingð � ��� ð a � �;�w� ò ?D� Ç �>Æ � É V Ö � ÇLó ö ?D� aÇ�>Æ � É ?�Ö� ÇM÷�u� Ç � aÇ V � ÚÆ � É ?�Ö� Ç Ö � Ç� 4 � 4 Ú � (13.94)

where use was made of Lemma 13.4. The same algebraic identities carry over for

the case of
ô � ��� matrices.

Lemma 13.24. For any vector �È- / ¦ , the following identities holdð � ���W� ð � �� ! a � ���~� ô � ���W� ô � �M� � a � ���~� (13.95)

with the shorthand �D� © �;� 
<� 
O� 
 «Ãa � Ê
.

Proof. From the definitions (13.64),
ð � ���� ô � �M�1� ò 
 � É ó � where 
 is a îH� �

zero block here, and therefore, the result follows from the definitions of !K� ��� and� � �;� since ð � �� ! a � �;�W� ò 
 � É ó ö � að � �;� ÷ � ð � ���,� (13.96)

and similarly for
ô � ��� .
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13.8 Algebraic identities of rotation factors

Lemma 13.24 produces yet another useful identity.

Lemma 13.25. For any vectors �#� �È- / ¦ , the following holdsð � ��� ð a � �e�w� ð � �� ð a � �ò�`� ¼ �ô � ��� ô a � �e�w� ô � �� ô a � � ¼ ���e�,= (13.97)

Proof. For the
ð
matrix, using Lemma 13.24 yieldsð � ��� ð a � �Q�W� ð � �M� ! a � ��� !(� �e� ð a � �M�W� ð � �M� !(� � ¼ � !(� �Q� ð a � �M�� ð � �M� !(� �ò�`� ¼ � ð a � ��w� ð � �M� Ç ð � �� ! a � � �`� ¼ �ÉÈ a� ð � �M� ð a � � �`� ¼ �,= (13.98)

Another interesting point is that the action of matrix ��� ���Z� ð � ��� ô a � ��� con-
verts

ô
matrices to

ð
matrices and vice versa.

Lemma 13.26. Given any unit vector, �È- / ¦ � 4 � 4 Ú ��� , matrices
ð � ���~� ô � ��� as

defined in (13.62), and ��� �;�w� ð � ��� ô aZ� ��� , then��� �;� ô � ���¸� ð � �;�,� and � a � ��� ð � ���¸� ô � ���~= (13.99)

Proof. Direct computation yields��� ��� ô � �;�W� ð � ��� ô a � ��� ô � ���¸� ð � ��� ò 4 � 4 Ú � ¦ ?���� a ó� ð � ���3? ð � ���8��� a � ð � ���â? Ø ð � �����-Ú3� a� ð � ���,� (13.100)

since
ð � �����6��
 as shown in the corollary Lemma 13.20, and since

4 � 4 Ú � � by

hypothesis. A similar computation yields the other result.

The value of the product determinant
���,�¨ð � ��� ô aZ� �e� for two different quater-

nions �%���o- �
can also be computed explicitly, and so is that of matrices of

products of the form !ÎaW� ��� � � �e� . This will be useful in analyzing joint Jacobians

later on. The result is as follows.

Lemma 13.27. Given �%� ��- �
, the matrix d � ð � ��� ô aZ� �e� has determinant�¨�,� d � 4 � 4 Ú 4 � 4 Ú � a � .

Proof. First note that matrices !K� �;�,� � � �Q� defined in (2.29) are square and there-

fore,
���,� ! a � ��� � � �e�K� �¨�,� !K� ��� ���,�k� � �e�(� 4 � 4 ¦ 4 � 4 ¦ as per (13.23). Now, the

product !Da¸� ��� � � �e� can be partitioned and factored as follows! a � ��� � � �e�W� ö � a � � a ð aW� �e�ô � ���%� ô � ��� ð a¸� �Q� ÷� ö � < a� _ ÷ � ö �4?�< a%_ N 2 � < a
 _ ÷ ö � 
_ N 2 � � É�÷ � (13.101)
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13 Rigid Bodies II: Kinematics and Quaternions

with definitions � � � a � , <A� ð � �e�8� , �@� ô � ���%� , and _ � ô � ��� ð a¸� �Q� . Seté � _ N 2 �Y��? � ��1� a �;� ð � �e�8�`� ? � �L��� a ���7< as it is verified with_'é � ? � �L��� a �;� ô � ��� ð a � �e� ð � �e�8�� ? � �L��� a �;� ô � ��� © 4 � 4 Ú � ¦ ?T�{� a « �Å� ô � �;�Ì��A�e� (13.102)

where the Lemma 13.23 was used for the product
ð aW� �Q� ð � �Q� . Then, set �o?< a#_ N 2 � �@� a �¡?û< aKé �Á� a � V � ���� a �Q�É< a < , and finally, this simplifies to4 � 4 Ú 4 � 4 Ú � � � a ��� . Therefore,�¨�~� ! a � ��� � � �e�W� 4 � 4 ¦ 4 � 4 ¦ � 4 � 4 Ú 4 � 4 Ú� a � �¨�~� _ (13.103)

and thus,
���,� _ ��� a � 4 � 4 Ú 4 � 4 Ú .

13.9 Differential calculus of quaternions

Because quaternion multiplication is non-commutative, many of the important

results of differential calculus do not carry over. For instance, using the matrix

representation of the quaternion algebra for instance, the following sum and

product rules apply to quaternions functions � �gf �~��� �gf �ã- �xx f � � V �e�w� h� V h�xx f � ���J�e�w� h����� V ��� h�#= (13.104)

However, the chain rule does not hold because of the non-commutative quater-

nion product.

Analytic functions of quaternions can also be defined in terms of known power

series, though the results are sometimes surprising. For instance, using Lemma 13.12

to compute the powers of matrix
� � ���,���È- �

yields� p � ���W� 4 � 4 p N 2 � p N 2 � \Q� � � ���3? 4 � 4 p � p N Ú � \Q� � ¦ � (13.105)

where \*� � " � 4 � 4 . An analytic function j   � ¢¤ �
, can be evaluated using

the coefficients of the power series of j on
�

and (13.105) for the powers
� p

,

summing the results in matrix j � � �,� and map the result back to quaternion

space. This procedure yields Lemma 13.28 below.

Lemma 13.28. Given an analytic function j   � ¢¤ � � defined over the complex

plane with the series expansion j � \Q�K� l*pTq "%r p \ p , then, the function can be

extended to j   � ¢¤ �
via the seriesj � ���W� ×Ù ��? 2Ñp{q " r p 0�Ú 4 � 4 p 0�Ú � p � \Q� Üß Ê V ×Ù 2ÑpTq " r p 032 4 � 4 p � p � \k� Üß �{� (13.106)

where \¡��� " � 4 � 4 , and � p � \k� is the Chebyschev polynomial of the second kind.
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13.9 Differential calculus of quaternions

Proof. Using (13.105) yields the result in terms of matrix
� � �;� . From the defini-

tion of matrix
� � �;� in (13.62), it follows that a matrix of the form � � � ��� V � � ¦

corresponds to the quaternion �3� V � Ê � for real scalars, �¸���º- /
.

Example 13.1. To get an idea of how this works, consider a quaternion �(- �
with � " � 
 so that \J� � " � 4 � 4 � 
O� and the exponential function

��,'& � \Q���l \ p � � á . This will keep the illustration simple. Using the trigonometric defini-

tion of the Chebyschev polynomials� p � \k�w� 8 � � ��© ��V � « � �8 � � � � � � where \��º°M±;8 � � �,� (13.107)

explicitly compute� p � 
��w� 8 � � ��© �áV � « «#�����8 � � � «3�;��� � ´· ¸ 
 if � is odd� ?D� ª for � ��� Ä = (13.108)

Applying (13.106) with r p �£�� � á yields�1,'& � ���W� ×Ù ��? 4 � 4 Ú 2Ñp{q " r p 0�Ú 4 � 4 p � p � 
T� Üß Ê V ×Ù 2Ñp{q " r p 032 4 � 4 p � p � 
T� Üß �
� ×Ù � V 2ÑpTq " � ?D� p 0â2 4 � 4 Ú p 0�Ú� � �áV ���1á Üß Ê V ×Ù �4 � 4 2Ñp{q " � ?D� p 4 � 4 Ú p 032� � �¡V �M��á Üß ��º°>±�8 � ��� V 8 � � � ���4 � 4 �{=

(13.109)

It follows that for any scalar ��- /
,��,>& � �3���W�º°M±;8 � � 4 � 4 � Ê V 8 � � � � 4 � 4 �4 � 4 �{= (13.110)

In particular, if ��� f and � is constant, the time derivative is evaluated as�� f �1,'& �gf ���W� ? 4 � 4 8 � � �gf 4 � 4 � V °>±�8 �sf 4 � 4 �8������ �1,'& �gf ���W� ��,'& �sf ���V�`� (13.111)

since for a pure imaginary quaternion � we have �'�¡��� ? 4 � 4 . This is the

familiar rule for the exponential function.

Taking a time-dependent pure imaginary quaternion such as

� �gf �W� ×ØØØÙ 
8 � � � � f �°>±�8 � � f �

Ü ÝÝÝß � (13.112)
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13 Rigid Bodies II: Kinematics and Quaternions

then,
�1,'& � � �gf ���1�à8 � � � �M� Ê V °>±;8 � ��8� and we find that ���� �1,'& � ���ã�@°M±;8 � �� h� . How-

ever, �`� h�Å�u� ×ØØØÙ 


 �
Ü ÝÝÝß � (13.113)

and so �1,'& � ��� h�`��8 � � � �M� h� V �È°M±;8 � �� ×ØØØÙ 


 �
Ü ÝÝÝß ï�º°M±;8 � �� h�Å� �� f �1,'& � �;�,= (13.114)

This example demonstrates that simple quaternion differential equations can-

not be solved using well known analytic methods such as integrating factors.

13.10 Angular velocity

The connection between the time derivatives of the quaternions and the angular

velocity of the corresponding rotation matrix ��� � �gf �8� is now established. Con-

sider a time dependent quaternion � �gf �ã- � � � ¼ �`�`�u���`� ¼ �£� . Since � ¼ �`�`�£�
for all times f , assuming that � �sf � is a differentiable function of time, it follows

that 
`� xx f Ç �`�`� ¼ È � h���`� ¼ V ��� h� ¼ � h�`�`� ¼ Vº�¨h���`� ¼ � ¼ � (13.115)

and similarly for �Ê��� ¼ � � . Define ��� z - �
, with �Y� h� �È� ¼ � and z � � ¼ � h� . It

follows from (13.115) that both � and z are pure imaginary, i.e., � ¼ � ?�� andz ¼ � z .
Next, consider the ñY�¡ñ matrix product _`� ���¸� � � ��� !ba¸� �;� for a time depen-

dent unit quaternion � �sf ��- � � f - /
. The time derivative of _�� � �sf �8� is computed

as follows: h_ � h� ! a V � h! a� h��� a � ! a V � h! a !Å! a� Ç h��� a V h! a ! È _� Ç � �¨h���`� ¼ � V�! a �¨h�`�`� ¼ ��È _`� ���,� (13.116)

using
��� a � � a � � !`!Da � !Da3! � � ¦ for a unit quaternion � , the result of

Theorem 13.16 to commute matrices ! and
�
, as well as (13.55) and (13.59) in

the last step. Now, given any quaternion �Y- �
,� � �{� Vo! a � �T�W� ö �;Æ ?�� aÇ� Ç �;Æ � É V Ö � Ç÷ V ö �;Æ � aÇ?�� Ç �;Æ � É V Ö � ÇM÷� ö ����Æ 

 ���;Æ V �LÖ � Ç = ÷ (13.117)
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13.11 Other representations of the rotation matrices

Specializing to the case where ��ÆÅ�£
 which is the case for �¡� h�Ê�È� ¼ as shown

in (13.117), the result is h_ � ö 
 

Û�LÖ � ÇM÷ ö � 

 ô%ð a ÷�Àö 
 

Û�LÖ � Ç �È� ��� ÷ (13.118)

and this can be processed further to read h� �J�LÖ � Ç � , where �K� h����� ¼ and ��� ���
is defined as before. This gives the immediate identity ��� Ç �EÔ , where ÔE- / É

is

the angular velocity vector, and this is expanded further to yield the differential

equation h�Å����� �È� � � ���7��Àö �MÆ ?D� aÇ� Ç �>Æ � É V Ö � Ç÷ ö 
� ÇM÷ � �� ð a � �;��Ô1= (13.119)

Observe now that with �È� h�K�Å� ¼ and z �u� ¼ � h� , we have �(���K� z �Å� ¼ , which
corresponds to having Ô � �È� ����ÔWÕ , where ÔwÕ is the angular velocity as seen in

the body frame. Simple manipulations yieldh�Å� z �`�`� !(� ���7�(� �� ô a � ����Ô Õ = (13.120)

The content of (13.119) and (13.120) is the main result of this section es-

tablishing a vector differential equation relating a quaternion with the angular

velocity vector.

Example 13.2. A simple example of the use of the previous equation is to solve

for the motion of a rigid frame rotating at fixed angular velocity Ô - / É �ÍÔ.�ï�¾� z f . Write �6- �
so that �;Æ���
O�:� Ç �EÔ . Set �Å� �1,'& © �gf �����7� « so that according

to (13.111), h�Å� �� �1,'& © �gf �;�T�7� « � �È� �� ��� �� �� � � ���7�(� �� ò � ð a¸� ��� ó ö 
Ô ÷ � �� ð a � �;��Ô1= (13.121)

13.11 Other representations of the rotation matrices

Rotation matrices are often represented with a set of 3 angles—the Euler angles.

As shown in this section, there are 24 possible conventions for these angles, each

of which having singular configurations so that multiple angles define the same

rotation matrix. This prevents integration of the differential equation h� �£ÖÔ �
in terms of Euler angles unless the convention is changed near when approaching

a singularity.
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13 Rigid Bodies II: Kinematics and Quaternions

Starting from (13.81), the cases where � is a basis vectors are easily computed

to be� 2 � ü �W� ×ØÙ � 
 

 °>±;8 � ü � ?±8 � � � ü �
 8 � � � ü � °>±;8 � ü �
Ü Ýß � � Ú � ý �¸� ×ØÙ °M±;8 � ý � 
 8 � � � ý �
 � 
?m8 � � � ý � 
 °M±;8 � ý � Ü Ýß �

� É � � �w� ×ØÙ °>±�8 � � � ?m8 � � � � � 
8 � � � � � °M±;8 � � � 

 
 � ÜÞÝß =
(13.122)

A general rotation matrix � can be expressed as the product of three rotation

matrices either as � � �D¦ " � ü � �ã¦ � � � � �1¦l�;� ý � with three different § ª � Ä � � ��� �O� î � ,
or � � �ã¦ " � ü � �1¦ � � � � �1¦ " � ý � . There are î¡� � � �6� S possibilities for the case

with three different axes and îÅ� �Å��S more for the case with the repeated axes.

There are also two sign conventions for the angles corresponding to whether they

are measured with respect to the fixed or rotated frame, bringing the total to 24

different conventions.

Next, given that h� �ºÖÔ � , and given that � is a function of the time dependent

angles,
ü �gf �~� � �gf � and ý �gf � say, expression of the form� � ü � � � ý � ×ØÙ hü h� hý ÜÞÝß �EÔ1� (13.123)

is anticipated, where matrix
� � ü � � � ý � has size îÈ��î . Of course, when matrix

�
is degenerate, it is not possible to integrate the angles.

To construct matrix
� � ü � � � ü � in (13.123), fist note that for the matrices �b¦�� ü � ,

the time derivatives are h�ã¦ � ü �W� hü Ö � ¦Í�1¦�� ü �~� (13.124)

where � ¦ - /¸É
is the unit vector with a one in position § and zero everywhere

else.

Write a general rotation matrix as � � �D¦%��� ü É � �1¦ � � ü Ú� �1¦ " � ü 2,� so thath� � h�ã¦%��ã¦ � �1¦ " V	�1¦l� h�ã¦ � �ã¦ " V��1¦%�M�1¦ � h�1¦ "� ò h�ã¦%�� a¦%� ó �1¦l��1¦ � �ã¦ " V Ï �ã¦%� Ç h�1¦ � � a¦ � È � a¦%� Ð �ã¦%��ã¦ � �1¦ "V¨Ïs�1¦%�M�1¦ � Ç h�1¦ " � a¦ " È � a ¦ � � a¦%� Ð �ã¦%��ã¦ � �ã¦ "� ò hü É Ö � ¦l� ó �oV ò hü Ú �1¦%� Ö � ¦ � � a¦%� ó �oV ò hü 2 �ã¦%��ã¦ � Ö � ¦ " � a¦ � � a ¦l� ó � � (13.125)

and the antisymmetric matrix ÖÔ is extracted asÖÔo� Ç hü É Ö � ¦%� È V Ç hü Ú �1¦%� Ö � ¦ � � a¦%� È V Ç hü É �1¦%�M�1¦ � Ö � ¦ " � a¦ � � a¦%� È(= (13.126)
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13.12 End notes

Using Lemma 13.5 again, the angular velocity vector Ô reduces toÔo� hü É � ¦%�WV hü Ú �1¦l� � ¦ � V hü 2 �1¦%�M�1¦ � � ¦ " = (13.127)

Rewriting this as a matrix equation, Ô:� � h�¸� using h�m� � hü 2 � hü Ú � hü É � a , the

columns of
�

are easily identified� à 2Z��� ¦%� � � à ÚD� �1¦%� � ¦ � � and
� à É � �ã¦%��ã¦ � � ¦ " = (13.128)

As an example, consider the 3-1-3 convention used in Goldstein [105] for in-

stance, where §�2ã�º§ É � î �8§ÍÚÎ�£� , and the angles are denoted
ü � � and ý

respec-

tively. This yields � � ×ØÙ 
 °M±;8 � ý � 8 � � � ý �}8 � � � � �
 8 � � � ý � ?y°>±�8 � ý �}8 � � � � �� 
 °M±;8 � � �
ÜÞÝß = (13.129)

Matrix
�

is degenerate when
� ��
 as it reduces to� & � q " � ×ØÙ 
Û°>±;8 � ý � 

 8 � � � ý � 
� 
 � Ü Ýß � (13.130)

which has two identical columns. This means that h� cannot be recovered usingh�º� � N 2 Ô to integrate the angles as function of angular velocities. All the 24

Euler angle conventions suffer from this type of singularity, though at different

locations. The reason is that the group of rigid rotations �wI6��î � is a manifold

which is curved, i.e., it is not isomorphic to
/�É

, and therefore, there is no global

three-dimensional chart for it.

Given one of the Euler angle conventions of Section 13.11, expressed in the

general for ��� ü � � � ý �W� �1¦%��� ý � �1¦ � � � � �ã¦ " � ü � , there is a corresponding quaternion� � ü � � � ý ���m� ¦l��� ý �K�Y� ¦ � � � �>�H� ¦ " � ü � , and it is therefore possible to recover the

angles for an arbitrary convention but this is not pursued further here.

13.12 End notes

A brief analysis of the quaternion representation of �wI6��î � is found in Haug [118]

but this book is long since out of print. In addition, it concentrates on the

analysis of the rotation factors
ð � ���,� ô � ��� and the formulae �È� ���`� ð � �;� ô a¸� ��� ,h�Å� � �L�;��� cbaw� �;��Ô , and h�Å� � �L�;��� ^Îa ÔwÕ , specifically in order to use the variational

principle on the rigid body Lagrangian. The complete representation of the

quaternion algebra with the
� � ��� and !(� ��� matrices is not provided.

Tasora [263] is well aware of all this algebra when exploring quaternion-based

formulations of kinematic constraints, as is also done in Chapter 14, but it seems

that his reference on the topic are course notes in Italian, according to his refer-

ence list.
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13 Rigid Bodies II: Kinematics and Quaternions

Goldstein [105] does provide a long chapter on rigid body kinematics covering

several alternative representations. However, his comments on quaternions are

limited to the snide remark: “The connossieur [sic] of somewhat musty mathe-

matics will recognize in [ =M=>= ] a representation of
�

as a matrix quaternion, =>=>= ”.
He proceeds with a representation relying on the Cayley-Klein parameters orga-

nized in � � � complex matrices, instead of the explicit ñY�áñ real matrices used

herein. In addition, he only provides formulae connecting the rate of change

of the Euler angles to the angular velocities but he does not provide the similar

computation for the Cayley-Klein parameters, though he does provide the matrix

representation (13.77).

Euler-Rodrigues parameters are well covered by Angeles and Kecskeméthy [10],

but these parameters, even though there is four of them, much like the quater-

nions, have singular points in their representation. In fact, the relationship is� " � � � � V �MÆ� � � Ç � ��p� " � Ç = (13.131)

There does not seem to be a specific advantage to this, especially since there is

a problem when �MÆ is near ?�� , since � " ¤ 
 then, and � Ç becomes ill-behaved.

In the graphics literature, one often sees the equationh�Å� �� ÔZ�{� (13.132)

without any comment as to what is meant by Ô or the product ÔZ� , except that
both Ô and � are quaternions. The exact formulae (13.119) and (13.120) with

complete definition of the matrices
ð � ��� are ô � ��� are found in lecture notes here

and there but one has to dig.

The relation h��� � �L�;�T� ð � ��� a Ô is in fact a description of the tangent bundle� �
for

� � �
. Indeed, for arbitrary Ôu- /ZÉ

, the velocity h� defined in (13.119)

makes h� tangent to
�

at the point �È- � �4- � & 4 � 4 ��� .
The identities developed in this chapter are very useful in the analysis of rigid

body rotational constraints. Some examples are provided in Chapter 14.

It is hard to say which of the results of this chapter are new and which are

not. Since no literature could be found other than the short section in Haug’s

book [118], everything was derived from scratch and that process required the

derivation of the various lemmata. The final expressions for the rotation matrix

found in Section 13.6 and the angular velocity in Section 13.10 are well known.

The specific representation of the quaternion algebra with the
õ � ��� and

ø � ���
matrices is obviously known to Tasora [263] but the results above were derived

before any knowledge of that paper and textbooks or articles were of little help.

In fact, all formulas presented in this chapter were derived out of necessity be-

cause the literature was insufficient.

The explicit evaluation of analytic functions of quaternions is probably related

to the Baker-Campbell-Hausdorff formula and the calculus of Lie derivatives [112]

but none of these techniques were used in the derivation. Novel or not, what is

certain is that a collection of the results and identities needed for the analysis
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of rigid body kinematics is not easily found. This motivated the inclusion of the

present chapter.
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14 Rigid Bodies III:

Constraint Kinematics

As discussed in Section 3.14 and in Chapter 4, kinematic constraints are restric-

tions on the motion of a mechanical system which account geometrically for the

net effect of physics occuring at time and length scales which are not essential

to the analysis.

Several mechanical assemblies can be realized to attach bodies together. These

are known as joints. Though a complete mathematical description of the usual

joints is not provided here, several rotational joints are analyzed in details us-

ing the quaternion algebra of Chapter 13. After motivating a quaternion-based

strategy and introducing the main concepts in Section 14.1, a full rotational lock

joint is described in Section 14.2. The reason for this is that individual constraint

equations can be removed to produce joints which do have some rotational de-

grees of freedom. This is done in Section 14.3 where a hinge or revolute joint is

defined, in Section 14.4 where a Hooke’s or universal or Cartan joint is defined,

and in Section 14.5 where a homokinetic joint is defined. All these representa-

tions use the same quaternion-based formulation. An alternative representation

of constraints is discussed in Section 14.6 and general remarks are provided in

Section 14.7.

14.1 Quaternion-based rotational constraints

Assuming a decoupling between the translational and rotational degrees of free-

dom connecting two rigid bodies (or two frames in general), there are several

constraints which can be expressed directly in terms of the quaternion which

expresses the relative rotation between the two frames.

The framework described below is very general and can account for certain

types of rheonomic constraints in which attachment points are moving, for in-

stance, though this is not done here.

The advantage of the quaternion representation is that it is free of certain

singularities as explained in Section 14.6.

First express the relative quaternion between bodies two bodies labeled ��� �O�
in terms of the rotational coordinates of each rigid body and an joint attachment

frame which may or may not be fixed in the body frame. In the case where it is

not fixed, it is assumed that the motion of the attachment frame is fully specified

kinematically, i.e., the angular velocities are known for any given time.

Let � ½ 2 ¾ � � ½ Ú ¾ - �
and \ ½ 2 ¾ ��\ ½ Ú ¾ - /ZÉ

represent the quaternions of body �;��� ,
respectively, relative to an inertial frame of reference. Let � ½ 2 ¾ ��� ½ Ú ¾ - � � and
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14 Rigid Bodies III: Constraint Kinematicsd ½ 2 ¾ �:d ½ Ú ¾ - /ZÉ
describe the orientation and position of attachment frames of

body �;��� , respectively, expressed in the frame of reference of body ��� � , respec-
tively. With our conventions, the quaternion � ½ 2 ¾ �H� ½ 2 ¾ corresponds to transfor-

mation from the attachment frame of body � to the inertial frame. Therefore,

the transformation which goes from body � to body � is given by the expression:\¡�º\ ½ Ú ¾ V	��� � ½ Ú ¾ � � d ½ Ú ¾ ?�\ ½ 2 ¾ �3? ��� � ½ 2 ¾ d ½ 2 ¾ �,��Å� � � ½ 2 ¾ ��� ½ 2 ¾ � ¼ � � � ½ Ú ¾ ��� ½ Ú ¾ �W��� ¼ ½ 2 ¾ �`� ¼ ½ 2 ¾ �`� ½ Ú ¾ ��� ½ Ú ¾ = (14.1)

In addition, we write the quaternion velocities � ½ ¦¿¾ � z ½ ¦¿¾ - �
so that h� ½ ¦�¾ �2Ú � ½ ¦¿¾ �3� ½ ¦¿¾ , and h� ½ ¦¿¾ � 2Ú � ½ ¦¿¾ � z ½ ¦�¾ . We will project the equations down to the

more familiar 3D angular velocity vectors later on.

Now, any holonomic rotational constraint can be expressed as some function�	  � � � ¢¤ / + � �Q� � � f �K� 
 . Note that since
4 � 4 � � , � describes î degrees

of freedom and so 
@' 7 a î . To find the Jacobian of �Q� �{� f � in terms of

the generalized coordinates � ½ 2 ¾ ��� ½ Ú ¾ , it suffices to find Ô ½ 2 ¾ � Ô ½ Ú ¾ such that h���Ô ½ 2 ¾ Ô ½ 2 ¾ V Ô ½ Ú ¾ Ô ½ Ú ¾ , where h� ½ ¦¿¾ � 2Ú ð � � ½ ¦�¾ ��Ô ½ ¦¿¾ �ÍÔ ½ ¦¿¾ - /ZÉ
. For more complicated

expressions, we use the chain rule to get:x �k� �{� f �x f � ´ �´ � Ç Ô ½ 2 ¾ Ô ½ 2 ¾ V Ô ½ Ú ¾ Ô ½ Ú ¾ È V ´ �´ f� ^ ½ 2 ¾ Ô ½ 2 ¾ V�^ ½ Ú ¾ Ô ½ Ú ¾ V ´ �´ f � (14.2)

so that ^ ½ ¦¿¾ � ^ Ô ½ ¦¿¾ where ^ � ´ �´ � . Note that ��- �
is treated strictly as

a four-dimensional vector here and all quaternion operations are understood as

matrix-vector operations in
/ ¦ .

Lemma 14.1. Given two quaternions � ���5- �
, with inertial frame angular

velocities ��� z - � � respectively, the product<4��� ¼ ���á� � � ½ 2 ¾ �`j ½ 2 ¾ �V� � � ½ Ú ¾ �`j ½ Ú ¾ �~� (14.3)

has the following time derivative:h<4� �� õ a � ��� ø � �e� z ? �� õ a � �;� ø � �e�7��= (14.4)

Proof. Using quaternion algebra and the chain rule, noting first that h� ¼ � 2Ú � �H�`��� ¼ �? 2Ú � ¼ � � , since � ¼ � ?�� as we showed before in (13.115). Therefore, we have:h<4��� ¼ � h� V h� ¼ ���� �� � ¼ � z ����? �� � ¼ � �H���%= (14.5)

Now, using the matrix representation of Section 13.5 for the quaternion prod-

uct, select the left ordered product (13.51) for � factors and the right ordered

product (13.52) for factors involving � yields the result.
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14.1 Quaternion-based rotational constraints

For a more general case, we introduce the notion of attachment frames on each

body. These frames have orientation quaternions j ½ ¦¿¾ - �
in the frame of body § ,

respectively, and they have a prescribed angular velocity, i.e., �p� ½ ¦�¾ �gf �W� hj ½ ¦¿¾ j ¼ ½ ¦¿¾
is given. Now, body § has orientation quaternion � ½ ¦¿¾ with quaternion angular

velocity �p� ½ ¦�¾ � h� ½ ¦¿¾ � ¼ ½ ¦¿¾ . The quaternion which relates the frame on body � to

that on body § is given simply by:�á� � � ½ 2 ¾ �`j ½ 2 ¾ � ¼ � � � ½ Ú ¾ �`j ½ Ú ¾ �w��j ¼ ½ 2 ¾ �`� ¼ ½ 2 ¾ �`� ½ Ú ¾ �Åj ½ Ú ¾ = (14.6)

The time derivative h� can then be expressed as a function of � ½ ¦�¾ ��� ½ ¦¿¾ using
the following:

Lemma 14.2. Given four unit quaternions � ½ ¦¿¾ � j ½ ¦¿¾ - � �8§¸� � �;� � � which have

angular quaternion velocity ��� ½ ¦¿¾ � h� ½ ¦¿¾ �(� ¼ ½ ¦¿¾ and ��� ½ ¦�¾ � hj ½ ¦¿¾ �Èj ¼ ½ ¦¿¾ � respec-
tively. Write �Î½ 2 ¾ ���%½ 2 ¾ �ÈjD½ 2 ¾ and �D½ Ú ¾ ����½ Ú ¾ �Èj1½ Ú ¾ and put �K�A� ¼ ½ 2 ¾ ���D½ Ú ¾ .
Then, h� is given by:h�Å� ? �� ø � <�� õ a � j ½ 2 ¾ � ø � j ½ 2 ¾ �7� ½ 2 ¾ ? �� õ a � � ½ 2 ¾ � ø � � ½ Ú ¾ �7� ½ 2 ¾V �� õ a � � ½ 2 ¾ � ø � � ½ Ú ¾ �É� ½ Ú ¾ V �� õ � ��� õ a � j ½ Ú ¾ � ø � j ½ Ú ¾ �7� ½ Ú ¾ � (14.7)

or using vector angular velocity vectors defined as Ô ½ ¦�¾ �A� Ç ½ ¦¿¾ and Ô ½ "�Á ¦¿¾ �A� Ç ½ ¦¿¾ �
and using the previous definition for ��� ��� in (13.73):h�Å��? �� ð a � ��� � a � j ½ 2 ¾ ��Ô ½ "1Á 2 ¾ ? �� õ a � � ½ 2 ¾ � ð a � � ½ Ú ¾ ��Ô ½ 2 ¾V �� õ a � � ½ 2 ¾ � ð a � � ½ Ú ¾ ��Ô ½ Ú ¾ V �� ô a � ��� � a � j ½ Ú ¾ ��Ô ½ "1Á Ú ¾ � (14.8)

and finally, the same relation can be expressed using the body frame angular

velocities ÔWÕ ½ ¦¿¾ � �È� � ½ ¦¿¾ ��Ô ½ ¦¿¾ and ÔwÕ ½ "1Á ¦¿¾ � ��� j ½ ¦¿¾ ��Ô ½ "�Á ¦¿¾ :h�Å� ? �� ð a � ����Ô Õ ½ "�Á 2 ¾ ? �� ð a � ��� � a � j ½ 2 ¾ ��Ô Õ ½ 2 ¾V �� ô a � ����Ô Õ ½ "1Á Ú ¾ V �� ô a � �;� � a � j ½ Ú ¾ ��Ô Õ ½ Ú ¾ = (14.9)

Proof. Starting from �(��j ¼ ½ 2 ¾ �È� ¼ ½ 2 ¾ �È� ½ Ú ¾ �Èj ½ Ú ¾ � the product rule yields four

terms. The first one reads: hj ¼ ½ 2 ¾ �1� ¼ ½ 2 ¾ �D� ½ Ú ¾ �1j ½ Ú ¾ . Using the definition of � ½ 2 ¾
and the fact that j ¼ ½ 2 ¾ jD½ 2 ¾ ��� , this term becomes:hj ¼ ½ 2 ¾ �`� ¼ ½ 2 ¾ �Å� ½ Ú ¾ �`j ½ Ú ¾ � ? �� j ¼ ½ 2 ¾ � � ½ ¦¿¾ �`j ½ 2 ¾ �`�{� (14.10)

and using matrices ! � � of (2.29), this yields the first term of (14.7). Similar

simple algebraic manipulations apply to each of the four terms and the result

follows.

It is interesting to note here that the natural frame of reference for the angular

velocity of attachment frames is not the world coordinates but the frame itself.

We now proceed to apply this simple result to compute Jacobians of non-trivial

kinematic constraints for rigid bodies.
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14 Rigid Bodies III: Constraint Kinematics

14.2 A full kinematic control constraint

Using the result of the previous section, we can now specify a constraint equation

for a fully kinematically controlled constraint between two bodies. Using the

result of Lemma 14.2, the 3-dimensional constraint: �Q� �{� f �W� ô � �Q���Å�u
 , where �
is defined as in (14.3), and �4- � � 4 � 4 ��� , is a time-dependent unit quaternion—

the desired relative orientation between the frame attached on body 1 and that

attached on body 2—which is given. If the condition �Q� �{� f �1��
 is maintained,

Lemma 13.22 guarantee that � �sf �D� � � �sf � . However, since ��� ���D� ��� ?Î��� , this
identity guarantees that the relative rotation between bodies � and � is in fact��� � �sf �8� as required. Some simple algebra yields the following definition of the

constraint Jacobian:h�Q� �{� f �W� ^ ½ 2 ¾ Ô ½ 2 ¾ V�^ ½ Ú ¾ Ô ½ Ú ¾ V z �sf �,�^ ½ 2 ¾ ��? �� ô � � ½ 2 ¾ ���e� ð a � � ½ Ú ¾ �,�^ ½ Ú ¾ ��? ^ ½ 2 ¾ � �� ô � � ½ 2 ¾ ���Q� ð a � � ½ Ú ¾ �~�z �gf �W��? �� ô � �Q� ð a � �;� � a � j ½ 2 ¾ ��Ô ½ "�Á 2 ¾ �V �� ô � �Q� ô a � ��� � a � j ½ Ú ¾ ��Ô ½ "�Á Ú ¾ ? �� ô � ��� ð a � �e��Ô ½ Ö�¾ �
(14.11)

where Ô ½ "�Á ¦¿¾ �8§Z- � �;��� � � are the angular velocity vectors of the attachment frames,

and Ô6½ Ö ¾ is the angular velocity vector of the relative quaternion. All velocities

are expressed in absolute coordinates.

Tasora [263] has derived a similar formula but his result is far more complicated

than the one given above. In addition, we clearly see that the attachment angular

velocities should be specified in the reference frame of the attachment to save

computations. Finally, observe that (14.11) is a set of three linear equations

in ÔY½ ¦¿¾ which are guaranteed to result in ��� ����� ��� �Q� if �Q� �{� f �y�:
 , as per

Lemma 13.22. Tasora arbitrarily selects three equations and it is not clear that

this choice can work when there is significant constraint violation.

With the current representation, that according to the result of Lemma 13.27,

the constraint Jacobian blocks have determinant
�¨�~� ��^ ½ ¦¿¾ � is proportional to� ½ Ú ¾ � Ç � ½ 2 ¾ ���~È . Near the point where the constraint is satisfied, this determinant

is
� � and the blocks have full row rank.

14.3 Quaternion representation of a hinge constraint

A hinge is a mechanism which only allows rotations about an axis � - /ãÉ
which

is fixed in the constraint frame. From (13.81) a rotation by
�
about a fixed axis

is given by the quaternion: � p � � �w� ö °>±�8 � � �����8 � � � � �;��� � ÷ = (14.12)
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14.3 Quaternion representation of a hinge constraint

If we have vectors r � ¯Î- /ZÉ
, constant in the frame of the hinge and such that� r � ¯� ï � forms a right handed orthonormal basis of

/�É
, then, the constraint can

be expressed as r a � Ç ��
<�¯ a � Ç ��
<= (14.13)

Theorem 14.3. Given a unit quaternion �i- � � 4 � 4 �m� , and a right handed

orthonormal basis of r � ¯L� ï - /�É
, then, � describes a rotation about ï if and only

if the following two conditions hold:r a � Ç ��
<�¯ a � Ç ��
<= (14.14)

Proof. For the “if” part, since � Ç - /ZÉ
, we can always write � Ç ��� � r V �P �¯ V � î ï .

From the conditions of (14.14), � � �A�Q Y� 
 . Now, since
4 � 4 Ú �:� , we have� ÚÆ V � Úî �m� so we can find some angle

ü - © 
O� ñ « « so that �ÆK� °>±�8 � ü �����~���£�8 � � � ü ����� . The rotation described by this quaternion is given by (13.81) and is a

rotation by
ü
about ï .

For the “only if” part, any rotation matrix � - �wIK��î � , can be written as� � � ��� ÚÆ ?E�M� V ��� Ç � Ç aáV ���>Æ�Ö� Ç , where � Ç is the axis of rotation. It follows that

if � Ç � ï , then, the conditions of (14.14) hold.

It is interesting to note that a more usual definition is stated in terms of the

rotation matrix directly as: r a �È� ��� ï �u
O�¯ a �È� ��� ï �u
O= (14.15)

To make the argument simple, take ï along the � axis. If � - �wIK��î � is a rotation

by
ü
about � , then � � � í � ü �W� ×ØÙ °M±;8 � ü � ?m8 � � � ü � 
8 � � � ü � °>±�8 � ü � 

 
 � Ü Ýß = (14.16)

The conditions of (14.15) correspond to � 2 É �:
	� � Ú É . However, consider� � � í � ü � � � � «#� :
� � � í � ü � � � � «#�w� ×ØÙ °>±�8 � ü � ?m8 � � � ü � 
8 � � � ü � °>±;8 � ü � 

 
 � ÜÞÝß ×ØÙ � 
 

 ?�� 

 
 ?�� ÜÞÝß� ×ØÙ °>±;8 � ü � 8 � � � ü � 
8 � � � ü � ?y°>±�8 � ü � 

 
 ?�� Ü Ýß = (14.17)

And for this case, we also have � 2 É �@
K� � Ú É , even though the matrix � does

not correspond to a rotation about � .
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14 Rigid Bodies III: Constraint Kinematics

The Jacobian matrix for the hinge joint is thus the constant projection

! �  W�Àö r a¯ a ÷^ ½ 2 ¾
hinge

� ! �   ^ ½ 2 ¾^ ½ Ú ¾
hinge

� ! �   ^ ½ Ú ¾ = (14.18)

14.4 Quaternion representation of a Hooke’s joint

The Hooke’s joint a device often used in transmissions. It allows to connect two

shafts at some moderate angle so that one shaft drives the other. A Hooke’s

joint is also known as U-joints, universal joints, Cardan joint, or Hardy-Spicer

joint. Hooke’s invented this mechanism in 1676 using ideas pioneered by Cardan

in 1545. Henry Ford called it the universal joint when he decided to use it in his

car designs.

The idea is to transfer the rotational motion of a shaft that is free to rotate

about some axis � ½ 2 ¾ - /ZÉ
, to a secondary shaft that is free to rotate about

another axis � ½ Ú ¾ - /ZÉ
. The plane defined by the span of the vectors � ½ 2 ¾ � � ½ Ú ¾

is invariant in the relative reference frame.

To construct a mathematical description of this type of constraint, we first

observe that a universal joint is constructed with two perpendicular hinges which

are rigidly attached together, each hinge being connected to a rigid body, namely,

one of the two shafts. Therefore, the relative transformation between body 1 and

body 2 is a sequence of two rotations about axes <â���i- /ãÉ � where < is fixed in

body 1 and so is � in body 2. The perpendicularity condition states that at any

time, < ½ 2 ¾ � � ½ Ú ¾ �5
 —using the notation \ � d�� \ a d here to avoid too many

superscripts—where < ½ 2 ¾ � � ½ 2 ¾ < , and � ½ Ú ¾ � � ½ Ú ¾ � , and � ½ ¦¿¾ is the rotation

matrix of body § .
The orthogonality condition now reads: < aâ�ãa ½ 2 ¾ � ½ Ú ¾ �E� 
 . Write �È� ���Y��ãa ½ 2 ¾ � ½ Ú ¾ for some unit quaternion �È- �

, so that�È� ���W� � �T� ÚÆ ?	�� � É V ��� Ç � Ç a ?B���>Æ�Ö� Ç = (14.19)

Since orthogonality holds for �Å��� , we find that this is equivalent to� < a � Ç � � � a � Ç � V �>Æ�< a Ö � Ç � � 
 . After a small amount of algebra, we find the

following quadratic form representation�� � a _`� <â�����8�`� �� ò �MÆ � Ç a ó ö 
 ? 2Ú < a Ö �e�2Ú Ö �}< <�� a ÷ ö �MÆ� Ç÷ �u
O= (14.20)

We take this as the constraint definition and we then have the following Jacobians
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14.4 Quaternion representation of a Hooke’s joint

in terms of the product quaternion � and rigid body velocities Ô ½ ¦¿¾ :h�Q� �{� f �W��� a _`� <â���¨� h�`� ^ ½ 2 ¾ Ô ½ 2 ¾ Vo^ ½ Ú ¾ Ô ½ Ú ¾ V z �sf �,�^ ½ 2 ¾ � ? �� � a _�� <â���¨� ô � ��� � a � � ½ 2 ¾ �,�^ ½ Ú ¾ � �� � a _`� <â���¨� ð � ��� � a � � ½ Ú ¾ �~�z �sf �W� �� � a _`� <â�:�¨� Ç ô � �e� ð a � ����Ô n ½ 2 ¾ ? ô � �e� ô a � �;��Ô n ½ Ú ¾ È(� (14.21)

where � ½ ¦¿¾ denotes the quaternions of the attachment points, and Ô n ½ ¦¿¾ their

velocity vectors.

We now provide a detailed description of the kinematics allowed by the univer-

sal joint by considering two shafts which are connected together with a universal

joint. The first shaft lays along the \ axis and is connected at one end by a driver

which sets Ô ½ 2 ¾ � ï�¾� z f , and Ô ½ 2 ¾ is parallel to the \ axis, which we write as� ½ 2 ¾ . This first rod is attached to the universal joint assembly by a connection

pin along < ½ 2 ¾ . This pin is fixed in body 1 and we take it to be along the � axis

originally. Since body 1 rotates along the \ axis, we have< ½ 2 ¾ �sf �w� � � � ü �É< ½ 2 ¾ � 
T�w� ×ØÙ � 
 

 °M±;8 � ü � ?m8 � � � ü �
 8 � � � ü � °M±;8 � ü �
Ü Ýß < ½ 2 ¾ � 
��w� ×ØÙ 
?±8 � � � ü �°>±�8 � ü �

Ü Ýß =
(14.22)

The universal joint mechanism contains a second connection pin, � ½ Ú ¾ which
has fixed orientation in body 2 and is orthogonal to < ½ 2 ¾ . We take this to lie along

the d axis in the natural frame of reference of the device. Since the mechanism

is free to rotate about < ½ 2 ¾ , we have� ½ Ú ¾ � � � � ü � � � � �3�7� ½ Ú ¾ � 
��w� � � � ü � ×ØÙ ?±8 � � � �#�°>±�8 � �#�
 ÜÞÝß � ×ØÙ ?±8 � � � �#�°M±;8 � ü �O°>±�8 � �3�8 � � � ü �}8 � � � �3� ÜÞÝß = (14.23)

Likewise, if the shaft of the second body is along the vector � ½ Ú ¾ , it is free to

rotate about the � ½ Ú ¾ vector the � ½ Ú ¾ axis is then
� ½ Ú ¾ � � � � ü � � � � �3� � Ç � ��� � ½ Ú ¾ � 
��w� � � � ü � � � � �3� ×ØÙ °>±;8 � �ã�
8 � � � �ã� Ü Ýß� � � � ü � ×ØÙ °>±�8 � �#�O°M±;8 � ���8 � � � �#�O°M±;8 � ���8 � � � ��� Ü Ýß � ×ØÙ °M±;8 � �3�O°>±�8 � ���°>±;8 � ü �}8 � � � �3�O°>±;8 � ���#?ó8 � � � ü �}8 � � � �ã�8 � � � ü �}8 � � � �3�O°>±�8 � ��� V °>±�8 � ü �}8 � � � �ã� Ü Ýß =

(14.24)

This can be kept in the \kd plane if we can set the last equation to zero, and this
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14 Rigid Bodies III: Constraint Kinematics

is possible with following substitution� � _ 8 � � Ú � �3�O°>±;8 Ú � ��� V 8 � � Ú � ���W� u ��?�°>±�8 Ú � �3�O°M±;8 Ú � ���,�8 � � � ÿ �W��8 � � � ����� � �°>±�8 � ÿ �W��8 � � � �#�O°M±;8 � ��� � � = (14.25)

This leads to 8 � � � ü V ÿ �`� 
 . We can then solve for °>±�8 � �e��� °M±;8 � �3�O°>±�8 � ���`�ï�¾� z f . which leads to � ��8 � � � ��� and:
� ½ Ú ¾ � ×ØÙ °M±;8 � �e�8 � � � �e�
 ÜÞÝß � ×ØÙ °>±�8 � �3�O°>±�8 � ���°M±;8 � ü �}8 � � � �3�O°>±;8 � �ã�#?ó8 � � � ü �}8 � � � ���8 � � � ü �}8 � � � �3�O°>±;8 � �ã� V °>±�8 � ü �}8 � � � ��� ÜÞÝß = (14.26)

Recall the simplest constraint definition of the Jacobian for the universal joint

is: �Q� ���W�A< ½ 2 ¾ � � ½ Ú ¾ ��
 , leading to the Jacobianh� � � < ½ 2 ¾ � � ½ Ú ¾ � a Ô ½ 2 ¾ ? � < ½ 2 ¾ � � ½ Ú ¾ � a Ô ½ Ú ¾ ��
<� (14.27)

where the notation \ � d@� Ö\	d is used to simplify the layout. Now, we set

everything up so that Ô ½ ¦¿¾ � 4 Ô ½ ¦¿¾ 4 � ½ ¦¿¾ and therefore, we have:4 Ô ½ Ú ¾ 4 � 4 Ô ½ 2 ¾ 4 � ½ 2 ¾ ��� < ½ 2 ¾ � � ½ Ú ¾ �� ½ Ú ¾ ��� < ½ 2 ¾ � � ½ Ú ¾ � (14.28)

Simple algebraic manipulation yield� ½ 2 ¾ ��� < ½ 2 ¾ � � ½ Ú ¾ �W� ?�°M±;8 � �#�~�� ½ Ú ¾ ��� < ½ 2 ¾ � � ½ Ú ¾ �W� ?�°M±;8 � �#�O°M±;8 � �e� V 8 � � � �3�O°>±�8 � ü �}8 � � � ���,= (14.29)

After multiplying both of these by the same factor °M±;8 � ��� and using the results

of (14.25), this is further reduced to4 Ô ½ Ú ¾ 4 � 4 Ô ½ 2 ¾ 4 °M±;8 � �e��Z?ó8 � � Ú � ���}8 � � Ú � ü � = (14.30)

This shows that when the angle between the two shafts is large, significant wob-

bling occurs.

It is easy to show that the ratio of output to input velocities is bounded by°M±;8 � �e��a 4 Ô ½ Ú ¾ 44 Ô ½ 2 ¾ 4 a �°>±�8 � �e� � (14.31)

and from this, it is easy to check that there is less than �;= y
¡ deviation for angles� within
� � y I . However, the deviation is more than ��
 ¡ when � is near î�y I and

eventually, for ���d(�
 I , the mechanism locks.

This is remedied by a homokinetic constraint which is designed precisely so

that
4 Ô ½ Ú ¾ 4 � 4 Ô ½ 2 ¾ 4 . This is described next.
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14.5 Quaternion representation of a homokinetic constraint

14.5 Quaternion representation of a homokinetic

constraint

As we saw in Section 14.4, the constraint for a universal joint is quadratic in

terms of the relative quaternion and in addition to that, the coupling between

the angular speeds of the two connected shafts is nonlinear. When the angle

between the coupled shafts is within
� � y I , the non-linearity accounts for less

than 1 percent but for large angles, universal joints become wobbly.

The solution to this problem is the homokinetic joint and we describe the

geometry of this here.

To understand the geometry at work here, consider two shafts which are ro-

tated by angle
ü
about their respective axis and connected together at a common

point at an extremity. These two shafts have axes which are aligned along the

unit vectors < ½ ¦¿¾ � respectively. The angle between these two vectors is given by°>±;8 � � �¡� < ½ 2 ¾ � < ½ Ú ¾ . Assume that the two shafts lie in the plane defined by

vectors < ½ ¦¿¾ �:� ½ ¦¿¾ at some point in time—this plane can move without affecting

the current analysis.

Consider a coordinate system of
/�É

with <â����� � as the orthonormal basis.

Then, consider the quaternions ��� � ü �È� � °>±�8 � ü �;�T�,�:8 � � � ü �;�T�7< a � a , and � p � ü �È�� °>±�8 � � �;�T�,�:8 � � � � ����� ��a � a , which rotate by angle
ü
about axis < and

�
about � ,

respectively. We compute the product �á���;¼� � ü �	�`� p � � �8��� � ü � in two stagesf ��� p � � �V�`�1� � ü ��Àö °>±�8 � ü �;���O°M±;8 � � �;���°M±;8 � � �;���}8 � � � ü �;�T�7< V 8 � � � � �����O°>±�8 � ü �;��� �áV 8 � � � � �;���}8 � � � ü �;�T�7� ÷ � (14.32)

and finally, � � ü � � �w��� ¼� � ü �	�`� p � � �8�1� � ü �� ö °>±�8 � � �����8 � � � � �;�T�O°>±;8 � ü � ��V 8 � � � � �����}8 � � � ü �7� ÷ � (14.33)

which shows that for any angles
� � ü � the following condition is satisfied < a � Ç �u
 ,

defining the homokinetic constraint.

Theorem 14.4. Given two rigid bodies with quaternions �3½ 2 ¾ ����½ Ú ¾ - � � and
angular velocity vectors Ô ½ 2 ¾ �ÍÔ ½ Ú ¾ - /ZÉ

. Given a unit vector <@- /�É � fixed in

the frame of body 1, then, the motion allowed by the constraint �Q� ���W�A< a � Ç ��
<�
where �Å��� ¼ ½ 2 ¾ �`� ½ Ú ¾ � consists of:

1. Each body is rotated by the same angle
ü
about vector < fixed in body frame;

2. Additional rotation by an angle
�
about vector � is normal to the plane

spanned by < ½ 2 ¾ ?R< ½ Ú ¾ if < ½ 2 ¾ ��< ½ Ú ¾ are not collinear, and
� ��
 otherwise;

3. Since
ü
is common to both bodies, speed of rotation about < in body frame

is same for both bodies and therefore, the connection is homokinetic.
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14 Rigid Bodies III: Constraint Kinematics

Proof. We neglect the attachment coordinate frames and assume that the axis

of rotation is < in body frame coordinates for both bodies. Using the body coor-

dinate version of the time derivative of the relative quaternion (14.9), dropping

irrelevant terms, we haveh�Å� ? �� ð a � ����Ô Õ ½ 2 ¾ V �� ô a � ����Ô Õ ½ Ú ¾ = (14.34)

From this, and using the constraint equation < a¡h�¡� 
 , we know the form of �
from (14.33). We thus need to know the vectorsdH� ð � ���Åö 
< ÷ � and � � ô � ���Åö 
< ÷ = (14.35)

A simple computation yieldsdH� ð � �;� ö 
< ÷ �º°M±;8 � � �;�T�7< V 8 � � � � �����O°>±�8 � ü �7�6?�8 � � � � �;�T�}8 � � � ü � � �
� � ô � �;� ö 
< ÷ �º°M±;8 � � �;���É<¡?�8 � � � � �;�T�O°>±�8 � ü �É� V 8 � � � � �;���}8 � � � ü � � � (14.36)

and so clearly, if d a ÔwÕ ½ 2 ¾ � �{a ÔwÕ ½ Ú ¾ � then, the speed of rotation about < in body

frame is the same in both bodies and hence, this is a homokinetic connection.

This proves the third assertion.

Since the relative quaternion � has the form given in (14.33), the first two

parts of the description of the motion follow directly.

14.6 The direction cosine representation

A more common description of the rotational components of joints is based on

a direction cosine representation. To do this, consider two bodies labeled � and� as previously. Define an attachment point on each body with the quadruple[d ½ ¦�¾ � [r ½ ¦¿¾ � [¯ ½ ¦¿¾ , and [ï ½ ¦�¾ , so that [d ½ ¦�¾ is the body-frame location of the attachment,

and vectors [r ½ ¦¿¾ � [¯ ½ ¦¿¾ , and [ï ½ ¦�¾ form a right handed, orthonormal basis. Writex ½ ¦¿¾ � �È� � ½ ¦¿¾ � [x ½ ¦¿¾ � x � r � ¯� ï , or d , for the world-frame representation of any of

the vectors in the quadruple, where � ½ ¦¿¾ is the orientation quaternion for body

with index §Z- � ��� � � .
The direction cosines are the six coefficients é ½ 2 ¾ a é Õ ½ Ú ¾ , where é and é Õ is

any pair of choice of r ��¯ or ï . Constraints can be built from these in an easy

fashion. An important case is a dot-1 constraint, such as, for instancer ½ 2 ¾ a ¯ ½ Ú ¾ ��
O� (14.37)

which keeps vectors r ½ 2 ¾ and ¯ ½ Ú ¾ orthogonal. The constraint (14.37) describes

a Hooke’s joint in the most natural way. The Jacobians for such constraints are
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easily evaluated from hr ½ ¦�¾ � �� f �È� � ½ ¦�¾ � [r ½ ¦¿¾ �£¢Ô ½ ¦¿¾ ��� � ½ ¦¿¾ � [r ½ ¦¿¾� ? ¢r ½ ¦¿¾ Ô ½ ¦�¾ � (14.38)

where (13.118) was used to evaluate h� , and account taken for [r ½ ¦�¾ being constant.
Using the product rule and simple manipulations involving Lemma 13.3, the

Jacobian of the dot-1 constraint is revealed�� f Í r ½ 2 ¾ a ¯ ½ Ú ¾ Î � r ½ 2 ¾ a ¢¯ ½ Ú ¾ Ô ½ 2 ¾ ? r ½ 2 ¾ a ¢¯ ½ Ú ¾ Ô ½ Ú ¾ � (14.39)

The issue here is that when constraint violation is large enough so that r ½ 2 ¾
becomes nearly parallel to ¯�½ Ú ¾ , the Jacobian of (14.39) vanishes.

In addition, a hinge joint can be represented by the pair of constraintsï ½ 2 ¾ a r ½ Ú ¾ ��
ï ½ 2 ¾ a ¯ ½ Ú ¾ ��
O� (14.40)

but this representation does not distinguish between the collinear ï ½ 2 ¾ � ï ½ Ú ¾ and
the antilinear ï ½ 2 ¾ � ? ï ½ Ú ¾ , as the constraint definition of Section 14.3.

A full set of constraint definitions is direction cosine representation is found in

Haug [118].

14.7 End notes

A complete library of useful joints for simulating complicated machines is now

in planning stages and will exploit the ideas presented here. The framework

described here can in fact be extended to cover � -body constraints, not just

pairwise ones.

It will be interesting to see if the representation can be used for the modeling

of bio-mechanical joints such as the knee, the wrist and the shoulder. These

have complicated restrictions in rotational range as well as couplings between

rotational and translational parts which are not easily described in the direction

cosine formulation.

Tasora [263] takes credit for first publishing this quaternion constraint frame-

work, though the present derivation extends his work somewhat.

Serban and Haug [250] also provided several constraint definitions in terms of

quaternion algebra, using the techniques developed in Haug [118]. This is not

entirely equivalent to the present construction, however.

Alternative formulations of joint constraints are found in the robotics litera-

ture, based mostly on the opposite strategy, namely, the direct modeling of the

degrees of freedom, as opposed to the modeling of the restrictions. This analysis

is found originally in Denavit and Hartenberg [73], and more recent developments

are found in Jain [139] and Orin and Schrader [219]. These are usually covered
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14 Rigid Bodies III: Constraint Kinematics

in textbooks on robotics [9]. An alternative mathematical framework is also

described in Kslicyn [159], as recommended by the American Mathematical So-

ciety (AMS) reviewer. A hybrid uniting the two techniques would be interesting,

indeed.
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15 Rigid Bodies IV:

Gyroscopic Forces and Variational

Steppers

As seen in Chapter 12, the mass matrix of rigid bodies is configuration dependent.

The extra forcing terms appearing in the equations of motion due to this depen-

dency are called gyroscopic, since gyroscopes provide the simplest and most vivid

illustration of their effects. Gyroscopic forces are quadratic in the generalized

velocities which makes them large and fast changing even at moderate speeds.

But the worst part is that rigid body motion has a fundamental instability when

the three principal inertiae have different values: rotation about the middle axis

is unstable. For a body rotating about the middle principal axis, a small distur-

bance produces exponential increases in the angular velocities around the other

two axes, as shown in Marsden and Ratiu [193]. Numerically, this generates in-

stabilities which have been observed repeatedly. Strategies taken to remove these

instabilities include high order geometrically accurate integrators or modification

of the gyroscopic forces creating instability, or a variety of other, non-physical

tricks. Low order variational methods provide a good way for solving the free

rigid body problem—this was in fact the application for the variational integra-

tor of Moser and Veselov [208]—but these techniques are difficult to apply in

the context of constrained systems, especially when dry frictional contacts are

considered.

The present chapter offers an approximation strategy based on the variational

method which amounts to a modification of the mass matrix to include sta-

bilizing terms. This leaves the form of the regularized stepping equations of

Section 4.5 and Section 10.11.4 unchanged after substituting the new mass ma-

trix and adding correction terms to the forces. This approximation is shown to

be unconditionally stable and to be accurate when the velocities are moderate.

After introducing the form of the gyroscopic forces in Section 15.1, the La-

grangian of the system is constructed in Section 15.2 using the quaternion rep-

resentation of Chapter 13, and the equations of motion are derived. This re-

sult is used to reconstruct the classical Euler equations for the rigid body in

Section 15.3. The classical theorem on the stability of the rigid body is then

presented in Section 15.4, followed by a direct discretization of Euler’s equations

in Section 15.5, which also contains an ad hoc stabilization scheme. The varia-

tional time discretization and the novel approximation scheme are then covered

in Section 15.6. After quickly reviewing the equations of motion of the heavy La-

grange top (the gyroscope) in Section 15.7, the results of numerical experiments
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15 Rigid Bodies IV: Gyroscopic Forces

on freely rotating rigid bodies as well as slow and fast Lagrange tops are pre-

sented in Section 15.8. A short review of other techniques and general comments

are found in Section 15.9.

15.1 Introduction

The mass matrix of a rigid body is configuration dependent so that    � ¢¤/ É Ë É
is a matrix-valued function of the system’s coordinates. This introduces

extra forcing terms which have been reported under a variety of names but which

are properly called gyroscopic terms.

Consider the simple Lagrangian with only the kinetic energy term| � �{� h�;�w� �� h� a  � ��� h�O� (15.1)

where  � ���   � ¢¤ / p~Ë p
is a smooth matrix-valued function of � . Applying the

Euler Lagrange equations on this Lagrangian produces�� f ´ |´ h� a ? ´ |´ � a �  � ��� |� V h h�D? �� h� a Í ´  ´ � a Î h��  � ��� |� V � � �{� h�;� h�`��
O� (15.2)

defining the matrix-valued function
� � �{� h�;� as

� � �{� h�;� ¦ëª � Ñ ¬ ´  � ��� ¦®ª´ � ¬ h� ¬ ? �� Ñ ¬ ´ �  � ���8� ¬ ª´ � ¦ h� ¬ = (15.3)

It is immediately clear from (15.2) that the term
� � �{� h��� h� is at least quadratic

in h� . For the rigid body case at least, as shown in Section 15.2, matrix
� � �{� h�;�

is antisymmetric. For this reason, any force term of the form _�� �{� h��� h� with

antisymmetric matrix _`� � � h�;� is called a gyroscopic term.

15.2 Lagrangian form of the equations of motion

As seen in Chapter 12, the translational and rotational terms for the kinetic

energy of rigid bodies are decoupled. It is thus sufficient to concentrate on the

rotational terms. Consider thus a rigid body with center of mass fixed at the

origin and with quaternion coordinates ��- �
. Let the inertia tensor be the

positive diagonal matrix
ù " � �<�%* 9 � � 2� � Ú;� � É �,� � ¦ CE
 .

There are several derivations of the rigid body equations in the literature but

these are seldom based on the Lagrangian defined in terms of the quaternion

coordinates. This derivation is constructed here in a systematic way in order to

produce a variational integrator.

Defining the rotation matrix �È� ��� as in (13.74) so that a vector \QÕ fixed in the

body frame transforms to \�� �È� ���8\kÕ in the inertial frame of reference, and using

258



15.2 Lagrangian form of the equations of motion

the inertial frame angular velocity defined in (13.119), namely, Ô��u� ð � ��� h� , then,
the kinetic energy of the free rigid body which was defined in (12.11) reduces to� � �{� h�;�w� �� Ô a ù Ôo� �� Ô a � a ù "�� Ô��� h� a ô a � �;� ù " ô � ��� h����T� a ô a �¨h�;� ù " ô �¨h�;���{� (15.4)

where the identity
ô � ���Ì����? ô � �Q��� of Lemma 13.26 was used in the penultimate

line and Lemma 13.20 in the last. It is clear that the kinetic energy
� � �{� h�;�b�� �¨h�{� ��� is symmetric in the two arguments � , h� , that it is a quadratic form in

either � or h� , and that it is a homogeneous function of degree � . To form the

Lagrangian for the free rigid body, we still need to introduce the unit constraint4 � 4 ��� which leads to| � �{� h� � Ðk�W��� h� a ô a � ��� ù " ô � ��� h� V ��Ð � 4 � 4 Ú ?E�M������ a ô a �¨h�;� ù " ô ��h�;�8� V ��Ð � 4 � 4 Ú ?E�M�~� (15.5)

where the factor of � in front of the Lagrange multiplier Ð is chosen for conve-

nience.

An alternative representation of this Lagrangian is constructed using only

the ñ���ñ matrices !K� ���~� � � �;� introduced in (13.51) and (13.52), and the aug-

mentedinertia tensorr defined asú " � ö 
 

 ù " ÷ � ú � !K� ��� � a � ��� ú " � � ��� ! a � ���~� (15.6)

where
ú " and

ú
refer to the augmented inertia tensor in the body and inertial

frame, respectively.

Taking consideration of the identity � ¼ � h�o� ? h� ¼ ��� for unit quaternions,

derived in Section 13.10, which translates to
� aW� ��� h�`� ? � aw��h����� in terms of the

matrix algebra representation, an alternative form for the Lagrangian is thus| � � � h� � Ðk�W��� h� a � � ��� ú " � a � ��� h� V ��Ð � 4 � 4 Ú ?E�M������ a � �¨h��� ú " � a ��h�;�8� V ��Ð � 4 � 4 Ú ?E�M�~= (15.7)

It is the augmented form of (15.7) which is most useful for our present purposes

and which is most easily manipulated.

To compute the Euler-Lagrange equations of motion, we first note the identities´ � � �{� h�;�´ h� a � ñ � � �;� ú " � a � ��� h� ��� f ´ � � �{� h�;�´ h� a � ñ � � �;� ú " � a � ��� |� V�ñ � �¨h�L� ú " � a � �;� h� V�ñ � � ��� ú " � a ��h�;� h�� ñ � � �;� ú " � a � ��� |� V�ñ � �¨h�L� ú " � a � �;� h� �´ � � �{� h�;�´ � a � ñ � �<h��� ú " � a �¨h�;�8�`� ? ñ � �<h�L� ú " � a � ��� h� �
(15.8)
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15 Rigid Bodies IV: Gyroscopic Forces

where use was made of the following facts� a � �e�Ì��� ö � a �
 ÷ �ú " � a � �e�Ì��� ö 
 

 ù " ÷ ö � a �
 ÷ � ö 

 ÷ � (15.9)

for any vector �4- / ¦ and î6��î matrix
ù " .

After collecting all the terms and substituting in the Euler-Lagrange equa-

tions (15.5), the following DAE of motion is found� � ��� ú " � a � ��� |� V � � �¨h�L� ú " � a � �;� h� V Ðk�Å��
4 � 4 Ú ?E�1��
<= (15.10)

Observe that using the definition of
� � �Q�K� ò � ô a¸� ��� ó from (13.62) and the

zero pattern of
ú " , we can reduce (15.10) down to an equivalent form which we

use in the next sectionô a � ��� ù " ô � ��� |� V � ^ a �¨h�;� ù " ô � ��� h� V Ðk�Å��
4 � 4 Ú ?E�1��
<= (15.11)

Multiplying the first equation in (15.10) by � a , using the identity derived

in (15.9), reusing the previously observed fact that � a � �¨h���y� ? h� a � � ��� , and

using the constraint
4 � 4 �£� leads to the conclusionÐ¡� � � � � h���~� (15.12)

which is a constant along the trajectory, if there are no applied torques.

Interestingly, the ñá��ñ matrix multiplying the
|� term,  � ô aZ� ��� ù " ô � ��� is

singular since � a  �B� 
 . In fact, it only has rank î . In addition, the time

dependence of the kinetic energy term on � as well as h� produced the extra term� ô aW��h�;� ù " ô � �;� h� . This term is responsible for all gyroscopic effects observed in

rigid bodies and, being nonlinear, it introduces significant difficulties for stable

integration.

Curiously, I could not find the derivation above in literature, though deriva-

tions based directly on the rotation matrices themselves are found in [178, 208]

and several other places.

A derivation based on the rotation matrix � itself involves the nine unknown

dynamic coefficients � ¦®ª , the three components of the angular velocity vector Ô ,
but also, 6 additional constraints imposing orthonormality on the matrix � , not
even including the handedness constraint

�¨�,� ��� �W� V � .
15.3 Euler’s equations

The most common form of the equations of motion for the free rigid body are

now derived. Introduce first the body fixed angular velocity vector as was done

260



15.3 Euler’s equations

in (13.120) as Ô Õ � � a Ôo� ô � �;� ð a � ����Ô���� ô � ��� ð a � ��� ð � ��� h���� ô � ��� h� � (15.13)

and compute the time derivative as followshÔ Õ ��� ô � ��� |� V � ô ��h��� h�Å��� ô � ��� |� � (15.14)

which holds due to the linear dependence of ^K� ��� on its argument � and from

using Corollary 13.21.

Now, multiplying the first line of (15.11) on the left with
ô � ��� , using the

identity
4 � 4 �£� , and substituting for ÔWÕ , and hÔWÕ , the equations of motion (15.11)

become: ù "¸hÔ Õ V � ô � ��� ô a �¨h�;� ù " ô � ��� h����
O= (15.15)

Using Corollary 13.21 again on the last term, and then applying the result of

Lemma 13.25 and the definition of Ô¸Õ from (13.120) to obtain:ù "¸hÔ Õ V ÖÔ Õ ù " Ô Õ ��
O� (15.16)

which are known as Euler’s equations for the rigid body which are common to

textbooks as [105, 22, 193] and many more sources.

Either restarting the derivation from the DAE (15.11) and substituting for the

inertial frame angular velocity, Ô���� ð � ��� h� , or by transforming the result (15.16)

directly, an equivalent inertial frame formulation is foundù hÔ V ÖÔ ù Ôo��
O� (15.17)

but in this case, the inertia tensor
ù � �Da ù "�� is time dependent. This last

equation is in fact usually written ash� s ��j s � � s � ù Ô1� (15.18)

where � s - /ZÉ
is the angular momentum vector and j s - /ZÉ

are the applied

torques (also known as moments, especially in the engineering literature).

For the free rigid body case when j s �m
 , the equations of motion (15.16)

or (15.17) can be integrated in terms of Jacobi elliptic functions, as described in

details in [176], and, at least in large part, in [193].

It is striking to realize that the body frame equations (15.16) can be integrated

to produce the angular velocity vector, Ô¸Õ �gf � , without having to compute the

rotation matrix at all.

Observe also the second term in (15.16) which has the form
� � ÔZÕÃ��ÔWÕ where

matrix
�

is antisymmetric,
� � ÔWÕÃ�`� ? � aW� ÔWÕÃ� for all ÔwÕZ- /ZÉ

. Such antisym-

metric forcing terms of the form j4� � � �{� h�;� h� in equations of motion are called

gyroscopic, as observed in the introduction. They are special as they do no work

on the system. Indeed, the work done by the force j over a time interval is the

time integral of j a¡h� , but since j a�h�Å� h� a � � � � h��� h�Å��
 , the contribution vanishes.
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15 Rigid Bodies IV: Gyroscopic Forces

Euler’s equations, either in the body frame or the inertial frame, can be coupled

with the corresponding quaternionic velocity (13.120) or (13.119), respectively,

to recover the full set of differential equations, namely the fully explicit body

frame system ù " hÔ Õ V ÖÔ Õ ù " Ô Õ �uj Õsh�Å� �� ô a � ����Ô Õ � (15.19)

or the semi-implicit inertial frame versionù hÔ V ÖÔ ù Ôo��j sh�`� �� ð a � ����Ô1= (15.20)

where jkÕs and j s are the applied torques in the body and inertial frames, respec-

tively.

15.4 Analytic stability of the free rigid body

For a rigid body rotating freely in the absence of an applied torque, there is a

surprising analytic result that rotations about the intermediate principal axis,

the one with inertia
� Ú with

� 2(' � ÚY' � É in the notation described previously,

is unstable. This means that for a rigid body rotating about its intermediate

principal axis, any small perturbation of this motion will quickly diverge from it.

This is proven in [193], Section 15.9. The theorem is stated here for reference.

Theorem 15.1 (Rigid Body Stability Theorem). In the motion of the free

rigid body, rotation around the long and short axes is (Lyapunov) stable and

around the middle axis is unstable.

The stability theorem relies on Hamiltonian formulation and an application of

the Energy-Casimir Method which are beyond the present scope and the proof

is thus omitted.

15.5 Discretizing Euler’s equations directly

Euler’s equations of motion (15.17) can be discretized directly but, unsurprisingly

given the result of Theorem 17.1, they exhibit a fundamental instability.

This is easily seen by using the body frame equations of motion (15.17) and

explicitly discretizing to first order yieldsR N 2 ù "T� Ô Õ¬ 032 ?�Ô Õ¬ �W� ?1ÖÔ Õ¬ ù " Ô Õ¬ VÝ� ¬ � Ö} Õ ¬ Ô Õ¬ VÝ� ¬ � (15.21)

where � ¬ is the applied torque evaluated at step F , and } Õ ¬ � ù " Ô Õ¬ is the angular

momentum vector in the body frame at time step F . A simple rearrangement

yields the quasilinear formù " Ô ¬ 032�� Ø ù "ZV	R ÖÔ Õ¬ ù " Ú�Ô ¬ V�Rk� ¬ � (15.22)
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which clearly exhibits a constant mass matrix,
ù " . Ignoring the applied torque

and performing elementary algebraic manipulation yields the recurrence formula

for the kinetic energyc ¬ 0â2Z� �� Ô Õ a ¬ 0â2 ù " Ô Õ¬ 032 � c ¬ V�R Ú Ô Õ a ¬ � ¬ Ô Õ¬ � c ¬ � (15.23)

with the definition � ¬ ��? ù " ÖÔ Õ¬ ù N 2" ÖÔ ¬ ù " = (15.24)

Matrix � ¬
is shown to be symmetric and positive semi-definite in the next para-

graph and thus the inequality sign in (15.23) is alarming. The energy increases

inexorably unless the condition ÖÔ ¬ ù " Ô � 
 , holds, in other words, when Ô is

aligned along a principal axis, or when
ù " is a multiple of the identity,

ù " � � � É .
To see that � ¬

is symmetric and positive semidefinite, consider a real symmet-

ric positive definite î1�`î matrix
�

and a real vector \�- /ãÉ
, and set � ��?�Ö\ � Ö \ .

Now, consider an arbitrary vector d�- / É
and compute the scalar Ó	�¡d a � d .

Setting � ��Ö\	de� � - /ZÉ
, produces � a ��d a Ö \ a � ?�d a Ö \ using the antisymmetry

property of Ö \ . It then follows thatÓ��Ad a � dY� ?�d a Ö \ � Ö \kdH� � a � � �E
<� (15.25)

since
�

is positive definite, and since Ö \	dH��
 whenever dH��Ð¨\ for some scalar Ð .
Matrix � ¬

is thus positive semi-definite after substituting
� � ù " and \i�JÔ Õ¬ .

Additionally, the situation Ó�� 
 in (15.25) occurs only when Ö \	du� 
 which

implies parallelism between \ and d , or dH�u�%\ , as per Lemma 13.2. Now, given

that } Õ ¬ � ù " ÔwÕ¬ , parallelism between } Õ ¬ and ÔWÕ¬ occurs when
ù " � � � É , or whenÔ Õ¬ is aligned on a principal axis, or when Ô Õ¬ is aligned along two principal axes

with the same inertia.

A better result can be obtained by using a semi-implicit discretization. Indeed,

by choosing different values of time for the two instances of ÔZÕ on the right hand

side of (15.21), we haveR N 2 ù "T� Ô Õ¬ 032 ?�Ô Õ¬ �W� Ö} Õ ¬ Ô Õ¬ 032 Vt� ¬ = (15.26)

If all the ÔwÕ¬ 032 terms are collected on the left hand side, we get a modified mass

matrix of the form Ç ù " ? Ö} Õ ¬ È � (15.27)

horrific for being non-symmetric, but positive definite just the same. A symmet-

ric pseudo mass matrix can be recovered though as now shown.

Going back to (15.26) and expanding the Ô Õ¬ 032 on the right hand side up to

second order in the time step R yieldsù " Ô Õ¬ 032 � ù " Ô Õ¬ V�R Ö} Õ ¬ Ô Õ¬ 032 V�Rk� ¬� ù " Ô Õ¬ V�R Ö} Õ ¬ Ç Ô Õ¬ V	R ù N 2" Ö} Õ ¬ Ô Õ¬ 0â2 V�R ù N 2" � ¬ È V�Rk� ¬� ù " Ô Õ¬ V�R Ö} Õ ¬ Ô Õ¬ V	R Ú Ö} Õ ¬ ù N 2" Ö} Õ ¬ Ô Õ¬ 032 V	R Ç � É V	R Ö} Õ ¬ ù N 2" È � ¬ � (15.28)
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15 Rigid Bodies IV: Gyroscopic Forces

which can be rearranged by collecting the F`V � terms on the left hand side asÇ ù " ? R Ú Ö} Õ ¬ ù N 2" Ö} Õ ¬ È Ô Õ¬ 032 � Ç ù "ZV	R Ö} Õ ¬ È Ô Õ¬ V�R Ç � É V	R Ö} Õ ¬ ù N 2" È � ¬ = (15.29)

The modified inertia tensor appearing on the left hand side of (15.29) is due to

Anitescu and Potra [18] and was analyzed in a previous report [169] of mine. It is

a bona fide mass matrix, being symmetric and positive definite. Indeed, matrices

of the form ?�Ö\ � Ö \ are symmetric and positive semi-definite for a symmetric and

positive definite î6�áî matrix
�

as follows from (15.25).

Using Lemma 13.15 to compute the explicit inverse of the modified mass matrix� � É ? R Ú Ö} Õ ¬ ù N 2" Ö} Õ ¬ ù N 2" � ù " , the energy changes from step to step can be computed

explicitly in the absence of applied torque. Noting that matrices of the formÖ \ � Ö \ are negative semi-definite, the energy satisfies the monotonic non-increasing

recurrence c ¬ 032Z� c ¬ V R É� � � V	R Ú z ¬ � Ô Õ a ¬ Ö} Õ ¬ ù N 2" Ö} Õ ¬ Ô Õ¬ a c ¬ � (15.30)

with the following definition for the scalar z CE
 :
z ¬ � } Õ ¬ ù "L} Õ ¬�¨�~� � ù " � = (15.31)

It is possible to perform a stability analysis near the fixed points of both the

explicit stepping formula of (15.22) and the semi-implicit form (15.29), at least

in the absence of applied torques. Indeed, using Lemma 13.15 to compute the

explicit inverse of the modified inertia matrices, the stepping formulae can be

written as in the quasilinear form\ ¬ 032�� Ç � É V Ï ¬ d ¬ V S ¬ d Ú¬ Èb\ ¬ � (15.32)

with time dependent scalars Ï ¬ �:S ¬ and the special matrix d ¬ �EÖ\ ù N 2" . Linearizing

this expression near a fixed point and computing the eigenvalues for the different

cases, yields

Theorem 15.2. The discrete motion of a free rigid body computed by applying

the one-step recurrence (15.29), subject to zero torques, � ¬ �u
<� F �£�;� �<�>=>=>= , has
the following stability properties:

1. For the case where the three principal inertiae are equal,
� 2�� � ÚÎ� � É , the

two steppers are equivalent and all fixed points are stable;

2. The explicit stepper of (15.22) has only unstable fixed points;

3. The semi-implicit stepper of (15.29) has at least one stable fixed point for

rotations about the principal axis with the largest inertia,
� 2 , where � 26�� ÚÅ� � É .

The proof is straight forward but tedious. It is found in my report [169].

This last conclusion of Theorem 15.2 is in striking contrast with Theorem 17.1.

Thus, the semi-implicit stepper of (15.29) is stable but it destroys qualitative
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15.6 Variational discretization

aspects of the physics. The question remains as to whether it is possible to

construct a better linear approximation to the rigid body stepping equations.

Fortunately, the answer is affirmative as we now proceed to demonstrate.

15.6 Variational discretization

To discretize the Lagrangian defined in (15.5) and apply the variational method,

introduce approximations of � and h� as follows� ��F¨R � G �� � � ¬ V � ¬ N 2~�,� h� ��F¨R � G �R � � ¬ ?�� ¬ N 2,�~= (15.33)

Now, the important expression in (15.5) is the product
ô � ��� h� and this evaluates

to Ô Õ¬ ��� ô � ��� h�`��� �� R ô � � ¬ V � ¬ N 2,� � � ¬ ?�� ¬ N 2,���� �� R Ø ô � � ¬ ��� ¬ ? ô � � ¬ �8� ¬ N 2 V ô � � ¬ N 2~�8� ¬ ? ô � � ¬ N 2~��� ¬ N 2�Ú� �R ô � � ¬ N 2~��� ¬ � ? �R ô � � ¬ ��� ¬ N 2L� (15.34)

and thus, the discretized Lagrangian, ignoring constraint and potential terms,

readsB = � � ¬ � � ¬ N 2� R �W� �R � a¬ N 2 ô a � � ¬ � ù " ô � � ¬ �8� ¬ N 2�� �R � a¬ ô a � � ¬ N 2~� ù " ô � � ¬ N 2~��� ¬ =
(15.35)

Curiously, the final formula remains the same whichever choice is made for � , as
long as h� is defined with R N 2 � � ¬ ?B� ¬ N 2,� .

Performing the same discretization on the factors
� aW� ��� h� appearing in the

augmented formulation of the Lagrangian (15.10) producesB = � � ¬ � � ¬ N 2L� R �W� �R � a¬ N 2 � � � ¬ � ú " � a � � ¬ �8� ¬ N 2�� �R � a¬ � � � ¬ N 2~� ú " � a � � ¬ N 2~�8� ¬ �
(15.36)

where the last equality holds because the augmented inertia tensor,
ú " defined

in (15.6), has a zero first row and first column. In fact, relabeling \¡�u� ¬ N 2 anddH��� ¬ reveals B = � \%��de� R �W� B = � d���\�� R �~� (15.37)

which means that it is possible to switch the arguments in the differential oper-

ators since� 2 B = � \%��de� R �W� ´ B = � \%��de� R �´ \ � � Ú B = � de��\%� R �W� ´ B = � de��\%� R �´ \ = (15.38)

Finally, note that
B = � \%��de� R � is homogeneous of degree two in both arguments

so that\ a � a 2 B = � \��:de� R �W�º\ a � aÚ B = � d���\�� R �W�u� B = � \%��de� R �~� andd a � aÚ B = � \��:de� R �W�Ad a � a 2 B = � de��\%� R �W��� B = � \��:de� R �,= (15.39)
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15 Rigid Bodies IV: Gyroscopic Forces

These relations are independent of whether (15.35) or (15.36) is used.

The two expressions given in (15.36) and in (15.35) are mathematically iden-

tical but it is sometimes easier to work with one or the other form, given the

context, which is why both are provided.

Applying the discrete variational principle to the expression (15.35) after in-

cluding the constraint
4 � 4 Ú ? � � 
 produces the following discrete Euler-

Lagrange equationsñR Ç ô a � � ¬ 032~� ù " ô � � ¬ 032~�8� ¬ V ô a � � ¬ N 2~� ù " ô � � ¬ N 2~��� ¬ È VBñOR Ð�� ¬ ��
4 � ¬ 032 4 Ú ?E�1��
<= (15.40)

This last stepping equation in (15.40) is merely quadratic in � ¬ 032 and can be

solved quickly using Newton-Raphson iterations, though the Jacobian for these

iterations is not particularly enlightening. In addition, multiplying (15.40) on

the left with � a¬ and using the homogeneity property of
B = � � ¬ � � ¬ N 2L� R � noted

in (15.39), the following identity is revealedÐ¡� ? �R Ø B = � � ¬ � � ¬ N 2L� R � V B = � � ¬ 032L� � ¬ � R � Ú = (15.41)

It should be possible to make a good guess for R Ð as the negative of twice the

kinetic energy of the last step, for instance, and this should speed up convergence.

However, a simple transformation can be performed to discover that (15.40) is

in fact an eigenvalue-eigenvector problem as now demonstrated.

Start by extracting the discrete stepping equations from the augmented form

of the Lagrangian (15.36) to get another form for the discrete Euler-Lagrange

equationsñR Ç � � � ¬ 0â2,� ú " � a � � ¬ 032~�8� ¬ V � � � ¬ N 2,� ú " � a � � ¬ N 2~��� ¬ È V�ñ R Ðk� ¬ ��
4 � ¬ 032 4 Ú ?	�D��
<= (15.42)

Before turning this into a linear eigenvalue and eigenvector problem, note the

suspicious recurrence of terms of the form
� a � � ¬ N 2 ��� ¬ and we define accordingly� ¬ � � a � � ¬ N 2~�8� ¬ � or, equivalently, � ¬ � � � � ¬ N 2,�É� ¬ � (15.43)

which is equivalent to the quaternion formula� ¬ ��� ¬ N 2~� � ¬ = (15.44)

Given that each � ¬ and � ¬ N 2 have unit magnitude, it follows that so does
4 � ¬}4 �� . Also, the stepping defined by either (15.43) or the equivalent form (15.44)

clearly preserves unitarity of the variable, a subtle detail missing from the def-

inition of the discretization formulae (15.33). It appears therefore beneficiary

to formulate the stepping equations directly in terms of the discrete quaternion

velocity � ¬ 032�� � a¸� � ¬ ��� ¬ 032 .
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15.6 Variational discretization

The reformulation in terms of the normalized quaternionic velocity does enjoy

formal theory, as shown in [51], which could perhaps have shortened the present

derivation, but at the cost of having to use more complicated mathematics.

Let us now define a relation between this unit quaternion � ¬ and the body

frame angular velocity vector ÔWÕ¬ defined in (15.34)� ¬ � � a � � ¬ N 2~�8� ¬ � ö � � ¬ � Æ� � ¬ � Ç ÷ � ö °>±�8 � v Ú 4 ÔWÕ¬ 4 �21 : øä 1 8 � � � v Ú 4 Ô Õ¬ 4 ��Ô Õ¬ ÷ � (15.45)

which fits both the discretization definition of (15.33) in the limit of R ¤ 
 ,
as well as the unit requirement for � ¬ for any value of R CA
 . As seen below,

this unit angular velocity quaternion, � ¬ , allows for an unconditionally stable

second order one step integration scheme for the free rigid body which is much

cheaper computationally than the Moser Veselov scheme [208] or the Leimkuhler

and Reich scheme [178] based on rattle. Suitable approximations also yield

efficient and stable discretizations in terms of Ô Õ¬ itself if needed, using only

three equations as opposed to five for the case of the full quaternion formulation.

To obtain a linear equation in � ¬ 032 , multiply the first line in (15.42) from the

left with the matrix  � a¸� � ¬ 032~� , using the ñÅ�Èñ quaternion complex conjugation

matrix @� �¨�%* 9 � �;�>?����>?��;�M?`�M� defined previously in (13.54), and use the unitary

constraint on � ¬ 0â2 so that
� aW� � ¬ 0â2,� � � � ¬ 032,�¸� 4 � ¬ 032 4 Ú � ¦ � � ¦ . Introducing the

definitions<4� � � � ¬ N 2,� ú " � a � � ¬ N 2~�8� ¬ � ô a � � ¬ N 2~� ù " ô � � ¬ N 2~�8� ¬ ��<�- / ¦ �� � � a � <��8� ¬ � � or, in quaternion algebra, � ��< ¼ �`� ¬ �� ¬ 032�� � a � � ¬ ��� ¬ 032��u � a � � ¬ 032~�8� ¬ � and� ¬ � � a � � ¬ N 2~�8� ¬ �u � a � � ¬ ��� ¬ N 2L� (15.46)

and performing some algebraic manipulation involving identities derived in sec-

tion 13.5, noting in particular that  ú " @� ú " and that
� a � ���Ì���� � a � �e�8� , the

stepping equations take the formØ ú "WV � �#� �7ÚK� ¬ 0â2W?BÑV� ¬ 0â2Z��
4 � ¬ 032 4 Ú ?	�D��
O�� ¬ 032�� � � � ¬ �7� ¬ 032� (15.47)

where the Lagrange multiplier ÑE� ? R Ú Ð was redefined from Ð to absorb the? R Ú factor.

It is now clear that system (15.47) is in fact an eigenvalue eigenvector problem

of the form _ \á� � \ with _ � ú " V � �#� �,� � - / ¦ � (15.48)

and \���� ¬ 0â2 . Such an eigenvalue problem can be solved to machine precision in

finite time. In fact, a simple minded implementation of Newton-Raphson itera-

tions to solve the nonlinear system defined by the first two lines of (15.47), using
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15 Rigid Bodies IV: Gyroscopic Forces

the nonlinear solver fsolve in Octave, usually required only one computation of

the Jacobian matrix Ô � ú "WV � ��� � V Ñ � ¦ � (15.49)

on average, and four or five residual evaluations. In the absence of external

torques, as noted previously in (15.41), the value of Ñ is easy to compute from

the kinetic energy and since we are essentially using the implicit midpoint rule

on a quadratic system, we expect the energy to be very nearly constant and thusÑ as well.

The main issue here is that neither the nonlinear representation (15.40) nor

the eigenvalue problem representation (15.47) of the stepping equations have a

form which can be easily combined with the rest of the problem formulation

including constraints. Indeed, for this case, we hope to have an equation of the

form  � ¬ 0â2�� x � � ¬ � R � , where  is a square symmetric positive definite mass

matrix, � ¬ 032 is the velocity we are trying to compute, and x � �e� R � is some vector

which depends on the current state of the system.

To construct an approximation with the correct format, start with the defi-

nition of � ¬ in (15.45) and notice that for small enough time step R , or more

precisely, for small enough R 4 ÔWÕ¬ 4 ,� � ¬ �8Æ��£��? ��R 4 Ô Õ¬ 4 � Ú V�IK��R	¦ �w�£� VoI6��R Ú �,�4 � � ¬ � Ç 4 � R � V�IK��R É �,= (15.50)

Next, look at the vector < defined in the first equation of (15.46) as <A�� � � ¬ N 2,� ú " � ¬ . Introduce the angular momentum quaternion ç ¬ � ú " � ¬ which is

clearly pure imaginary so that çs¼¬ � ?1ç ¬ . From this definition < and � can be

rewritten as follows <y��� ¬ N 2~�Åç ¬ �< ¼ �ºçs¼¬ �`�L¼¬ N 2 � ?1ç ¬ �`�L¼¬ N 2� �A< ¼ �`� ¬ � ?1ç ¬ �`�L¼¬ N 2 �`� ¬ � ?1ç ¬ � � ¬ = (15.51)

It is now clear that we have very few variables to deal with, namely, the known

quaternions � , � ¬ , ç ¬ � ú " � ¬ , the unknown quaternion � ¬ 032 , and Lagrange multi-

plier Ñ . To simplify the notation of what follows, relabel these variables as listed

below � � ? � �d � ?i� ¬ç � ?	ç ¬ � ú " � ¬\ � ?i� ¬ 0â2Ñ � ?EÑ<� (15.52)

which means that the unknowns are now \ and Ñ . In terms of these variables,

268
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now, the stepping equations readç�� ú " de�� � ?1çp� de�Ø ú "WV � �#� �7Ú#\¡��Ñ¨\ solve for \ and Ñ� ¬ 032ã�Ad��Å\%� update the quaternion� ¬ 0â2��º\�� update the quaternionic velocity.

(15.53)

The loop is looped by starting back at (15.52).

What remains to do now is to approximate the eigenvalue eigenvector problem

at the heart of (15.53) with a simple linear system solve. To this purpose,

start by evaluating the scalar and vector components of the vector � , using

definition (15.45) and approximations � �� 4 é 4 �}8 � � ��R 4 é 4 �����8\ GA��R �;�T� é � é - /�É
to produce � � ?1çp� d��Àö ç aÇ d Ç?�d{Æ�ç Ç ? Ö ç Ç d Ç ÷� ö v-�Ú c ¬? v Ú } Õ ¬ ? v-�¦ Ö} Õ ¬ Ô Õ¬ ÷ � (15.54)

where the energy is defined as usual with � �������Ô¸Õ a ¬ ù " Ô Õ¬ , and } Õ ¬ � ù " Ô Õ¬ is the

body fixed angular momentum vector at time step F .
After multiplying the third line of equation (15.53) on the left with \ a , using

the constraint \ a \.� � , the fact that
� aW��� � V � ��� �i� � Æ � ¦ , approximating\�� I6��R � , \���d V�IK��R Ú � , and dH� ��R �;�T��Ô Õ¬ VoI6��R Ú � , the result isÑH�º\ a ú " \ V \ a � ��� �Í\�º\ aÇ ù " \ Ç VÝ� Æ�Ad aÇ ù " d Ç VÝ� Æ V�IK��R É ���� � Æ V�IK��R É �� R Ú c ¬ V�IK��R É �~� (15.55)

where c ¬ � � �������ÔwÕ¬ a ù " ÔwÕ¬ .
Any of the last two lines in (15.55) can be used to approximate Ñ using only

known quantities. Of course, it is possible to revise the first guess within an

iterative procedure. The form Ñ���d aÇ ù " d Ç VA� Æ is used in what follows to be

specific and to reduce the number of variables appearing in the equations.

The last approximation in (15.55) is clarified as? � aÇ \ Ç � R Úñ } Õ a ¬ Ô Õ¬ 032 V R Úñ Ô Õ a ¬ 032 Ö} ¬ Ô Õ¬ VoI6��R É �� R Úñ } Õ a ¬ Ô Õ¬ V R Úñ Ô Õ a ¬ Ö} ¬ Ô Õ¬ V�IK��R É �� R Úñ } Õ a ¬ Ô Õ¬ V�IK��R É �w� R Ú� c ¬ VoI6��R É �,� (15.56)
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since for any vectors \%��d�- /�É ��d a Ö \	dy��
 , as was used in the penultimate step,

and since Ô Õ¬ 0â2 �EÔ Õ¬ VoIK��R � , obviously. Finally, since \eÆZ��� VoIK��R Ú � , then, the
exact value of \ Ç does not affect the value of Ñ to I6��R Ú � .

In practice, any of the last three lines of (15.55) can be used as a reasonable

approximation which can be corrected using successive substitution.

Next, consider the vector part of the stepping equation (15.53), after referring

back to the definition of quaternion products given in Section 13.3 and espe-

cially (13.47), we findù " \ Ç V�� Æ,\ Ç V \QÆ � Ç V Ö� Ç \ Ç ��Ñ¨\ Ç ��� � Æ�\ Ç V�I6��R É �,� (15.57)

which can be reorganized to read� ù " ? � Æ � É �O\ Ç � ?1\kÆ � Ç ?�Ö� Ç \ Ç � (15.58)

and this has a striking similitude to the semi-implicit discretization of Euler’s

equations (15.28). Applying the same trick and expanding \ Ç on the right hand

side with the right hand side—feeding its tail to the serpent more or less—and

substituting d Æ for \QÆ in view of the fact that these two scalars differ by terms

of IK��R É � , the stepper now readsÇ � ?�Ö� Ç � N 2 Ö� Ç È \ Ç � ?�d Æ Ç � É ?�Ö� Ç � N 2 È � Ç � (15.59)

after defining the diagonal matrix� � ù " ?�d aÇ ù " d Ç � É � ù " ? R Ú� c ¬ � É VoI6��R É �,= (15.60)

Using Lemma 13.15, the discrete Euler-Lagrange equations can be brought to

the explicit quasilinear form� ��? !(� d¨� ú " de�� � ù " ?�d aÇ ù " d Ç � É �
z � �{aÇ � � Ç�¨�,� � � � ���� �� V�z\ Ç ��?�d{Æ � N 2 Ç � É ?��#Ö� Ç � N 2 V � � Ö� Ç � N 2 � Ú È � Ç �\kÆZ� u ��? 4 \ Ç 4 Ú �

(15.61)

which is a complete one-step procedure to compute \ from d and
ù " . Note how

the time step R is conspicuously absent from the system (15.61). In fact, all

that matters is the initial discrete angular velocity, and this is of course larger

for a larger time step. The last line of (15.61) is a renormalization procedure.

Breakdown of the approximation is expected whenever \�Æ is significantly less

than unity, i.e., whenever
4 \ Ç 4 approaches unity.
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The definition (15.60) for the diagonal îb�(î matrix
�

clearly marks a stability

boundary, namely, d aÇ ù " d Ç ' �Y� � � � 2� � Ú;� � É �~� (15.62)

where the scalars
� ¦ are the principal inertiae, i.e.,

ù " � �<�%* 9 � � 2� � Ú;� � É � .
The only guarantee that

�
is well defined is that, by construction, the vector

part of the unitary quaternion d has magnitude
4 d Ç 4 � IK��R � and, therefore,

matrix
�

differs from matrix
ù " by terms of I6��R Ú � .

The form of the matrix multiplying \ Ç in (15.59) has been studied before in

Section 15.5 and is known to be symmetric, positive definite, at least as long as

the diagonal î6��î matrix
�

remains positive definite.

One could also try to solve (15.59) iteratively, especially with a modified

Newton-Raphson method or just sequential substitution. Since all the scalars

are less than unity (recall that
4 \ 4 ��� ), this mapping is expected to be contrac-

tive, though this is not proved yet.

In any case, the linear version of (15.59) was implemented in Octave and the

results were identical to a nonlinear solver applied to (15.53). When comparing

to the computational cost and complexity of the Moser Veselov equations [200],

these results are simply great. Results of numerical experiments are presented

in Section 15.8 below.

In order to compare the new stepping scheme described in (15.61) with the

previously derived semi-implicit scheme (15.29), all the terms in (15.61) are ap-

proximated using the formulae for the quaternionic velocities \��:d in (15.50) and

the quaternion � in (15.54). Neglecting terms of order higher than IK��R Ú � , the
approximation is� ù " ? R Ú c ¬� � É ? R Úñ Ö} Õ ¬ ù N 2" Ö} Õ ¬ � Ô Õ¬ 032 � � ��? R Ú 4 Ô ¬Æ4 Ú� � Í ù "ZV R � Ö} Õ ¬ Î Ô Õ¬ =

(15.63)

Comparing this with the semi-implicit stabilized angular velocity stepper, as de-

fined by (15.29), we find that replacing R for R ��� everywhere yields the desired

result, except for the shift of the inertia tensor by ��R Ú ����� c ¬
. Though one might

have guessed the ��;� factors—given how midpoint rules are practically always

better—, the changes to the inertia tensor are genuinely new. Of course, there

are more subtle differences over time if one uses the approximate variational step-

per (15.61) directly to compute the quaternionic velocity. In fact, the stepping

defined by (15.63) does not appear to be stable as shown in Section 15.8.

Next, if any sort of force were acting on the system, derived from a potential, a

constraint or otherwise, the extra term R j ¬ will appear in the discretized Euler-

Lagrange equation and this leads to the new definition of the vectors < and �
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15 Rigid Bodies IV: Gyroscopic Forces

of (15.46) �<4� � � � ¬ N 2,� ú " � a � � ¬ N 2,��� ¬ V R Úñ j ¬ �A< V R Úñ j ¬ ��� � �< ¼ �`� ¬ � �`VÝé �é � R Úñ jk¼¬ �`� ¬ � R Úñ ö � a¬ j ¬? ô � � ¬ ��j ¬ ÷ � R Úñ ö � a¬ j ¬? � Õ¬ ÷ � (15.64)

where � Õ¬ in the last line is recognized as the net torque applied on the body,

expressed in the body’s fixed frame.

To get an understanding of the scalar term � a¬ j ¬ , go back to the analytic

form (15.10) and after adding the force term j to it, multiplying on the left with� a , and performing routine manipulations, the multiplier Ð is found to beÐ¡� �ñ � a j V�c � (15.65)

which is a good indication of what will happen in the discrete case. Also, the

order of the new quaternion term is now é � IK��R Ú � , both for the scalar and

vector part.

The stepping equation is still an eigenvalue eigenvector problemØ ú "WV � �#� � V � �#é �7Ú#\��uÑ¨\�= (15.66)

The effect of a single term generic term é is first considered in the next para-

graphs. The analysis is then extend to cover the special case where the real part

of é vanishes, which is the case for constraint forces as shown below.

Proceeding with the real part of (15.66) as done previously for the force free

case of (15.54), the eigenvalue Ñ satisfiesÑH��\ aÇ ù " \ Ç VÝ� Æ VÝé Æ��d aÇ ù " d Ç VÝ� Æ VÝé Æ VoI6��R É ��u� � Æ V�é Æ� R Ú c ¬ V R Úñ � a¬ j ¬ VoI6��R É �,� (15.67)

which is equivalent to the result for the continuous formulation in (15.65).

Next, using the penultimate line in (15.67) to approximate Ñ¡�J� � Æ VÝé Æ , the
vector components evaluate to� ù " ? � Æ � É �<\ Ç � ?1\QÆ �#� Ç VÝé Ç �3?�Ö� Ç \ Ç ? Öé Ç \ Ç � (15.68)

and this is where we come to a branch. Since the real part of the torque qua-

ternion é does not matter, assuming we do have an explicit expression for j ¬ ,
we can redefine � � ��VÝé and reuse the stepping formula of (15.59). However,

in case j ¬ is a constraint force for which there is no explicit expression, we keepé Ç and � Ç separate. Notice that in (15.68), the only term on the right hand side
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15.7 The gyroscope

which is of order R Ú or less is ?1\QÆ é Ç �£?�d{Æ é Ç V�I6��R É � , which in fact evaluates

to d Æ � Õ¬ .
Assuming instead that we have some constraint equations of the form �Q� ���W��


and the Jacobian ^ is defined so that
� �Q� ��� � � f � ^K� �;��Ô¸Õk��� ^ ô a¸� ��� h� , then, the

torque generated by that constraint is� Õî � ^ a � ����Òk� (15.69)

for some set of Lagrange multipliers Ò (since Ð is already used for unitarity

constraint). Noting now that é � IK��R Ú � which is one more power of R than the

quaternionic momentum � , we can approximate (15.68) as follows� � � ù "ZVÝ� Æ � É �e�� � � ?�Ö� Ç � N 2 Ö� Ç �� \ Ç � ?�d Æ Ç � É ?�Ö� Ç � N 2 È � Ç V d{Æ ^ a ¬ Òk�\ Ç � _ ��? 4 \ Ç 4 Ú ��Q� � ¬ �Å\k�w��
<� (15.70)

which is precisely the form of previously encountered mixed constrained prob-

lems, such as the formulation of (4.31), in Chapter 4.

The strength of the stepping formula (15.70) is that it is derived from the

discrete variational principle and therefore, it is expected to approximately pre-

serve the symplectic flow. In addition, it has precisely the form needed for

insertion within the basic stepping framework in which the main equation reads � ¬ 032i�Àj ¬ , where  is some block diagonal, symmetric and positive defi-

nite mass matrix, � ¬ 032 is a form of velocity vector, and j ¬ is the force term.

Therefore, instead of having a complicated nonlinear system of equations for the

rotational components of the rigid body motion, we have a simple modification

of the mass matrix which can be computed one body at a time, using only known

information.

Recovering the angular velocity vector from the quaternionic velocity vector\ involves simple trigonometric manipulations which are usually inexpensive on

current CPUs. There is perhaps one aspect that is problematic, namely, that

in (15.70), we are solving for \ Ç � I6��R � but in the other equations of (4.31),

say, we are solving for � ¬ 0â2Z� I6� �M� . This scaling might be problematic but since

we can easily multiply everything in (15.70) with the time step R and solve for� �� R �Í\ Ç instead of \ Ç itself, this should not be a fundamental issue.

15.7 The gyroscope

A heavy Lagrange top or gyroscope is a fast spinning rigid body with two identical

principal inertiae, fixed with a ball joint at some point at distance ç along the

principal axis which has a different inertia (see Section 12.3 for definitions of

principal inertia and principal axes). A schematics is shown in Figure 15.1.

273



15 Rigid Bodies IV: Gyroscopic Forces

¤ ¤ ¤ ¤ ¤ ¤¤ ¤ ¤ ¤ ¤ ¤¥ ¥ ¥ ¥ ¥ ¥¥ ¥ ¥ ¥ ¥ ¥¦ ¦ ¦ ¦ ¦ ¦¦ ¦ ¦ ¦ ¦ ¦§ § § § § §§ § § § § §ÔwÕ

Fixed point

\ �<ç
Figure 15.1: Schematics of a Lagrange top

Assuming the principal inertia are ordered with � ½ ¦¿¾ �¨� ½ ª�¾ for §ZC Ä , and � ½ 2 ¾ �� ½ Ú ¾ , the top is heavy then 74ç Ú V � ½ 2 ¾ C©� ½ É ¾ . The reason for this is clarified

presently. Define the attachment point �á� ?1ç � < where ç#C*
 is a scalar, ��� ��� is
the current rotation matrix of the body, �È- �

is the orientation quaternion, and< is a unit vector in the upward direction in the inertial frame. The constraint

specifies that if \ �gf �Z- /�É
is the center of mass of the body, then,\Y?�ç ��� ���7<i��
O� (15.71)

which defines three bilateral, scleronomic holonomic constraint conditions. The

meaning of (15.71) is that the center of mass \ �gf � is actually a function of the

orientation quaternion � �sf ��- �
of the body. Using the algebraic identities from

Chapter 14, the velocity of the center of mass ish\¡� ?1ç � Ö< � a Ô1� (15.72)

and thus, the translational kinetic energy depends on the angular velocity as7 � 4 h\ 4 Ú � 74ç Ú� Ô a ��� ��� � Ö<�Ö<�� � a � �;��Ôo� 74ç Ú� Ô Õ a � Ö<�Ö<���Ô Õ � andÖ<�Ö<4� �¨�%* 9 � �;�M��� 
��~= (15.73)

This means that by redefining
ù " toù æ � �<�%* 9 � � 2 V 74ç Ú � � Ú V 74ç Ú � � É �~� (15.74)

the kinetic energy reads
� � �{� h�;�w� � �������Ô¸Õ a ù æ ÔwÕ . The definition of

ù æ in (15.74) is

an application of the parallel axis theorem [105] which describes how the inertia

tensor changes when measured about a point other than the center of mass. In

the present case, the inertia tensor is in fact evaluated about the fixed attachment

point.

The potential energy for the gyroscope is due to uniform gravity and that

is proportional to the elevation of the center of mass so
� � \k�Å� 7 � < a \ , since

vector < is an upward pointing unit. In terms of the orientation quaternion, this

becomes the potential [! � ���W�*7 � çÌ< a �È� ���É<â= (15.75)
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15.7 The gyroscope

The goal here is to manipulate this potential energy to a quadratic form in � .
Using the expression ��� �;�w� � É V ���MÆ Ö� Ç V �;Ö � Ç Ö � Ç of (13.75), a degenerate quadratic

form is derived! � ���W�u��7 � çs� aÇ Ö<³í;Ö<³í�� Ç � ?D��7 � ç�� aÇ ! � K � Çª 7 � ç�� a � �{� where! � K � �<�%* 9 � �;��;� 
T�,� and � � �¨�Ì* 9 � �;�>?����>?��;�M�M�~= (15.76)

The equivalence sign ª here means that the last expression for
! � ��� differs

from the previous one by a constant, a multiple of � a �i� � in fact, and such

constants do not affect the motion, since the Euler-Lagrange equations only

involve derivatives of the potential. Thus, the final expression for
! � ��� in (15.76)

differs from [! � ��� in (15.75) by a constant and the potential
! � ��� can be used to

model the uniform gravitational potential.

Therefore, the complete Lagrangian can be expressed in terms of the rotational

variables only, taken here to be the quaternions, and is identical to the free body

Lagrangian of (15.5) but subject to the potential (15.75). The generalized force

(torque in this case) from this potential is found to yieldj s ��? ´ !´ � a ��?D��74ç �<� �{� (15.77)

in quaternion form. The potential energy changes the DAEs of motion of the

free rigid body (15.10) so they become� � ��� ú æ � a � ��� |� V � � �¨h�L� ú æ � a � ��� h� V Í Ð � ¦ ? 74ç �� � Î �Å��
4 � 4 Ú ?E�1��
<� (15.78)

Euler equations (15.16) for their part becomeù æ<hÔ Õ V ÖÔ Õ ù æ Ô Õ V 74ç � ô � ��� � �`�u
h�D? �� ô a � ����Ô Õ �u
O= (15.79)

It is possible to considerably simplify the equations of motion by applying

Noether’s theorem using what is called reduction theory. First, one observes that

any rotation of the coordinate systems about the < axis leaves the equations of

motion unchanged, and so does a global rotation about the origin. After taking

the resulting invariants into accounts, there is only one remaining differential

equation and it can be solved using elliptic functions [176] or some simplifications

thereof as is done routinely in textbooks [105] to analyze the limit cases, especially

the limit of the very fast top when Ô ÕÉ ¤ �
. In fact, the common textbook

analysis entirely neglects the steps shown above to reduce the equations of motion

and routinely contradict the assumption that � ½ 2 ¾ a«� ½ Ú ¾ a«� ½ É ¾ when it comes

to discuss the Lagrange top. Also, if the fixed point is not really fixed but

merely constrained to a plane for which the action of gravity is a normal, the
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15 Rigid Bodies IV: Gyroscopic Forces

translational motion of the contact point in the plane is in fact coupled to the

rotational motion of the top.

Reduction theory has not been covered, principally because it requires yet more

mathematical tools than have been presented so far, including Lie derivatives and

Poisson brackets. An analysis of the Lagrange top based on reduction theory can

be found in a paper by Bobenko and Suris [51] though, along with a variational

discretization of the reduced problem. This particular discretization is perhaps

the most efficient, simplest, and most beautiful way to integrate the equations of

motion (reader beware of yet another definition of the inertia tensor to account

for the coordinate reduction in this formulation).

The theme in this thesis is that of constrained multibody systems though. It

thus makes sense to implement the variational stepper of Section 15.6 and the lin-

earized approximation thereof on the constrained system described at the begin-

ning of this section. The results of this strategy are shown in Section 15.8, with

comparisons against the variational discretization of the reduced problem [51]

and a standard integrations of the DAEs of motion (15.11) augmented to ac-

count for the torque term (15.77) and stabilized to maintain the unit quaternion

constraint
4 � 4 ��� using a stiff penalty term. This is not a generally recommend-

able strategy but for simple systems, given a standard high order integrator with

adaptive time step, the results can be very accurate though the computations

are not efficient.

15.8 Numerical experiments

The variational stepping methods defined by (15.47), the approximation thereof

defined by (15.59) and the preceding definitions, as well as the stabilized stepper

defined in (15.29) were implemented using Octave, using the LAPACK [6] rou-

tines to solve the eigenvalue eigenvector problems when needed. For comparison,

an implementation of the coupled system of equations in the body frame (15.19),

using the lsode solver of Octave was realized.

Two cases were simulated as follows

Case � : ù " � �¨�Ì* 9 � 
O=b(<� ñTñ �M�;=ë
S( ü �M�;=ëS�S�� , and Ô Õ � 
��w� � 
O= ñ{y�y�ñ (O� 
O=b(;��S�� y � 
O= 
 î;ñ z;S�� a ,
shown in Figures 15.2 and 15.3;

Case � : ù " � �¨�Ì* 9 � �O�M��� y � , Ô Õ � 
T�w� � ��� ��
<� ��� a ,
shown in Figures 15.4 and 15.5.

Case � appears in [200] and is repeated in [163] and illustrates a case of mod-

erate speed. The components of angular velocities are shown in Figure 15.2 and

the energy appears in Figure 15.3. On the scale of the plots, it is not possible to

distinguish between the variational stepper, the approximated variational one,

and the direct ODE integration, but the stabilized stepper of Section 15.5 is not

doing so well. On the energy plots in Figure 15.3, the two variational steppers are

exhibiting the usual oscillations but are nicely behaved. The stabilized stepper

is strongly dissipative, however.
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Case � illustrates what happens for a much higher angular speed. Note here

that in [163], only the first case was considered but the time step was made

enormous, with R - © ����O� ñ�« . For the free rigid body, the homogeneity of the

equations of motion means that changing time step is equivalent to scaling the

initial angular speed. Thus, in Case � , the angular velocity trajectories oscillate

very quickly as shown in Figure 15.4. Yet, the pure variational and its approxi-

mation are holding well in comparison to the direct ODE integration, which uses

adaptive time steps. The stabilized stepper however quickly settles to uniform

rotations about
� É , as predicted by the stability Theorem 15.2. Meanwhile, the

energy for the variational stepper and its approximation oscillate but that of the

stabilize stepper decreases until the motion stabilizes to ÔZÕ¨� � 
O��
O� � 4 ÔwÕ 4 � a .
Simulation of Lagrange tops were also performed using an ODE formulation,

the Bobenko and Suris integrator [51], the variational stepper of Section 15.6

and the linear approximation thereof. In this latter case however, the linearized

approximation of the variation stepping equations of do not hold up at high

rotational speeds. The case of slow speed, when the top cannot stand upright,

is shown in Figures 15.6 and 15.7. Figures 15.8 and 15.9 summarize the results

for a faster example which cannot hold upright, yet. Finally, Figures 15.10

and 15.11 summarize results for a top rotating fast enough to hold up. The

approximation technique breaks down in this case, though without instability.

The full variational technique still works well though. The Bobenko and Suris [51]

stepper is more efficient though since it simply computes the elements of tow îw�ãî
matrices and performs matrix-vector product operations—it is fully explicit! The

standard ODE solver of Octave struggles with small time steps in this regime.

This interesting problem warrants further investigation.

In all examples involving gyroscopes, the inertia tensor before the application

of the parallel axis theorem is
ù " � � ���M�;� �T� , the distance between the center of

mass and the attachment point is ç�� ñ , the magnitude of gravity is � �£�M
 , and
the initial angle is �
 degrees. The initial condition is Ô Õ � � 
<� 
O�8Ô É � and Ô É was

chosen as Ô É ��
O=�� for Figure 15.6 and Figure 15.7, Ô É ���<= 
 for Figure 15.8 and

Figure 15.9, and Ô É �u��
<= 
 for Figure 15.10 and Figure 15.11. Using the known

estimates [105] for instance, the top is fast and stays upright whenever Ô É C y
for the chosen values of inertia.
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Figure 15.2: Time history of the three components of the angular velocity vector

for a rigid body rotating freely in three dimensions at moderate

speed, integrated with four different methods.
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Figure 15.3: The energy of a rigid body rotating freely in three dimensions at

moderate speed when simulated with four different methods.
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Figure 15.4: Time history of the three components of the angular velocity vector

for a rigid body rotating freely in three dimensions at high speed,

integrated with four different methods. Notice how the stabilized

stepper quickly settles to simple rotation about the axis with the

largest inertia.
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Figure 15.5: The energy of a rigid body rotating freely in three dimensions at

moderate speed when simulated with four different methods. Note

how the energy of the stabilized stepper decreases quickly until the

motion stabilizes to simple rotation about the axis with the largest

inertia.
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Figure 15.6: The three components of the center of mass of a slow, heavy sym-

metrical top simulated with four different methods. The rotational

speed is too low here to keep the top upright.
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Figure 15.7: Energy of the slow, heavy symmetrical top when simulated with

four different integration schemes.
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Figure 15.8: The three components of the center of mass of a moderate, heavy

symmetrical top simulated with four different methods. The rota-

tional speed is still too low here to keep the top upright, but the

approximated stepper still performs well.
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Figure 15.9: Energy of the moderate, heavy symmetrical top when simulated

with four different integration schemes.
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Figure 15.10: The three components of the center of mass of a fast, heavy sym-

metrical top simulated with four different methods. The rotational

speed is high enough here to keep the top upright, but the approx-

imated variational stepper breaks down.
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Figure 15.11: Energy of the moderate, heavy symmetrical top when simulated

with four different integration schemes.
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15.9 End notes

Good methods for integrating the gyroscopic forces of rigid body are routinely

needed in molecular dynamics. Except for one overly simple geometric integra-

tion technique [81], all existing methods are implicit to some degree [200, 163].

Being implicit is not necessarily a bad thing but the main issue is that it is not

clear how to include constraints in the formulation to go from free rigid bodies

or gyroscopes even, to full multibody systems subject to kinematic constraints,

without destroying the saddle-point structure of the equations of motion. By

contrast, mass matrix modification techniques such as those presented in this

chapter are explicit, easy to implement, and integrate seamlessly with other

multibody methods. The ability to integrate the free rigid body with an explicit

method and within what appears to be global error bounds is of significance.

Future work will determine how far the linearized approximation of Section 15.6

can go, and what can be done to refine them when they are not delivering good

enough estimates.

The results of this section are a first step in the direction of simple integra-

tion methods allowing both accurate processing of gyroscopic forces and general

constraints, but there is more work to do to refine this.
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16 Complementarity I:

Definitions and Classical Solution

Methods

Complementarity is the mathematics of decision making, when a choice for “this”

or “that” must be made. It is rooted in mathematical programming where the

minimization of a constrained function naturally lead to complementary alter-

natives. The present chapter provides the background necessary for solving the

discrete Euler-Lagrange equations presented in Chapter 10 where impacts and

dry friction are considered.

Background is provided in Section 16.1 by considering the problem of optimiz-

ing a one-dimensional function over a bounded domain. Linear complementarity

is introduced in Section 16.2, presenting the problem and its solutions in one

and two dimensions, before introducing definitions necessary for generalizations

to higher-dimensional problems. The nonlinear complementarity problem is de-

fined in Section 16.3 and it allows for a simple solvability analysis presented in

Section 16.4. This is based on Leray-Schauder type alternatives and the notion

of exceptional families of elements introduced recently by Isac [133]. After that,

classical solution methods based on Gauss-Jordan pivot operations are intro-

duced in Section 16.5 where they are presented in block matrix form, in contrast

with the standard pivotal algebraic format of mathematical programming text-

books. The reason for this is that implementation based on block matrices can

use high performance basic linear algebra subroutines (BLAS) libraries, espe-

cially the general matrix matrix multiplication (GEMM)-based variants which

have top performance [149, 148]. Iterative methods are covered in Section 16.6

and methods based on Newton-Raphson techniques in Section 16.7. The results

of numerical experiments are presented in Section 16.8 and general remarks are

provided in Section 16.9.

16.1 Introduction and background

The simplest instance of a complementarity problem is the minimization of a

real scalar function j   / ¢¤ /
over a bounded interval © r � ¯ « - / � r '£¯ . From

calculus, we expect that j � \Q� is minimal when the sufficient condition jeÕ � \Q�w��

but this may or may not occur in the interval © r � ¯ « . One of three situations may

occur, namely,

1. criticality: jkÕ � \ ½ ¦¿¾ �w��
 for \ ½ ¦�¾ - © r ��¯ « �8§W���;���O�>=>=M=~�
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Figure 16.1: A simple constrained optimization problem in one dimension.

2. monotonic increase: jQÕ � \Q�Z�E
 for \y- © r � ¯ « ,
3. monotonic decrease: jkÕ � \k��a*
 for \y- © r � ¯ « .

Therefore, we look for the minimum point at the lower bound r if the functionj is increasing there, namely, if jkÕ � r �DCu
 , at the upper bound ¯ if the functionj is decreasing there, namely, if j Õ � ¯,�È'£
 , and at any critical point \ ¦ - © r � ¯ «
as well. Notice that the bounds r and ¯ are candidates only if the derivative

is non-negative at r or non-positive at ¯ . The various cases are illustrated in

Figure 16.1. In the first graph with label � , the function has a unique critical

point in the interval © r � ¯ « and is minimal there. The graph with label � illustrates
the case of a monotonically increasing function which has a minimum at r withj�Õ � r �ã�*
 . Graph with label î illustrates the case of a monotonically decreasing

function which has a minimum at ¯ with jQÕ � ¯,�Ùa�
 . Finally, in the graph with

label ñ , we show a case in which the sufficient conditions listed above are not

enough to determine the minimum point and an explicit evaluation is necessary

instead. This set of necessary conditions for optimality can be phrased succinctly

as a complementarity problemj Õ ��� ½ ¦¿¾ �3? é ½ ¦�¾0 V�é ½ ¦¿¾N ��

Ãa � ½ ¦�¾ ? r c é ½ ¦¿¾0 �*

ÃaE¯¸? � ½ ¦¿¾ c é ½ ¦¿¾N �*
O� (16.1)

where � ½ ¦¿¾ ��§D� �;���O�>=>=M=~� is the ordered set
� r ��\ ½ 2 ¾ ��\ ½ Ú ¾ =>=>=M� ¯ � ��j�Õ � \ ½ ¦¿¾ �D� 
 . At

the boundary points where � ½ ¦¿¾ � r or � ½ ¦¿¾ �A¯ , the derivative may not vanish

and so we can decompose it into positive and negative parts as jeÕ �#� ½ ¦¿¾ �W� é ½ ¦¿¾0 ?é ½ ¦¿¾N � é ½ ¦¿¾D �E
 .
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16.1 Introduction and background

For the case j � \Q�D� 2Ú 74\ Ú V �L\ , where 7 and � are simple scalars, the con-

strained minimization problem consists of solving the following mixed linear com-

plementarity problem (MLCP)×ØÙ 7 ?��Û�� 
 
?�� 
 
 ÜÞÝß ×ØÙ \é 0é N
ÜÞÝß V ×ØÙ �? r¯ ÜÞÝß � ×ØÙ 
< � ÜÞÝß
ba ö < � ÷ c ö é 0é N ÷ �E
<= (16.2)

This problem can be solved by simple enumeration. Indeed, first set é 0 �é N � 
 and solve for \E� ?ã7��;� . Then check that this is within the bounds© r � ¯ « and if so, the problem is solved. Otherwise, try for \i� r and decompose7 r V �*� é 0 ? é N . If this is satisfied for é N � 
 , the solution is found.

Otherwise, try at \E� ¯ and decompose 7i¯ V �4� é 0�? é N . If é 0£� 
 , the
solution is found.

Solving for \ in (16.2) and substituting, we obtain the linear complementarity

problem (LCP)7 N 2 ö � ?��?�� � ÷ ö é 0é N ÷ V ö ?ã7�N 2 �D? r7 N 2 � V ¯ ÷ � ö < � ÷
ba ö < � ÷ c ö é 0é N ÷ �E
O= (16.3)

This is particularly instructive since it is obvious that the matrix on the left

hand side of the first line in (16.3) is singular because the second row is a scalar

multiple of the first. This shows that we have two redundant equations and it

suffices to solve one of them, checking the other one is consistent. For this simple

case, one of five alternatives are possible namely:

1. internal minimum: ?D�;��7 - © r � ¯ «
2. lower bound minimum: ?D�;��7 �- © r � ¯ « and 7 r V �(CE

3. upper bound minimum: ?Î�;�L7 �- © r � ¯ « and 7i¯ V �È'E

4. lower bound degeneracy: ?D�;��7 � r
5. upper bound degeneracy: ?D���L7 �u¯ .
When this analysis is applied to a general multidimensional constrained op-

timization problem, the result is the famous Karush-Kuhn-Tucker conditions

(KKT) theorem (see for instance [49], Section 3.3, or any other book on nonlin-

ear programming) which is now cited.

Theorem 16.1. Karush-Kuhn-Tucker Necessary Conditions. Let \ U be a local

minimum of function j   / p ¢¤ /
, subject to the continuously differentiable
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constraints RB  / p ¢¤ / + � R�� \k�D��
O� and �i  / p ¢¤ / Ö � �;¦ � \Q�Î�@
O�8§ã� �;� �<�>=>=>=>��� ,
and assume that \ U is regular, then, there exist unique Lagrange multipliers Ð U �� Ð U 2 ��Ð U Ú �M=>=>=M� Ð U + � a , and � U � �#� U � � U Ú �>=>=>=M� � U Ö � a , such that´ j � \ U �´ \ a ? ´ R�� \ U �´ \ a Ð U ? ´ �Q� \ U �´ \ a � U ��
R�� \ U �w��

Ãa �Q� \ U �óc � U �*
O= (16.4)

Note that a point \ is regular if the Jacobian rows
´ Rk¦ � ´ \%�8§(� �;� �<�>=>=>=>�87B�

and
´ �Mª � ´ \ for each Ä - � �;� �<�>=>=>=~��� � z = f = �Mª{� \k�¸�@
 are linearly dependent. The

KKT conditions illustrate clearly the connection between constrained nonlinear

optimization and the mixed complementarity problem.

16.2 Linear complementarity

Though the MLCP is natural in the context of nonlinear programming, one

can reduce such a problem to a pure LCP by performing a Schur complement

operation, i.e., solving for the equality conditions and substituting the results

back. This leads to the fundamental definition of the linear complementarity

problem.

Definition 16.1 (LCP). Given an ���Y� real matrix  and an � -dimensional

real vector � , the linear complementarity problem
x¬M® �  � ��� is that of finding� -dimensional real solution vectors � - / p

such that ��V �Å� é
ba � c é �E
<= (16.5)

The set of solution vectors is labeled
v	w[x � x¯¬M® �  � ���8� . The � -dimensional vectoré is vector of slack variables.

The idealization of LCP is very useful to develop and understand solution

algorithms. In practice however, it is more common to find mixed problems

consisting of coupled linear equations and a mix of unbounded as well as bounded

variables. In addition, bounded variables might have an upper, a lower, or both

upper and lower bounds. The MLCP was defined in 16.2 and is discussed in[69].

The formal definition of MLCP is now provided.

Definition 16.2 (MLCP). For an �u�B� real matrix  , an � -dimensional

real vector � , and two � -dimensional extended real vectors, ç and < , with ç ¦ ��< ¦ -/����{�`���
and ç ¦ a�< ¦ , the problem ° x¬M® �  � � ��ç���<�� is to find solution vectors� such that  �`V �Å� é 0�? é N
ba é 0�c � ?�ç#�E
<�
ba é N cA<á? � �E
O= (16.6)
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16.2 Linear complementarity

The vectors é 0 and é N contain the slack variables. The solution set of ° x¬M® �  � �{� ç���<��
is called

vkw[x �±° x¯¬M® �  � � � �{��çÍ��<��8� .
Of course, ° x¬M® �  ���{��ç��:<��8� is equivalent to

x¬M® �  ����� when ç ¦ � 
 and< ¦ � �
.

A slightly different way to view MLCP is to consider the slack variables é 0
and é N as unknowns and to rewrite (16.6) as×ØÙ  ? � p � p� p 
 
? � p 
 
 Ü Ýß ×ØÙ �é 0é N

Ü Ýß V ×ØÙ �?1ç< Ü Ýß � ×ØÙ 
� z
Ü Ýß
Ãai� c é 0��E

Ãa z c é N �E
O= (16.7)

This form makes it more clear that a mix of equalities is being dealt with.

It is not very difficult to extend an LCP algorithm to handle mixed problems

though, in most cases, the class of matrices which can be solved by the resulting

algorithm is much smaller than the original. Because the extensions to MLCP

for principal pivot methods are straight forward, they are not provided here.

Extensions to the Lemke algorithm 16.5.6 are more difficult and are found in [245,

146].

16.2.1 One-dimensional problems

To fix some ideas, consider the one-dimensional LCP7 ��V �`� é
ba � c  �`V �È�E
O� (16.8)

where 7 and � are real scalars.

The following cases are found.

1. �(CE
 . Solution is � ��
 and é ��� ;
2. �('E
O�87 CE
 . Solution is � � ?D�;�L7 , and é ��
 ;
3. �('E
O�87ªaE
 . There is no solution.

Note that the case �Å��
 produces the degenerate solution � � é ��
 .
This example already illustrates that the notion of positivity of the matrix  

in (16.5) plays a central role in complementarity theory. It also illustrates how

zero components of vector � leads to degeneracy which corresponds to simul-

taneous vanishing of components of the solution vector � and the slack vectoré .
293



16 Complementarity I: Basics

16.2.2 Two-dimensional problems

Now consider (16.5) for the case of a � � � real matrix  . Partition  by

columns as  � ò ?�< ?�� ó � (16.9)

and therefore, the solution vector for (16.5) can be written as�Å� � 2�< VÝ� Ú�� VÝé 21�T2 V�é Ú-�LÚ�� (16.10)

where � ¦ are the basis vector of / Ú
with a � at position § and 
 elsewhere. Because

of the complementarity conditions, this can be further written as�Å�uÓe\ VÝ� de�¸ÓQ� � �E
O�w\�- � <â���LÚ � ��dá- � �e���LÚ � � (16.11)

which means that vector � must lie in one of the four cones

� 2�� � �K- / Ú &¥�È�uÓ³< VÝ� �e� Óe� � �E
 � �� ÚÎ� � �K- / Ú &¥�È�uÓ>�T2 Vt� �e��Óe� � �E
 � �� É � � �K- / Ú &¥�È�uÓ³< VÝ� �LÚ�� Óe� � �E
 � �� ¦ � � �K- / Ú &¥�È�uÓ>�T2 Vt� �LÚ�� Óe� � �E
 � = (16.12)

Obviously, if vector � is not found in any of these four cones, there is no solution.

For this case, we can perform a complete enumeration of the possible LCPs.

There are four quadrants in
/ Ú

and therefore, there are four choices for each

column of matrix  , namely, vectors <y��?  à 2 , and �Y�  à Ú . This is illustrated
in Figure 16.2. Each sub-figure is labeled according to which quadrant vectors <
and � belong to. The arcs have increasing radius from the origin spanning the

cones �Î¦ �8§w���;� �<� î � ñ . In order to be able to solve LCP �  � ��� for a given vector� , it must lie in a region of the plane which is spanned by at least one of the

arcs. If two arcs cover the same region, as in sub picture III/III for instance, the

corresponding LCP has multiple solution vectors � .
The interesting cases are those for which there is a unique solution to �  �����

for any �@- / Ú
and this is seen to occur in sub pictures II/III and III/IV.

For both of these cases, we find that <w2��À?ã7�2 2i' 
 , �TÚi� ?ã74Ú�ÚB' 
 and<32��TÚK?r<�Ú��<2o� �¨�~� �  ��C 
 . For this last identity, observe that
�¨�,� �  � is

proportional to the signed area spanned by vectors <â�:� . Collecting these results,

we find that given a real � � � matrix  which has all positive minors, then,

LCP �  � ��� has a unique solution for any ��- / Ú
. Real �@��� matrices  

which have all positive principal minors are called ! matrices and those which

have non-negative principal minors are the !%" matrices. These observations are

generalized to � dimensions in the next section.

In geometric terms, observe that in cases II/III and III/IV, we can assign one

of the vectors �{2M���LÚ;�:<â��� uniquely to each of the four quadrants. For case II/III,

the assignment is �{2   IV, �LÚ   I, <   II, �   III, and for case III/IV it is: �{2   I,�LÚ   II, <   III, �   IV. This also generalizes to
/ p

in which cases ! matrices have

been shown to have this pigeon hole property.
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< < < <

�T2�T2�T2�T2

�T2�T2�T2�T2

�T2�T2�T2�T2

�T2�T2�T2�T2IV/I

I/I

II/I

III/I

�LÚ I/II� I/III�LÚ� �
�LÚ I/IV

�
�LÚ

�LÚ< � II/II
� �LÚ< II/III�

�LÚ <II/IV �LÚ
�

< �
�LÚIII/IV�LÚ

� <
III/IIIIII/II� �LÚ

<
��LÚ

<
�LÚ IV/II� < <

�LÚ� IV/III �LÚ� IV/IV

< � <
�LÚ

<

Figure 16.2: The 16 cases of two-dimensional LCP. The arcs shown with increas-

ing radius illustrate the span for the four different potential solution

bases, namely, � <â���¨� , � �{2���¨� , � <â���LÚ� , and � �{2���LÚM� .
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Observe further that the case shown in sub-figure I/I corresponds to a matrix which has all negative entries. For this case, there is only the trivial solution� � 
 . So, again, the key to solving LCPs is to identify how positive a given

matrix is.

To fix ideas even further, consider the following examples taken from [144].

Example 16.1. For
x¯¬M® �  � �;� with �Àö � 

 � ÷ �W�Å� ö �� ÷ � (16.13)

the unique solution is � � � 
<� 
�� a , é � � �;�M�� a . This example corresponds to a

limit case of either case II/III or case III/IV.

Example 16.2. For
x¯¬M® �  � �;� with � ö �Û��Û� ÷ �w�`� ö ?��?�� ÷ � (16.14)

the solution set consists of � � � Ð��M�ã?BÐ�� a � Ðy- © 
O�� « , é � � 
O� 
T� a .
Example 16.3. For

x¯¬M® �  � �;� with � ö ?�� 
� � ÷ �W�Å� ö ?��� ÷ � (16.15)

there is no solution since for � 2D�E
 , é 2Z� ?���? � 2�aE
 and therefore, the problem

is infeasible.

Example 16.4. For
x¯¬M® �  � �;� with � ö � 
� ?D� ÷ �W�Å� ö î?�� ÷ � (16.16)

the first equation leads to � 2 V	î � é 2 and since � 2`�J
 , é 2Å� î . However, the

second equation � 2Z?o� � ÚD?*����
 cannot be solved for � 2b��
 which means that

both � 21C*
 and é 21C î C*
 and therefore, the problem has no solution.

16.2.3 Definitions and classes of matrices

The LCP is already defined formally in Definition 16.1 and the MLCP in Defi-

nition 16.2, along with the notation for the solution sets. Introduce the feasible

set,
� ��� � é � , which contains all the potential candidates for solving

x¯¬M® �  � �;� .
Definition 16.3. Given a square ���Y� matrix  and an � -dimensional vector� , the feasible set

� �#� � é � of x¬M® �  � ��� is� ��� � é �   � � � é - / p 0 & é �u� V  � � = (16.17)
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16.2 Linear complementarity

It follows that
v	w[x � x¬M® �  �����8��- � ��� � é � . Of course, for the case where� ��� � é �W� ²

,
x¯¬M® �  � ��� is infeasible and has therefore no solution.

Definition 16.4 (Submatrices). Given a square �o�á� matrix  , sets of the

form �B¹ � �;���O�>=>=M=,� � �
are called index sets. Matrices of the form �T� � � 7 ¦®ª �,� §,� Ä -4�W� (16.18)

are called principal submatrices of  , whilst matrices of the form �è � � 7 ¦ëª �,� §¸-4�W� Ä -Y�Î� (16.19)

are submatrices of  .

Definition 16.5 (The cone of matrix  ). Given the �o� 7 real matrix  ,

with no restriction on � ��7 , a cone is a set of the form

�K�  �¸� � � - / p & � � +Ñª q 2 Ó ª  à�ª � Ó ª CE
 � = (16.20)

In other words, a cone �K�  � is the positive span of the columns of matrix  ,

sometimes written �K�  �¸� & ±;8 � �  à8¦ � ¦ qep¦ q 2 � . Given
x¬M® �  � ��� , we define the � p

complementarity cones for this problem as:

Definition 16.6 (The augmented cone of matrix  ). Given a square �Y�b�
matrix  , let � be an index set, �B¹ � �;���O�>=>=M=,� � �

and define � so that �³²ã�	� ²
and � � � � � �;���O�>=>=M=~� � �

. There are � p different index sets � and for each of

these, define the cone

�Î���  �W� � Í ò � à�è ?  à � ó Î � (16.21)

in other words, �Å���  � is the positive span of the negative � columns of  and� columns of the identity.

In view of Def. 16.6, solving
x¬M® �  � ��� consists of identifying the cones such

that ��- �b���  � . From this perspective, once the index set � is identified, one

must solve the linear system d \¡���{� (16.22)

where the columns of d are dÎà � � ?  à�� , and dÎàk´� � � àk´� . In this representation,

the columns of matrix d is a basis for the problem. In addition, we say that �T¦
is a basic variable if §K-*� and non-basic otherwise. Conversely, éb¦ is a basic

variable if ��¦ is non-basic, and vice versa.

As explained in the previous section, the notion of positivity plays a central

role in complementarity theory so we introduce the following classes of matrices.

Definition 16.7. A positive (semi-)definite ����� matrix  is such that given

any \y- / p
, \ ï��
 , then\ a  \yCE
 for  positive definite �\ a  \y�E
 for  positive semi-definite = (16.23)
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As is well-known, symmetric matrices have real eigenvalues [107]. It fol-

lows from this that symmetric, positive semi-definite matrices have non-negative

eigenvalues, and that symmetric positive definite matrices have strictly positive

eigenvalues.

In addition, we introduce the following class of matrices.

Definition 16.8. A square �	�4� real matrix  may belong to one or several

of the following classes.�
-matrices: matrices  such that

x¬M® �  � �;� has a solution for all �È- / p
;� " -matrices: matrices  such that

x¬M® �  � ��� has a solution for all �o- / p
such that

� �#� � é � ï� ²
;! -matrices: matrices  such that all principal minors are positive;!�" -matrices: matrices  such that all principal minors are non-negative;

Copositive matrices: matrices  such that for all vectors \y- / p 0 , \ a� \��*
 ;
Strict copositive matrices: matrices  such that for all vectors \y- / p 0 , \ a  \yC
 ;
Copositive plus matrices: matrices  which are copositive and such that for

any d�- / p
such that d a  dH��
 , then, �  aáV  �7d���
 .

For  - ! , any principal minor is strictly positive. Any principal submatrix �T� � �	- � ��� �O�M=>=>=~� � �
, is thus invertible. When  - !%" , it is possible that one

of the submatrices  �{� is singular however.

When matrix  is symmetric, the property  - ! is equivalent to  be-

ing positive definite. In general, positive definite matrices form a subset of !
matrices, and positive semi-definite matrices form a subset of !#" [144, 210, 69].

Another distinction of ! matrices is that
x¬M® �  � ��� has a unique solution for

any �á- / p
for �	�y� matrices  - ! . Geometrically, this means in fact that

the � p cones �b� � ��¹ � �;� �<�>=>=>=~� � �
are pigeon holed, with one per orthant in

/ p 0
as demonstrated in [110].

Theorem 16.2. For a square, real, �D�â� matrix  that is a ! matrix,
x¬M® �  � ���

has a unique solution for any real vector �È- / p
.

16.3 Nonlinear complementarity

The generalization to real nonlinear problems starts with a cone � - / p
.

Definition 16.9. A closed convex cone � is a point set such that

1. �EV_� ¹ �
2. Ð � ¹ � � for all Ðy�E
 .
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16.3 Nonlinear complementarity

If
� ² � ? � �â� � 
 � , cone � is said to be pointed.

The standard example is the set of nonnegative linear combinations of a set

of vectors \ ¦ - / p �8§��Á�;� �<�>=>=>=>�87 , where 7 ' � , so that � � � \ &Î\ �l ª � ª \ ª � � ª �E
O� Ä ����� �O�M=>=>=~��7 �
, which is a pointed cone.

For the case of general Hilbert spaces, point sets for which there is an inner

product operation
e \���dkf1- /

for any two points \���d4- � , the dual cone can be

defined as follows.

Definition 16.10 (Dual cone). The dual � U of a closed convex cone is the set:� U � � d¡- / p & e de� \~f��E
O� for all \y- � � = (16.24)

This applies to
/ p

with the usual inner product
e d���\~fW�Ad a \ .

Definition 16.11. Given real vector function j   / p ¢¤ / p
, the nonlinear com-

plementarity problem NCP is that of finding solution vectors �� U¶µ j ��� � c � - � � (16.25)

which means that j �#� ��- � U , � - � and �{a j ��� �W�u
 .
For the simple case j ��� �`�  �KV � , where  is an �E�i� matrix, and � �� � - / p & ��¦ �E
<�8§â����� �O�>=M=>=~� � �

, this reduces to Definition 16.1 of LCP.

The Coulomb friction problem defined in Section 10.11.2 is an example of a

nonlinear complementarity problem (NCP). Of course, the NCP reduces to the

LCP when j �#� �W�  �1V � , where  is an �4�K� real matrix and �È- / p
is a real

vector.

Both the NCP and the LCP can be formulated as fixed point problems. This

allows to invoke the Brouwer theorem to prove the existence of a solution. To

see this, introduce the projection !¯·   / p ¢¤ � . For the standard comple-

mentarity problem for instance, the cone � is defined as � � � � - / p & ��¦ �
O�8§â����� �O�M=>=>=~� � �
and !Q¸���� �W� �+*-, � 
<� � � , where the �+*-,

function is understood

component-wise so that if é � �+*-, � 
O� � � , then, éD¦ � �+*-, � 
O� ��¦ �~�8§w����� �O�>=M=>=~� � .
Then, define the following map

ü   / p ¢¤ / p
, as:ü �#� �¸� !·Z�#� ?Bj ��� ���,= (16.26)

For the standard formulation, this amounts toü
std �#� �W� �+*-, � 
O� � ?  � ?B���,� (16.27)

and a fixed point of � U � ü
std ��� U � thus satisfies �;¦ �J
 when �  �ÈV ��� ¦ Cº
 and�L¦ CE
 when �  �`V ��� ª �u
 as desired.

Thus, the solvability of a given NCP depends on whether or not the corre-

sponding map
ü
has a fixed point. There are alternative ways to define NCP

as a fixed point problem but the one provided above suffices for the purpose of

the solvability theory, below. Observe also that
ü
std ��� � in (16.27) is semismooth,

meaning that it has jump discontinuities in its derivatives, much like the absolute

value function.
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16.4 Solvability theory

Without going into the depth of solvability theory for either LCP or NCP, a

few important results are stated here. The most important notion is that of

exceptional families of elements due to Isac, Kalashnikov, and Bulavsky [135,

57, 134] and also to Obuchowska [217]. Consider a real cone � - / p
with dual� U , and a continuous function j   / p ¢¤ / p

. An exceptional family of element

is defined as follows

Definition 16.12. A set of points
� � ½ Ö�¾ � Ö�ýk" - � is an exceptional family of

elements if the following conditions hold:

1. � ½ Ö�¾ - � for all �YCE
 ;
2.
4 � ½ Ö�¾ 4 ¤ �

as � ¤ �
;

3. for every � CÀ
 , there exists a � ½ Ö ¾ CÀ
 such that é ½ Ö�¾ � � ½ Ö ¾ � ½ Ö�¾ Vj ��� ½ Ö ¾ �Z- � U and e é ½ Ö�¾ � � ½ Ö ¾ fW��
 ;
where

e é � � fW� éÎaK� is the inner product.

With this definition, a theorem due to Isac [133] establishes existence as stated

in Theorem 16.3, reproduced here without proof.

Theorem 16.3 (Solvability of NCP). Consider a Hilbert space � , a closed

convex cone � - � and a completely continuous map j  <� ¢¤ � . Either there

exists a solution to NCP � jk� � � or j has an exceptional family of elements.

To see how this plays, assume that function j does have an exceptional family

of elements. Since this implies that é ½ Ö�¾ a � ½ Ö ¾ ��
 , consider the expansioné ½ Ö ¾ a � ½ Ö ¾ � � ½ Ö ¾ 4 � ½ Ö�¾ 4 Ú VÝ� ½ Ö ¾ a j ��� ½ Ö�¾ �w��
<� and � ½ Ö ¾ - � = (16.28)

Consider now that j ��� ���  �6V � where  is a real, square matrix of size���¡� and �È- / p
, so thaté ½ Ö ¾ a � ½ Ö�¾ � � ½ Ö�¾ 4 � ½ Ö ¾ 4 Ú V�� ½ Ö ¾ a  � ½ Ö ¾ V � a � ½ Ö ¾ = (16.29)

Thus, if matrix  is positive definite with minimum eigenvalue Ð p �  ��CE
 , the
following bound holds for (16.29)é ½ Ö ¾ a � ½ Ö ¾ � � ½ Ö ¾ a Ç ��� ½ Ö ¾ V Ð p �  ��� � ½ Ö ¾ V � È � (16.30)

and all terms in the last parenthesis are strictly positive whenever� ½ Ö ¾¦ C5& � ¦ & ��Ð p �  �,= (16.31)

Therefore, for positive definite matrices  , LCP �  � ��� is solvable.
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16.5 Classical solution methods

Though there is ample literature on solution methods for LCP [69, 144, 210], a

few classical methods are now demonstrated here in order to fix some ideas and

notation. It is interesting to note also that the LCP literature is deeply rooted

in the linear programming literature where pivoting methods are in systematic

usage. However, such pivoting methods do not properly illustrate the matrix

operations involved in the implementation of any given algorithm, especially

since these operations are almost fundamentally BLASlevel 2 types, i.e., matrix-

vector products, or matrix rank- � update types. The presentation below relies

strictly on explicit submatrices.

Consider
x¬M® �  ����� of size � and some index set �m¹ � �;� �<�>=>=>=~� � �

. The

matrix  �{� is called a principal submatrix of  and consists of �T� � � 7 ¦ëª �,� §,� Ä -y��¹ � �;� �<�>=>=>=~� � � = (16.32)

From Definition 16.1 for
x¯¬M® �  � �;� , the solution consists of an index set � and

the solution of the linear system  �T�	�;� � ?D� � � (16.33)

from which the rest of the solution is recovered using complementarity conditions,

namely �~è ��
O� éD� ��
O� é¸è ��� èHV  è<�	�;� = (16.34)

A number of LCP solution methods can be constructed by sequentially con-

sidering index sets � ½ j ¾ � Ño� ��� �O�M=>=>=~� and solving linear systems involving the

corresponding principal submatrices of  .

We consider three of these in what follows to show the variety of ideas which

can be applied.

16.5.1 Murty’s principal pivot method for LCP

The absolutely simplest solution method is due to Katta Murty [209] and is

described also in [210] and [69]. The idea is this. Given
x¬M® �  � ��� , pick a

candidate index set ��¹ � �;� �<�>=>=>=~� � �
. Solve the principal subsystem �T�	�;� � ?D� � � (16.35)

compute é¸è �5� èyV  è<�	�;� , and set éD� �5
O� �~è �5
 , and z � éJVA� . Vectorz - / p
is called the complementarity point. Now, if we are lucky, vector z is

non-negative and we therefore have a solution. Otherwise, there is at least one

index Ä such that z ª '.
 . There are several choices here and the original idea

due to Y. Bard (as quoted in [210]) is to pick the most infeasible index and

either remove it from set � if z ª � �>ª or add it to set � if z ª � é¸ª . However,

this can cycle and therefore, the simplest method that actually works is due to

K. G. Murty and described in Algorithm 16.5.1.

This algorithm works without cycling for ! matrices. The reason is an induc-

tive argument which we now describe.
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16 Complementarity I: Basics

Algorithm 16.5.1 Murty’s principal pivoting algorithm for LCP.

Given ���¡� matrix  and � -dimensional vector �
initialize ��� ² �e�	� � ��� �O�>=M=>=~� � �D� �
repeat

Solve  �T�	�;� � ?D� �
Set �~è ��

Compute z � �`V � V  �
Find �È� �+*¥, � §�& z ¦ 'E
 �
if �6-y� then� � � ��� � �� � � �á� � �
else� � � ��� � �� � � �á� � �
end if

until �(� ²
Theorem 16.4. Given

x¬M® �  � ��� with an ������! matrix, Murty’s max index

algorithm 16.5.1 computes the unique solution � in finite number of steps F a*� p .
Proof. The proof is by induction. Obviously, the algorithm works for � � � in

which case there are only two choices. Assume it works for LCP of size 7 up

to 7À� � ?*� . Now, variable � will only be considered once
x¬M® �  ú�ú ��� ú �,� ÿ �� ��� �O�>=M=>=~� � ?B� � is solved, since variables Ä ' � are always considered first. This

leads to two possibilities.

Case I. Index set ��¹ � ��� �O�M=>=>=~� � ?i� � solves
x¬M® �  ú�ú � � ú � and � p V  p �V�;� �
 . The solution of

x¬M® �  ����� can be constructed directly from �T� . Since matrix - ! , this is the unique solution.

Case II. Index set ��¹ � �;���O�>=>=M=,� � ?�� � solves
x¬M® �  ú�ú � � ú � but � p V  p �V�;� '
 . With the maximum index rule, this means that index � must be added to

the set � . Note also that we cannot encounter Case II if case I completes which

means that the index set of the solution must contain index � . Performing a

Schur complement on variable � p , i.e., solving for � p as a function of � ú , we find

the reduced problem to be
x¬M® � � � ��;� of dimension � ?E� with� �  ú�ú ?�7 N 2p�p  ú p  p ú ���Å��� ú ?�7 N 2p�p  ú p �ÿ � � ��� �O�>=M=>=~� � ?E� � = (16.36)

Now, if  is a ! matrix, then, so is the Schur complement � and therefore,x¬M® �D� � ���� is solvable by induction.

Note also that all principal subproblems of Algorithm 16.5.1 are solvable since - ! implies that
�¨�~� �  �T� ��CE
 , hence,  �T� is non-singular.

Assuming that solving LCP of size � ?J� takes at most � p N 2
operations, at

most � � � p N 2 ��� p operations are needed to solve LCP of size � .
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16.5 Classical solution methods

The non-cycling assumption therefore survives induction as well.

This Murty max index rule has another nice property that it can be warm

started, i.e., we can start from a non-empty index set � ï� ²
which is, hopefully,

near the solution in some sense.

Note also that the maximum index rule can be changed to a minimum index

rule or a F th index rule. These variations correspond to permutations of the orig-

inal matrix  and vector � which do not affect the ! property or the induction

step.

There is an extension to this algorithm which is a block pivot rule in which

all variables Ä such that z ª 'J
 are switched to their respective complementary

sets. This essentially corresponds to an undamped Newton method as we show

in Section 16.7.1.

As a final remark, note that Murty’s maximum index rule does not require

matrix  to be positive definite or symmetric, but only requires property ! .

16.5.2 Murty’s principal pivot method for MLCP

The simplest way to reformulate Murty’s principal pivot rule is to consider the

MLCP formulation of (16.7) and apply the maximum index rule on that. Of

course, no one should attack the augmented matrix in (16.7) with a factorization

algorithm. The linear problems to solve still only involve the principal submatrix �{� . The trick here is to split the index set into two main groups as before,

namely, �¸��� with �¹²���� ²
and � � ��� � �;� �<�>=>=>=~� � �

. However now, the set� is refined into two parts, namely,
ÿ
contains the variables which have reached

the upper bound, and � contains those which are at their lower bound.

Define two complementarity points z ½ 0 ¾
and z ½gN ¾ asz ½ 0 ¾ � � ?�ç V�é 0z ½gN ¾ �A<á? �`VÝé N = (16.37)

All components of z ½ED ¾ will be positive when the problem is solved. The max-

imum index rule here is to locate the largest index § such that either z ½ 0 ¾ ' 

or z ½sN ¾ 'J
 . The pivoting is done as before, namely, if index § is free so §Î-�� ,
then, if z ½ 0 ¾ ' 
 , index § is transferred to

ÿ
, and if z ½sN ¾ ' 
 , then, index § is

transferred to � . Finally, if index § is in either
ÿ
or � , it is transferred to � .

All that really changes is the right hand side vector in the main solve operation

which contains contributions from the active lower and upper bounds.
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Algorithm 16.5.2 Murty’s principal pivoting algorithm for MLCP.

Given ���y� matrix  , � -dimensional vector � and � -dimensional vectors of

lower and upper bounds, ç and < , respectively.
Initialize ��� ² ����� � ��� �O�>=M=>=~� � �D� � ÿ ����� ² À
repeat

Solve  �T�	�;� � ?D� � ?  � ú ç ú ?  � � < � ;
Set � ú �ºç ú ;Set � � �A< ú ;
Compute z ½ 0 ¾ � �#� ?�çs� Vº� � V  � � ;
Compute z ½gN ¾ � � <á?�çs�3? � � V  � � ;
Find �È� �+*¥, � §�& z ½ 0 ¾¦ 'E
 or z ½gN ¾¦ 'E
 � ;
if �Y-y� and z ½ 0 ¾¦ '*
 then� � � ��� � � ;ÿ � ÿ �á� � � ;
else if �6-y� and z ½gN ¾¦ 'E
 ; then� � � ��� � � ;� � � ��� � � ;
else

if §Z- ÿ
thenÿ � ÿ ��� � � ;

else � � � ��� � � ;
end if� � � �á� � � ;

end if

until �(� ²
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16.5 Classical solution methods

16.5.3 The Keller algorithm

Edward L. Keller [157] introduced an interesting and efficient algorithm for solv-

ing LCPs associated with ! matrices. In fact, Keller specifically considered KKT

matrices of quadratic programming (QP) problems which have the formö � ? ^Îa^ 
 ÷ � (16.38)

where
�

is � 2 ��� 2 , symmetric, and positive semi-definite, ^ is a rectangular� Ú �Z� 2 matrix of full row rank (thus with � Ú3a � 2 ), and 
 is an � Ú �¸� Ú zero block.
Such matrices belong to the class !%" and in general, special care is required to

avoid steps involving zero diagonal entries. This is explained in detail in [157]

but we avoid these subtleties here and stick to ! matrices since for regularized

problems, there is never a 
 block in the lower right corner.

The Keller principal pivot algorithm proceeds along a feasible vector � where

at each iteration, �;� �E
 and �~è ��
 . Likewise, éÎ� ��
 but there is no guarantee

that é is feasible. Find the index z � *-h 9 �Y� � ¦ �#é1¦ � . If é Æ('�
 , pivot on z but

keeping � feasible. Otherwise é is feasible and the solution is found.

In contrast to what was done in the Murty’s maximum index rule, care will

be taken to chose indices ��- � �;� �<�>=>=>=~� � �
to add or remove from the active set� so as to keep � in the feasible set, i.e., �T� �E
 .

This leads to two cases. The first one is when a single pivot step is taken which

adds the variable � Æ to the active set �;� and maintains feasibility, and another

case where one or several variables ��Ö have to be removed from the active set in

order to maintain feasibility before the variable � Æ can be added to the active

set.

We consider the simplest case first. Assume for now that �T� is the active basic

vector for some step Ñ . This means that it solves the following systemö  �{�  �è è¨�  è�è ÷ ö �;�
 ÷ V ö � �� è ÷ � ö 
éWè ÷�;� �E
O� (16.39)

and so �;� � ?  N 2�{� � � . Assume now that variable é Æ is the pivot candidate so

that é Æ¡' 
 , and é ÆTa é¸ª � Ä -B� . The rule here is to add variable � Æ to the

active set to remedy the problem. After reorganizing the variables, the system

becomes ×ØÙ  �T�  � Æ  � ´è Æ �  ÆÍÆ  Æ ´è ´è<�  ´è Æ  ´è ´è
ÜÞÝß ×ØÙ [�;�[� Æ
 ÜÞÝß V ×ØÙ � ��MÆ� ´è

ÜÞÝß � ×ØÙ 
[é Æ[é ´è
ÜÞÝß = (16.40)

Write the solution [� of this system as an update of the form [�T� � �;�ãV � � � . This
is done by explicitly writing out the first block equation as follows �T�W[�;�(V � �KV  � Æ [� Æ���
O�[�;�(V  N 2�T� � �(V  N 2�T�  � Æ [� Æ���
O= (16.41)
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Accounting for  �{�	�;�(V � � ��
 then yields[�;� � �;� ? [� Æ  N 2�{�  � Æ� �;�(V � � � � (16.42)

which is the desired format by setting
� � [� Æ and  �{� � � �£?  � Æ . Likewise, if

we look at the value of [é Æ which we intend to drive to 0, we haveÒ Æ��  Æ � � �(V  ÆÍÆ��  Æ �  N 2�{�  � Æ V  ÆÍÆ�[é ÆZ� é Æ V � Ò Æ�[é ´è � é ´è V � �  ´è<� � �ÈV  ´è Æ �,= (16.43)

Now, since  is a ! matrix, we have Ò<ÆÈC@
 . Choosing
� 2Î� ? é Æ,�LÒOÆ makes[é ÆZ�u
 . However, in order to keep [� feasible, we must set
�
to be less than� Ú1� �Y� �¦ Ò ? ��¦� ¦ ìììì §Z-y� and � ¦ 'E
 Ó � ? �¥Ö� Ö = (16.44)

Therefore, if
� 2Å' � Ú , we add � Æ to the active set and we are done. However, if� 2ÈC � Ú , we need to first remove ��Ö from the active set before we can drive é Æ

towards zero. Let us write [�o��� � � , [[��� [� � � , and [[��´� for updated variables.

Note first that we can write[�;� � ö [��´�
 ÷ �  �{� � ö  ´�´�  ´�;Ö Ö)´�  Ö:Ö ÷ � and i�{� [� � �Àö  ´��´�W[��´� Ö)´�W[��´� ÷ �Àö ?D� ´�?D� Ö ÷ V � ö ?  ´� Æ?  Ö Æ ÷ � (16.45)

from which we can extract the following identity ´��´�W[��´� ��?D� ´� ? �  ´� Æ= (16.46)

The new system we are trying to solve is now×ØÙ  ´��´�  ´� Æ  ´� ´´è Æ ´�  ÆÍÆ  Æ ´´è ´´èP´�  ´´è Æ  ´´è ´´è
ÜÞÝß ×ØÙ [[�;�� V�[� Æ
 ÜÞÝß V ×ØÙ � ´��>Æ� ´´è

ÜÞÝß � ×ØÙ 
[[é Æ[[é ´´è
ÜÞÝß � (16.47)

from which we extract the first block equations ´��´� [[��´� �  ´��´�W[��´� ? �  ´� Æ� which means that[[��´� � [��´�(V � [� ´� � where º´��´� [� ´� � ?  º´� Æ = (16.48)

This demonstrates how the same updating rules can be applied in either case.

The algorithm therefore proceeds as illustrated below in Algorithm 16.5.3. The

proof is given in [144] that this process cannot terminate on a ray whenever  
is a ! matrix. The same is true for  - !%" but in this case, we need to include� � � pivots.
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Algorithm 16.5.3 Keller’s Algorithm for solving LCPs with ! matrices.

Initialize ��� ² ����� � ��� �O�M=>=>=~� � �
while » § s.t. é1¦ 'E
 doz � *-h 9 �Y� � ¦ � éD¦ & s.t. é1¦ 'E
 �

repeat

Solve:  �{� � � � ?  � ÆÒOÆ �  ÆÍÆ V  Æ � � �
if Ò ÆDCE
 then� 2 � N ��¼½ ¼else� 2 � �
end if

if » � ¦ '*
 then� Ú � �Y� � ¦ � N í �Ç � &p� ¦ 'E
 �� � *-h 9 �Y� � ¦ � N í �Ç � &¥� ¦ 'E
 �
else� Ú � �
end if� � �Y� � � � 2M� � ÚM�
if
� � �

then

Termination on a ray: no solution. End.

else�;� � �;�(V � � �é Æ � é Æ V � Ò Æé¸è � é¸èYV � �  è<� � �(V  è Æ,�
end if

if
� � � 2 thené ÆZ��
 , � � � � z , � � � � z

else if
� � � Ú then�pÖ ��
 , � � � � � , � � � � �

end if

until
� � � 2

end while
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16.5.4 The Keller algorithm for MLCP

Here, we consider MLCPs as per Definition 16.2 so �`V �Å� é 0�? é N
ba é 0�c � ?�ç#�E
<�
ba é N cA<á? � �E
O� (16.6 Õ )
where the bound vectors ç���< are extended reals so that any or all ç ¦ aj< ¦ , might

be infinite.

The original Keller algorithm proceeds along feasible � vectors, and pivots on

the most infeasible component of the é . As the infeasibility is reduced to zero,

the step length is chosen to maintain feasibility on the � vector. This description
can be used directly to adapt the algorithm to process MLCPs. The adaptation

consists of considering all the new cases introduced by the upper bounds.

The index set is split into four parts
( � � � � æ)¾ � � such that

(À¿�� � ²
,( ¾ � � � �;� �<�>=>=>=~� � �

,
� æ ¿�� �á� ²

,
� æS¾ � �á� �

. The set
(

corresponds to the

free variables, whilst the set
�

corresponds to the tight variables which is split

into the tight variables at the lower bound
� æ , and the tight variables at the

upper bound
� � .

Picking the most infeasible component of é , we compute z æ � *-h 9 �Y� � ¦ R a å � é1¦ �
and z �	� *-h 9 �+*¥, ¦ R akÁ � é1¦ � and we define z æ � ?�� and z �	� ?�� if

� æ � ²
or� ��� ²

, respectively. Then, we set z � *-h 9 �Y� � � éK� z æ �~�>? éK� z �¨� � and ���:� ifz � z æ , or ����?�� if z � z � . The search direction and free step length are set as

before  ê�ê � ê � ?  ê Æ� andÒ Æ��  ÆÍÆ V  Æ ê � ê = (16.49)

The test to accept the step length now splits into two parts, based on whether�E� � � . We need to test both for upper and lower bounds and therefore, we

compute three potential blocks as follows:

whenever �á����� then� " � ? éK� z ����Ò ÆL�� 2Z�A< � z �â? �Q� z �,�� ÚD� �Y� �Â ¦ R êQÃ Ç � Pk"�Ä � � ç ¦ ? ��¦ � �¥� ¦ � ���ÚÎ� *-h 9 �Y� �Â ¦ R êQÃ Ç � Pk"�Ä � � ç ¦ ? ��¦ ���p� ¦ � �� É � �Y� �Â ¦ R êQÃ Ç � ýk"�Ä � � < ¦ ? ��¦ ���p� ¦ � �� É � *-h 9 �Y� �Â ¦ R êQÃ Ç � ýk"�Ä � � < ¦ ? ��¦ � �¥� ¦ � �f � �Y� � � � " � � 2M� � Ú;� � É � =
(16.50)
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In addition to this,

whenever �á� ?��;� then� " � ? éK� z ����Ò Æ�� 2Z�ºç � z �â? �Q� z �,�� ÚD� �+*-,Â ¦ R êQÃ Ç � ýQ"�Ä � � ç ¦ ? ��¦ ���p� ¦ � ���ÚD� *¥h 9 �Þ*¥,Â ¦ R êQÃ Ç � ýk"�Ä � � ç ¦ ? ��¦ � �¥� ¦ � �� É � �+*-,Â ¦ R êQÃ Ç � PQ"�Ä � � < ¦ ? ��¦ � �¥� ¦ � �� É � *¥h 9 �Þ*¥,Â ¦ R êQÃ Ç � Pk"�Ä � � < ¦ ? � ¦ ���p� ¦ � �f � �+*¥, � � " � � 2M� � Ú;� � É � =
(16.51)

Taking the pivot step, there are now four possibilities:

Driving variable not blocked: infeasibility � reduced to 0;

Driving variable blocked at a bound;

Blocking variable blocked at a lower bound;

Blocking variable blocked at an upper bound.

These correspond to using step lengths
� " � � 2M� � Ú or � É respectively. In the first

two cases, we go back to picking the most infeasible é variable. In the last two,

we pivot on �;Ú or � É respectively.

The algorithm is summarized below in Algorithm 16.5.4, which contains a

slight correction to what is shown in [147].

Notice how only the
�Y� � function is used for both the �J� � and �J�À?��

case. Noting the clever trick,
�+*-, � \ ¦ �w� ? �Y� � � ?1\ ¦ � , all that is needed is to use� � �Y� � � �k\ ¦ � .
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Algorithm 16.5.4 Keller’s Algorithm for MLCP

Initialize: ��� � §�&�ç ¦ � ? �
and < ¦ � ���

;�`�6� � §�&�ç ¦ ��? �
and < ¦ ï� ���

; � æ � � §�&�ç ¦ ï� ? ��� À� è{å �ºç è{å ; � è Á �ºç è Á ;
Solve:  �{�	�;� � ?D� � ; é �  �`V � ;
while » §Z-6� æ s.t. éD¦ 'E
 or » §Z-6�`� s.t. éD¦ CE
 doz æ � *¥h 9 �Y� � ¦ R è{å � é1¦ & s.t. é1¦ '*
 � ;z � � *-h 9 �+*-, ¦ R è Á � éD¦ & s.t. é1¦ CE
 � Àz � *-h 9 �Y� � � é Æ å �>? é Æ Á � À�� � ?m8�9�� �#é Æ,� ;

repeat

Solve:  �{� � � � ?  � Æ ; for � �ÒOÆ �  ÆÍÆ V  Æ � � � ;
Reset:

� " � � 2Z� � ÚD� � É �Ý� � � ;

if Ò ÆDCE
 then� " � N ��¼½ ¼ ;

end if

if �á��� then� 2Z�A<�ÆW? � Æ ;
else� 2Z�ºçsÆ¸? � Æ ;
end if� Ú � �Y� � � � æ � N í �Ç � &1� � � ¦ 'E
 � Àõ��Ú � *¥h 9 �Y� � � � æ � N í �Ç � &1� � � ¦ 'E
 � ;� É � �Y� � � � � � N í �Ç � &�� � � ¦ CE
 � Àõ� É � *-h 9 �Y� � � � � � N í �Ç � &�� � � ¦ CE
 � ;� ��� � �Y� � � � � " ��� � 2>�#� � Ú;��� � É � ;
if & � &�� �

then

Termination on a ray: no solution. End.

else�;� � �;�`V � � � À é Æ � é Æ V � ÒOÆ-À éWè � éWè(V � �  è<� � �ÅV  è Æ,� ;
end if

if
� � � " thené ÆZ��
VÀ � � � ��� z � À� � � ��� z � À � æ � � æ ��� z � À �`� � �`� ��� z � À

else if
� � � 2 then

if p=1 then� Æ �A< Æ À � � � ��� z � À � � � � � ��� z � À � � � ��� z � ;
else � Æ��ºçsÆ¥À � � � ��� z � À � æ � � æ ��� z � À � � � ��� z � ;
end if

else if
� � � Ú then�pÖ �ºç Ö À � � � ��� � � À � � � �á� � � À � æ � � æ �á� � � ;

else if
� � � É then�pÖ �A< Ö À � � � ��� � � À � � � ��� � � À �`� � �`� �á� � � ;

end if

until
� � � " ;

end while
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16.5 Classical solution methods

16.5.5 The Cottle-Dantzig algorithm for LCP

The Cottle-Dantzig algorithm, known as the principal pivot method, works simi-

larly to the Keller algorithm but with one important difference: it only considers

the first F variables and proceeds by incrementing F to eventually cover the full

set,
� �;� �<�>=>=>=~� � �

. This might sound like an improvement but in fact, the perfor-

mance for this is inferior to that of the Keller algorithm in most cases. Much like

the Keller algorithm, this algorithm can find the unique solution of
x¯¬M® �  � �;�

for  - ! , and this includes positive definite matrices. The Cottle-Dantzig can

also process problems such that  is positive semi-definite and either compute

a solution to
x¬M® �  � ��� , or determine that the problem is infeasible [210].

The Cottle-Dantzig algorithm has two main loops. The outer loop considersé ¬ � F � �;� �<�>=>=>=>� � in sequence, proceeding to F�V � only when a solution to

the subproblem
x¬M® �  ��� ��� � �,�É�u� � �;���O�>=>=>=~� F � has been found. As observed

previously in Section 16.5.1, if the computed value ��é`a� ä � é ¬ 032,� a from ���{a� ä � 
�� a ,
where � � ä is the solution of

x¬M® �  � ä � ä � � � ä � , has é ¬ 032K'£
 , then, it is certain

that � ¬ 032 must be in the active set for subproblem F%V � . The algorithm therefore

checks that é ¬ 0â2(� 
 and if not, it tries to add � ¬ 032 to the active set without

making any other variable negative. If that works, we are done but otherwise,

we must either drop some variables from the active set or add new ones. This is

done repeatedly as long as we cannot safely add � ¬ 0â2 to the active set, at which

point the F6V � cycle is finished. Details are shown below in the pseudo code

Algorithm 16.5.5.

Observe here that until the end, the union of the sets � � � ï� � ���>=>=>=>� � �
and

we only work with the F variables already visited. This is different from the

Keller algorithm.

The analysis to extend the Cottle-Dantzig to solve MLCP is very similar to

that provided in Section 16.5.4 and is not worth repeating here. The result

is not particularly interesting though in view of the numerical experiments of

Section 17.6 and a detailed listing is therefore left out.
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16 Complementarity I: Basics

Algorithm 16.5.5 Cottle Dantzig Principal Pivot Method for LCPs with sym-

metric positive definite matrices.

Initialize ��� ² ����� ² � é ���{� � �u

for z ���â=>=>= � do

if é Æ1CE
 then�	��� ��� z �
else

repeat

Solve :  �{� � � � ?  � ÆÒ Æ �  ÆÍÆ V  Æ � � �< è �  è<� � �ÈV  è Æ� " � ? é Æ,��Ò Æ� 2 � �Y� � ¦ R � � ? ��¦ �¥� ¦ &p� ¦ 'E
 ��{2 � *¥h 9 �Y� � ¦ R � � ? ��¦ �p� ¦ &¥� ¦ '*
 �� Ú � �Y� � ¦ R è � ? éD¦ �p< ¦ &¥< ¦ 'E
 ���Ú � *¥h 9 �Y� � ¦ R � � ? é1¦ �¥� ¦ &p< ¦ '*
 �� � �Y� � � � " � � 2M� � Ú ��;� � �;�(V � � � À � Æ � � Æ V � Àé Æ � é Æ V � ÒOÆM� éWè � éWèYV � < è
if
� � � " then� � � �á� z � À � � � �Z� z �

else if
� � � 2 then� � � ��� �{2 � À � � � ��� �{2 �

else � � � �á� ��Ú � À � � � ��� ��Ú �
end if

until
� � � "

end if

end for

312



16.5 Classical solution methods

16.5.6 The Lemke algorithm

The algorithm of Carlton E. Lemke[179] differs significantly from the previous

ones in that it does not proceed along principal pivots. In addition, it maintains

an almost complementarity condition between vectors � and é at each stage.

This is achieved by introducing an artificial variable in the system and the prob-

lem is solved when that variable can be removed while keeping feasibility of the

remaining � and é vectors.

At any given stage in the algorithm, the following relation holdsé �  �`V � V���" �
Ãa � c é �*
O� ��" �E
O� (16.52)

where ��" C 
 is an artificial variable, and the covering vector �u- / p
is non-

negative, and usually taken as � ¦ ��� .
The fact that this is not a principal pivot algorithm actually means that vari-

able �pÖ is responsible to drive variable é Æ towards é ÆH� 
 , with z ï��� as we

explain shortly.

Now, to start the algorithm, we choose �;" so that variables � � é � �;" are all

non-negative, feasible, and complementary. The choice is simply��" � �+*-, � ?D� Ö ��� Ö � � � ��
O� é ��� V���" �4�E
<� é a � ��
O= (16.53)

Of course, if � ¦ ��
 , the LCP admits the trivial solution � � 
O� é � � , and we

are done.

Assuming that � Ö 'E
 for some index � , the next step is to introduce variable�¥Ö in the active set. Since é°Ö was already forced to zero in the previous stage,

introducing variable �pÖ will make some other variable vanish, namely, either é Æ
for some z ï� � , or the artificial �;" itself, in which case the problem is solved.

The idea for the algorithm is to choose the complement of the variable which is

driven to zero as the new variable to enter in or drop out of the active set. At

some point, assuming there is no cycling, either the variable ��" will drop out of

the active set or some impossible condition will be met meaning that the problem

cannot be solved. This is analyzed further below.

To construct the rest of the algorithm, we need to understand the changes in

the variables of (16.52) when a variable ��Ö is added or removed from the active

set.

At any given stage Ñ in the algorithm, let the active variables consist of the

set � ¹ � �;���O�>=>=M=~� � �
as well as the artificial variable �;" . Introduce the three

following sets��¹ � ��� �O�M=>=>=~� � � � with �;� �E
O� éÎ� �u
}À�6- � ��� �O�M=>=>=~� � � � the current pivoting variable�*¹ � ��� �O�M=>=>=~� � � �W� � � ��� � � � � �;� �O�M=>=>=~� � � � éWè �E
O� and �>è ��
O= (16.54)

The pivoting variable might be either �;Ö when as it is added to the active set, or

the slack variable é°Ö as variable �pÖ is removed from the active set. Both cases

are analyzed in what follows.
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Consider first that we are introducing variable �;Ö into the active set. Taking

account of the fact that variables � � �;" and é are kept feasible with respect

to (16.52) at all steps, the linear problem to solve is now×ØÙ � �  �T�  �;Ö� Ö  Ö �  Ö:Ö� è  è<�  è}Ö
Ü Ýß ×ØÙ ��"ZV Ð	� "�;�(V Ð	� �Ð Ü Ýß V ×ØÙ � �� Ö� è

Ü Ýß � ×ØÙ 

é¸èYV Ð	� è
Ü Ýß = (16.55)

These equations are now spelled out as�  �{�	�;�(V���" � �ÈV � � � V Ð �  �{� � �(V � " � �(V  ��Ö �w��
<��  Ö��	�;�(V���" � Ö¸V � Ö � V Ð �  Ö�� � �ÈV � " � Ö¸V  Ö:Ö �w��
<�Ø  è¨�V�;�(VÝ��" � è6V � è Ú V Ð Ø  è¨� � �ÈV � " � èYV  è}Ö Úb� éWèHV Ð	� è = (16.56)

Now, during the previous stage, the terms in parenthesis of the first two equa-

tions in (16.56) vanished, and for the last equation, we had:  è<�	�;�wVb��" � èZV � è �é è . Therefore, the vector � must satisfyö � �  �{�� Ö µ Ö � ÷ ö � "� � ÷ � ? ö  ��Ö Ö:Ö ÷ �� è �  è<� � �(V � " � èYV  è}Ö = (16.57)

This leads to the updates �;� � �;�(V Ð	� � ��pÖ � Ð�� andéWè � éWèYV ÐV� è = (16.58)

Observe also that vector � defines a solution to the homogeneous problemé �  �`V���" � using �;� �A� � � �pÖ ����� �~è ��
<� ��" �A� " � andéD� ��
O� é°Ö ��
<� éWè �A� è = (16.59)

We now choose a value of ÐuC5
 that maintain feasibility of both � and é
variables. Either all components of � are nonnegative, in which case Ð can

take any positive value, so that we have an unbounded ray, or there is a finite

maximum value � � �+*-,¦ � ? ����¦QV�éD¦ � �¥� ¦ &p� ¦ 'E
 � � (16.60)

where we defined éD" �u
 for convenience.

Now, among the set of indices ��� � §�& ? �#�;¦�V+é1¦ � �¥� ¦ � � � , we pick at least one

index z which is called the blocking variable. This either corresponds to the é Æ
variable, which is now forced to é ÆZ��
 by the action of �pÖ , or to the � Æ variable
which is no longer needed because ��Ö is taking its place. When more than one

variable vanish for a given maximum Ðy� � , a special tie breaking rule must be

applied to avoid cycling, as described in [210] and [69]. These details are not
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covered here. In fact, for the regularized matrices considered in Section 10.11.4,

there is no cycling possible.

To resolve what to do at the next stage, we need a special rule which is the

second ingredient of the Lemke algorithm, namely:

one variable é Æ ¢¤ 

: then, variable � Æ is added to the active set at the next

stage;

one variable � Æ ¢¤ 

: then, variable � Æ is removed from the active set and é Æ

is maximized at the next stage;

variable � p 0â2 ¢¤ 
 : then, the solution is reached.

multiple variables � Æ � ¢¤ 
 or é Æ � ¢¤ 
 : must apply a tie breaking rule (see ref-

erences [210, 69] for details).

We therefore need to know what happens when variable �;Ö is set to ��Ö ��
 but

variable é'Ö is set free in (16.55). A calculation similar to what lead to (16.57)

shows that we should now solve forö � �  �{�� Ö µ Ö � ÷ ö � "� � ÷ � ö 
 � ÷ � (16.61)

and follow the exact same procedure as before when updating variables � andé . In this case also, the vector � is a solution to the homogeneous problemé �  ��V���" � , by reversing the values of ��Ö and é'Ö in (16.59).

It was already observed that the algorithm fails when it encounters an un-

bounded ray, i.e., when the update vector � in (16.57) or (16.61) has all positive

components. After reorganizing the system of equations (16.56), we have �`V � V���" � V Ð �  [�`V�[��" �W� éEV Ð [é � (16.62)

where variables [� � [� " and [é are obtained from vector � computed as per (16.59)

or its complement, reversing the values of �;Ö and é'Ö . Since complementarity

between é and � is maintained at each step, we have: ��éºV Ð [é � a �#�ÈV Ð [� ��� 
 .
Now, since all variables are non-negative, this leads to the four identitiesé a � ��
O� é a [� ��
<�[é a � ��
O� [é a [� ��
<� (16.63)

and given that [é � [� and [�;" solve the homogeneous problem, we find that the ray

termination condition implies[� a  [� � ? [��"�[� a �RaE
<� (16.64)

and equality is satisfied if either [� , [�;" , or both vanish.

Therefore, if a matrix  is such that � a  � C£
 whenever � C£
 , then, the
algorithm cannot terminate on a ray. This is of course true for strict positive

matrices defined in 16.8, which include the positive definite matrices. The basic
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Lemke algorithm is listed in Algorithm 16.5.6. Note that this is a slightly sim-

plified version which does not protect against cycling. The standard technique

to break ties is to perform a lexicographic ordering the tied rows of the current

basis matrix.

Definition 16.13. Given an � -dimensional vector \ , \ is lexicographically less

than 
 , or \ûo 
 when the first non-zero component of \ is negative, so that\ ¬ �u
O� F �£�;� �<�>=>=>=>�8§#?E� , and \ ¦ '*
 . Vector \ is lexicographically greater than
 , or \An 
 if ?1\Ao . For two � -dimensional real vectors, \ , and d , \Ao d if\Y?�d oE
 and \mnid when \Y?�d n*
 .
Performing the lexicographic ordering of rows of the inverse is computationally

intensive since it becomes necessary to solve for as many columns of the inverse

as necessary to determine the lexicographic order of the rows. Ties occur when

the problem is degenerate, i.e., when ��¦ � é1¦ ��
 for some index § at some given

stage in the algorithm.

The Lemke algorithm solves many more problems than either Murty’s, Kel-

ler’s, or Cottle-Dantzig’s methods. In fact, the class of copositive matrices is

quite large, containing ! matrices for instance. However, the artificial covering

vector is problematic. In addition, it does not appear possible to warm start

the algorithm with a guess of the solution index set � . However, as we shall see

below, Lemke’s algorithm performs very well on average.

When extending the Lemke algorithm to solve MLCPs as well, it is then only

guaranteed to solve problems with positive semi-definite matrices [245, 146].

Since it then performs just as well as the Keller Algorithm 16.5.4, as seen in

the numerical experiments of Section 16.8, but operating on non-symmetric aug-

mented matrices, the analysis for the extension and the algorithm to cover ML-

CPs are not included.
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Algorithm 16.5.6 Lemke’s Algorithm for solving LCPs (without tie breaking).

Given real matrix  of size ���á� and � -dimensional vector �
Choose covering vector �4- / p

with � ¦ �*
 ¿ � ¦ ��� is the usual choice.

Initialize index sets ��� ² ����� � �;� �<�>=>=>=~� � �
Find Ð¡� �+*-, � ?D� ¦ ��� ¦ � � ?D� Ö ��� Ö��" � Ð�� é � ��" �
repeat

if �Y-6� then¯ � � ?  ��Ö � ¯ Ö ��?  Ö:Ö
else ¯ � ��
<� ¯ Ö ���
end if

Solve: ö � �  �T�� Ö  Ö � ÷ ö � "� � ÷ � ö ¯ �¯ Ö ÷
Compute : � è ��� èHV  è<� � �(V � " � è
if � ¦ �E
b§â�£�;� �O�M=>=>=>� � then

Termination on an infinite ray: no solution! return

end if

Find Ð�� �+*-, � ? ����¦QV�é1¦ � �¥� ¦ &p� ¦ CE
 � ��? ��� Æ VÝé Æ,���p�{Æ
Update variables with ��� � �;�(V ÐV� � � é¸è � éWèYV Ð	� è � ��" � ��"ZV Ð	� "
if �Y-6� then� � � ��� � � �w� � � ��� � � � �pÖ ��Ð
else � � � ��� � � �e� � � ��� � � � é'Ö ��Ð
end if� � z

until �;" ��
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16.6 Iterative methods

Pivoting methods are generally problematic in that it is difficult to exploit the

sparsity of the problem, to start from an advanced point which might be close to

the solution, or to terminate early with an approximation. In addition, imple-

mentations are generally difficult, especially because factorization updates and

down-dates are required and these operations are rarely provided in linear algebra

software libraries.

By contrast, iterative methods are easy to implement, they can be started

from any reasonable guess, and they can be terminated at any point. However,

most of them cannot produce high accuracy solutions even when given a lot of

time, and the class of problems they can be used on is typically limited to thosex¬M® �  � ��� where  is symmetric and positive definite.

Nevertheless, iterative methods, especially the projected Gauss-Seidel variety,

have become dominant in the game physics literature [109, 275, 155, 84] and

software libraries whilst direct methods have practically been eradicated from

practice.

16.6.1 Projected Gauss-Seidel and SOR

Perhaps the very simplest methods to implement are iterative methods equivalent

to the Gauss-Seidel iterations in linear algebra. This will be covered in more

details in Section 18.5 but a brief description is provided here.

Consider a real �E�y� matrix  and a real � -dimensional vector � . Assume

that we have a current candidate solution � � 
 and we are now looking at

component F , i.e., é ¬ ��� ¬ V 7 ¬~¬ � ¬ V ÑªkÅq�¬ 7 ¬ ª-�>ª � (16.65)

and we consider how the value of � ¬ would be modified. If we have é ¬ C 
 ,
the complement variable � ¬ should be set to 
 , or relaxed in that direction.

Conversely, if é ¬ '�
 , the value of variable � ¬ should be increased. This leads

to sequential over-relaxation update rule� ¬ � �+*-, Í 
<� � ¬ ?B� é ¬7 ¬,¬ Î � (16.66)

where ��- � 
O� �T� [144]. This is detailed in Algorithm 16.6.1.

As observed in [144] and references therein though, the update rules given

by (16.65) and (16.66) should be used with caution. The algorithm may not

converge at all, for symmetric, positive definite matrix  . A generalization of

update formulae (16.65) and (16.66) is given in [210] where convergence criteria

are provided. The convergence is linear, at best, as in the case of ordinary

Gauss-Seidel, or any other stationary process [158].

equivalent to the
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Algorithm 16.6.1 The projected SOR algorithm for solving
x¯¬M® �  ����� .

Given ���(� matrix  and real vector �È- / p
, initial vector � - / p 0 , tolerance

parameter � C*
 , and integer Ñ�+ � � CJ�Ñ � 

repeat

for §w���;� �<�>=>=>=>� � doé1¦ ��� ¦eV l ª 7 ¦®ª-�>ª��¦ � �+*¥, � 
<� í � N � � �+ � � �
end forÑ � Ñ V �

until ( é ��� V  � �E
 and � a?é a � ) or ( ÑáCEÑ�+ � � )
16.6.2 Conjugate gradient and other methods

It is of course possible to use conjugate gradient [158, 52, 40] to solve the linear

algebra problems in Algorithms 16.5.1, 16.5.1, 16.5.3, or 16.5.5.

16.7 The LCP as a nonlinear problem

It should be clear by now that solving an LCP is not equivalent to a solving a

linear system and it should be no surprise that we can formulate it as a nonlinear

system of equations. Consider the non-smooth definition of the min function for

two variables, \%��d�W� \%��d¨�w� �� Ç \ V d6? u � \H?�d�� Ú È�� �Y� � � \��:d¨�,= (16.67)

The function � is known as the Fischer Burmeister [88] function and is continuous

but has a discontinuous derivative at \��¡d . Extend this definition to vectors

in
/ p

componentwise so that �;¦ � �W� \ ¦ ��d ¦ �~��\%��de� � - / p
, and therefore, we can

define the LCP as the nonlinear system of equations�W�#� �  �`V ���W��
O= (16.68)

The definition of the function �¸� \%��d¨� can be modified, e.g., by introducing a

smoothing parameter ï CE
 so that, for instance,� î � \%��d¨�W� �� Ç \ V dK? u � \Y?�d¨� Ú V�ï Ú È(= (16.69)

This type of perturbation for ï C*
 is the root of smoothed Newton methods for

solving LCP [285, 183].

16.7.1 Block principal pivots and Newton’s method

Given any system of non-linear equations, the first reasonable thing to try

is Newton-Raphson iterations. This is now applied directly to the Fischer-

Burmeister equation definition for
x¯¬M® �  � �;�8� of (16.68) for a given �o�á� real

matrix  and real � -dimensional vector � .
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The partial derivatives of the non-smooth function �¸� \%��d¨� are easily computed

to be � 2 �W� \��:d¨�w� ´¶¶· ¶¶¸
� when \y'id
 when \yCid© 
<�M� « when \¡�Ad (16.70)

� Ú �¸� \%��d¨�w� ´¶¶· ¶¶¸

 when \�'jd� when \�Cjd© 
O�M� « when \¡�Ad�� (16.71)

where notions of convex analysis were used for defining the derivative at the

point \¡�Ad , as in [66].

If we ignore the degenerate cases \��rd for the moment, we can compute the

Jacobian of �¸��� �  �âV �;� by introducing disjointed index sets �W���ºF � �;� �<�>=>=>=~� � �
with � � �E� � ��� �O�>=M=>=~� � �

so that §�-4� whenever �W�#�;¦ �  ¦�à���V � ¦ �W�  ¦¿à��`V � ¦ ,
and §H-o� whenever �W�#� ¦ �  i¦¿à �YV � ¦ �6� � ¦ , breaking ties arbitrarily. Definingé �  �`V � as previously, a simple computation shows that
Ã�W�#� �  ��V �;�w� ×Ù � 2 ½ í�Æ Á � Æ ¾� í�Æ � 2 ½ í�Æ Á � Æ ¾� í$Ç� 2 ½ í$Ç Á � Ç ¾� í�Æ � 2 ½ í�Ç Á � Ç ¾� í$Ç Üß� ö  �{�  �è
 � è;è ÷ = (16.72)

Now, defining the Newton-Raphson iterations as�¸��� ½ j ¾ �  � ½ j ¾ V ��� Vt
Ã�¸��� ½ j ¾ �  � ½ j ¾ V ��� Ç � ½ jM032 ¾ ? � ½ j ¾ È���
O� (16.73)

and after reorganizing terms and performing a simple computation, the linear

system to solve at stage Ñ V � is thenö  �T�  �Mè
 � è;è ÷ ö � ½ j>032 ¾�� ½ j>032 ¾è ÷ �Àö ?D� �
 ÷ � (16.74)

which, really, is nothing more than the decoupled system �{�	� ½ j>032 ¾� � ?D� � �� ½ j>032 ¾è ��
O�é ½ j>0â2 ¾� ��
O�é ½ j>0â2 ¾è �  è¨�V� ½ jM032 ¾� V � è = (16.75)

So now, consider evaluating the function �¸��� ½ jM032 ¾ � é ½ j>032 ¾ � to split the index

sets �W��� for the stage Ñ V � . According to the assignments listed in (16.75), for

any §�-4� , if ��¦ C*
 , �W�#��¦ � é1¦ �W� é1¦ �J
 and index § stays in set � . Likewise, for
any index §Z-6� , if éD¦ CE
 , then, index § stays in � . However, if §Z-y� and ��¦ 'E
 ,
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16.8 Numerical experiments

then, that index will appear in set � at the next stage and similarly, any index§D-á� such that é1¦ 'J
 will be transferred to � at the next stage. Therefore, a

strict application of the Newton-Raphson method to
x¯¬M® �  � �;� defined by the

non-smooth nonlinear Fischer-Burmeister equations �W�#� �  �6V ���`� 
 leads to

a block principal pivot algorithm as described below in Algorithm 16.7.1. This

observation is due to Kostreva [162] and though it has been mentioned in passing

in the literature [144], it is far from widely known.

Algorithm 16.7.1 Newton-Raphson iterations applied to nonsmooth formula-

tion of LCP.
Given real �o��� real matrix  and � -dimensional real vector � , and integerÑ;+ � � CJ�
Initialize: � � � " ��� � � �;� �<�>=>=>=~� � �1� �
repeat

Solve :  �{�	�;� � ?D� �
Compute : é¸è �  è<�	�;�(V � è
Find : Ó�� � §¸-y�i& ��¦ 'E
 �
Find : � � � §¸-6��& éD¦ 'E
 �
Set : � � � � � � Ó
Set : � � Ó � � � �Ñ � Ñ V �

until Óy� � � ²
or ÑáCEÑ�+ � �

It should be noted here that Newton-Raphson’s iterations may not converge

to �¸��� �  ��V ���i� 
 since the function �W�#� �  �áV �;� does not have smooth

derivatives. What happens then is that Algorithm 16.7.1 cycles, and a sequence

of index sets �È½ j ¾ � ��½ j>032 ¾ �>=>=M=>� ��½ j>0 n ¾ � ��½ j ¾ repeats ad infinitum.

There are several alternative strategies to force convergence developed in the

context of smoothed Newton methods [183, 285]. In fact, the entire volume 17 of

Computational Optimization and Applications, published in 2000, was devoted

to such smoothed Newton methods.

16.8 Numerical experiments

The sad news about LCP is that it is in fact an
¶ ! -hard problem [69]. In the

worst case, one has to enumerate all � p complementarity combinations of the

columns of matrix ?  and the identity
� p
, for an � -dimensional

x¬M® �  � ��� .
This can be done with some efficiency perhaps [145], but this is not really prac-

tical.

The good news is that on average, for well-behaved problems—and no one

at this time knows exactly what that means—direct solvers process
x¯¬M® �  � ���

using roughly the same number of Gauss-Jordan pivot operation as is needed to

factor matrix  with LU, say.

This said, not all algorithms are created equal. To compare the algorithms

listed in the present Chapter, sets of random problems were created, following the
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16 Complementarity I: Basics

strategy of Alefeld Chen and Potra [3]. Random matrices with known condition

number � and known rank � are generated by creating a diagonal matrix,
� ��<�%* 9 � x 2� x Ú;�>=M=>=>� x Ö ��
O�>=>=M=>� 
�� , where the first entry x 24� � � and the last non-

zero entry is �� � � . Entries in between have value � � � where � ¦ is uniformly

distributed in � ?��L�;�<�M��;��� . This diagonal matrix then has condition number �
and rank � . It is then transformed with random orthogonal matrices generated

by performing random Givens rotations [107] on the identity. Only data for

symmetric and positive definite matrices is presented below. Once matrix  is

obtained in this way, a vector � is generated with a uniform random deviate in

a given range. Bounds can be generated in the same way to produce MLCPs.

In addition to random data, different solvers were tested on simulation data

involving the stacking of forty identical cylindrical logs. These logs are let to

fall under gravity from a separated configuration and they eventually pile up,

confined by four immovable posts. The original simulations were performed

using the block pivot method of Section 16.7.1 and the problems were saved at

each step. These were loaded again in Octave and solved with different solvers.

The performance measurement for the pivot and Newton-type methods is a

frequency histogram, which logs the fraction of problems solved for a given num-

ber of iterations or pivot steps. For the scales to concord between pivoting and

Newton-type methods, the number of pivots taken for the former is divided by

the problem size. The iteration count of Newton-type methods is not scaled.

Results are plotted separately and are not an absolute measure of performance.

For the projected Gauss-Seidel method, the relative error is plotted as a func-

tion of the absolute iteration count as is customary. Since projected Gauss-Seidel

does solve the problem exactly, no frequency histograms are presented.

Figure 16.3 shows performance data for the projected Gauss-Seidel method

applied to random problems of size �
�
 � �M
�
 of moderate condition numbers,

between �M
 É and �
 P , and moderate range of � vector in © ?��
�
O��M
;
 « . The con-

vergence is linear as expected but not particularly fast either. Also expected is

a linear anti-correlation between the convergence rate and the condition num-

ber. The real problem with projected Gauss-Seidel is seen in Figure 16.4 however,

which illustrates the performance on moderately large stacking contact problems.

The iterations simply stagnate in most cases, leaving large residual errors.

Figure 16.5 and Figure 16.6 illustrate performance of the Newton-type algo-

rithms on boxed MLCPs of size �M
�
 and ñ 
�
 respectively. There is no clear winner
here but all solvers do quickly find the solution. What is usually expected from

a Newton-Raphson method is convergence within five to ten iterations and this

is what is seen here. For larger problems, the method of Zhang and Gao [285] is

slightly better than brute force block pivoting. On contact problems, as shown

in Figure 16.7, block pivot performs best. However, it was necessary to perturb

the problems on the diagonals to lower the condition number down to the �M
 É
range and this warrants further research to improve performance without having

to strongly regularize the problems first.

Figure 16.8 illustrates the performance of the pivoting methods on LCPs of

size �M
T
 with condition number �M
 ¦ . The performance is reasonable for all the
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Figure 16.3: Progression of projected Gauss-Seidel iteration on random matrices

of size �M
�
 � �M
�
 . Convergence is linear and decreases with increasing

condition number.

methods presented but Lemke’s and Keller’s algorithms are clear winner, taking

close to exactly �M
T
 pivot steps for each of these problems. This is the same as

matrix factorization though in the present case, the benefit of using GEMM-based

algorithms is lost. The performance degrades for Murty’s and Cottle-Dantzig’s

methods on MLCPs though, as seen in Figure 16.9. Murty’s method often does

not complete after a full �
�
�
 pivot operations and was then stopped, explaining

the large frequency count on the graph. Keller’s and Lemke’s methods hold

good, however. The same story is repeated in Figure 16.10 where performance

is measured for random problems of size ñ 
T
 . For this case, Murty’s method

never terminates with less than �M
 �Mñ 
T
 iterations. The Cottle-Dantzig method

performs poorly but Keller’s and Lemke’s methods hit the target in ñ 
�
 pivots.

Performance measurements on simulation data is found in Figure 16.11. Unlike

in the case of the Newton method, the matrices were not further perturbed and

condition numbers were sometimes as high as �M
>� . This is possible thanks to

the precision of the linear algebra routines used to solve the subproblems. By

contrast, the Newton methods need smoothness to converge, and this is achieved

by diagonal perturbation. Lemke’s method is slightly more reliable than Keller’s

here and Cottle-Dantzig is of no particular use. It had to be stopped often after

performing �
 �>� pivot operations on problems of size � as seen in the picture.

The real issue though is that Newton-type methods are stateless and can be

started at an advanced solution. Not so of Keller’s or Lemke’s method. Also, it

is possible to optimize the linear algebra for the Newton-type methods and so,

they are typically faster. The construction of fast, efficient and robust solvers is

an open problem.
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Figure 16.4: Progression of projected Gauss-Seidel iterations on dry frictional

contact problems using box friction model.
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Figure 16.5: Solution frequency for Newton-type solvers on small random boxed

MLCPs with moderate condition numbers.
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Figure 16.6: Solution frequency for Newton-type solvers on medium sized random

boxed MLCPs with moderate condition numbers.
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Figure 16.7: Solution frequency of Newton-type solvers on dry frictional contact

problems using box friction model.
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Figure 16.8: Solution frequency of direct solvers on small LCPs with moderate

condition numbers.
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Figure 16.9: Solution frequency of direct solvers on small boxed MLCPs with

moderate condition numbers.
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Figure 16.10: Solution frequency of direct solvers on medium sized boxed MLCPs

with moderate condition numbers.
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Figure 16.11: Solution frequency of direct solver on dry frictional contact prob-

lems using box friction model.
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16.9 End notes

The review of LCP algorithms by Júdice [144] is invaluable for plain descriptions

of the standard methods. It is also a fast and direct introduction to the topic.

The textbook of Murty [210] and the monograph of Cottle, Pang, and Stone [69]

provide encyclopedic coverage.

Implementation of complementarity algorithms is frustrating since linear al-

gebra libraries seldom provide factorization update and down-date routines re-

quired to avoid repeatedly factoring matrices for each pivot step. Some “poor

man’s” solutions for this problem are provided in Section 18.7 but this is far from

satisfactory. The commercial libraries based on the work of Gil, Golub, Murray,

Saunders, and Wright [99, 98, 97], are exceptions to this rule, however.

Reliable and fast algorithms to solve complementarity problems, especially

those arising from frictional contact problems, are still missing and their devel-

opment is part of future work. Direct methods can be very good for moderate

sized problems but are far too slow when the problem size increases. Moreover,

they cannot be warm-started, except for Murty’s method, but this latter is not

doing well on average. By contrast, Newton-type iterative methods can be warm

started and and can be fast on large problems. However, they appear to need

excessive smoothing for convergence.
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17 Complementarity II:

Splitting and other tricks

The model of dry friction developed in Chapter 10 requires the solution of com-

plementarity problems which, either in their quasi-linear or linear formulation,

do not enjoy a problem matrix that is positive definite. In addition, these ma-

trices are neither symmetric nor bisymmetric. The asymmetry arises from the

switching conditions which determine whether a contact is in static friction or

kinetic friction. The present chapter investigates the mathematics of a split-

ting strategy in which the asymmetry is removed from the matrix and moved to

the data vectors. This leads to an iterative strategy which has the potential to

converge linearly.

Background and definitions are provided in Section 17.1 and the essential as-

pects of the set of iterates produced by the splitting are presented in Section 17.2.

The geometric features of these sets is further described in Section 17.3 in which

it is concluded that the sequence is closed and bounded. The convergence rate

is analyzed in Section 17.4 where it is found that contractivity of the norm of

the difference between iterates is not guaranteed and thus, convergence is con-

ditional. Application to box friction is described in Section 17.5 and the results

of numerical experiments are presented in Section 17.6, followed by remarks in

Section 17.7.

17.1 Introduction

It was shown in Section 10.11 that introducing dry friction models in dynamics

turns the stepping equations of a mechanical system into a mixed complementar-

ity problem, linear or nonlinear according to the friction model choice. In turn,

the form of these complementarity problems is problematic because they are nei-

ther symmetric nor bisymmetric as is typical of standard constrained extremal

problem. Instead, the linearization of the strict complementarity problem can

be written in terms of a square, ���¡� matrix � as� � ��"ZV � � (17.1)

where �È" is a square ���¡� positive definite matrix (not necessarily symmetric)

and
�
is a matrix with non-negative elements. This splitting is discussed in more

details in Section 10.11.4. The result developed in the next few sections is not

sensitive to the exact form of �(" or
�

and we therefore leave precise definitions

to the applications sections below.
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17 Complementarity II: Splitting and Other Tricks

The LCP to be solved is defined as�T�ÅV �Å� é
Ãa � c é �E
O= (17.2)

Being the sum of a positive definite matrix and a non-negative one, matrix� is copositive as defined in 16.8, the Lemke algorithm 16.5.6 can solve the

linear complementarity problem (LCP) defined in (17.2) when protection is taken

against cycling.

Consider the splitting of � in a positive semi-definite matrix ���#� � and a non-

negative matrix [� �#� � with � � ����� � V [� �#� � , where ����� �W� ���È"ZVt��� � ? � a �8�
and [� �#� �¡� � � a�V.� ��? � � � . An iterative scheme based on this splitting is

defined as follows ���#� � � ½ j>0â2 ¾ V � ½ j>032 ¾ � é ½ j>0â2 ¾
ba � ½ j>032 ¾ c é ½ j>0â2 ¾ �E
� ½ j>032 ¾ ��� V [� �#� � � ½ j ¾ = (17.3)

We denote this sequence � �#� � . It is clear that a fixed point of this sequence is

a solution to the original problem. This form of splitting has already appeared

in [16].

Also considered is regularization of the original problem in which the scalar )DC
 is added on the diagonal entries of matrix ����� � . The corresponding sequence

is labeled � ��� � )~� . This corresponds directly to the regularization scheme of

Chapter 4. With this diagonal perturbation, the matrix ���#� ��),��� ���#� � V ) � ,
where

�
is the identity matrix of order � , becomes strictly positive definite.

Any square matrix  of size �¡�`� and � -dimensional vector � defines an LCP

denoted by }  !(�  � ��� . The set of all solution vectors � - / p 0 of this problem

is denoted
v	w3x �  � ��� . For a ! matrix, this set is a singleton [210, 69].

For any given solution, introduce the index sets �¸� [� such that � � [�:�� ��� �O�>=M=>=~� � �
and �Ò² [��� ²

, and such that the solution can be written as:� � ö �;���´� ÷ � �;� � ?  N 2�{� � � � ��´� ��
<�
é �Àö éD�éw´� ÷ � éD� ��
<� éw´� ��� ´�(V  ´�{�	�;� = (17.4)

The vector d¡� � d a� ��d a ´� � a with d � � �;� , d ´� � év´� is called the complementarity

point, and dá�E
 by construction. If d ¦ ��
 for some index § , the complementarity

point is said to be degenerate.

The solution set of }  !(�  � ��� can then be written asv	w[x �  �����W�dÓ � � � - / p 0 & ��´� ��
<� � �(V  �{�	�;� ��
<�� ´�(V  ´�T�	�;� �E
 � = (17.5)

Each subset in the union is labeled �����  � ��� , and some of these are empty.
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17.2 Characterization of the iterates

Observe from (17.3) that since both matrix [� �#� � and vector � ½ j ¾ are non-negative,
the value of � ½ j ¾ can be expressed as � VJ[� where [�È�*
 . Therefore, the sequence

of iterates � ½ j ¾ is included in the set ���������� �~� ���W� � v	w[x �����#� �,� � V�[�;��& [�È- / p 0 �
.

This can be split into � p subsets corresponding to the index sets � so that��Z�����#� �,� �;�W� ¾ � ��e�������#� �,� �;� , with the definition:��e����� � ���W� � � - / p 0 and &��´� ��
O��� �ÈV£[� �KVo�(�T�	�;� ��
<� and� ´�(V�[� ´�(Vo�Ô´�T�	�;� �E
 for [�È- / p 0 � = (17.6)

In the case where )�C 
 , ���#� � )~� is a ! matrix and there is a unique vector� - / p 0 for any value of [� which must be found in one of the sets �� � ������� � )~�,� �;�
by the pigeon hole principle.

Corresponding to each set ��e����� � ��� , there is a set
õ ����� � ���y� � [�E-ÖÕ p 0 &�e����� ��� V.[�;� ï� ² �

. In the case where � is a ! matrix, there is a unique vector�k� � V£[�;� for each [�K- / p � . However, there might be more than one [�6- / p 0 for a

given � - �������� � ��� .
We proceed now to prove that for any )ÅC�
 , the sequence � �#� � )~� in a closed

and bounded set and therefore, it is closed and bounded and it must contain a

converging subsequence. This is achieved by proving that ��Z�����#� ��),�~� ��� , which
contains the sequence � �#� � )~� , is closed and bounded.

17.3 Characterization of the sets × ��Ø)ÙÛÚ�ÜÞÝ andß× Ø)ÙàÚ�ÜáÝ .
The suffixes � and ) are now dropped to simplify notation and to concentrate on

general matrices � . First look at the basic properties of the sets �%����� ����� and��e����� ����� .
Consider an index set � and the set of [� vectors which lead to solutions � -��e����� ����� . Any such solution can be written as�;���M[� � �w� ? � N 2�{� � � �(V£[� � �W� ? � N 2�T� � � ? � N 2�T� [� �� �;��� 
�� V �[� � � (17.7)

with �Q� 
T� � �5? � N 2�T� and �[� � �5? � N 2�T� [� � . Note that �;���M[��� only depends on the

value of [� � . Similarly, we have the following formula for éâ´� :éw´���M[�;�w�u� ´�(V�[� ´�(V��ã´�T�	�Q�M[� � ��u� ´�(V�[� ´� ? �ã´�T�k� N 2�T� � � �KV�[� � ��u� ´� ? �ã´�T�k� N 2�T� � �(V�[� ´� ? �Ô´�T�k� N 2�T� [� �� éw´��� 
�� V�[� ´� ? �Ô´�T�k� N 2�T� [� � � whereéw´��� 
��w�u� ´� ? �ã´�T�k� N 2�T� � � = (17.8)
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The results in (17.7) and (17.8) can be collected in a single matrix equation asd ½ �{¾ �M[���W�Ad ½ �{¾ � 
�� V ö ? � N 2�T� 
? �Ô´�T�k� N 2�{� � ÷ ö [� �[� ´� ÷ �Ad ½ �T¾ � 
�� V �� ½ �{¾ [�Å�Ad ½ �T¾ � 
T� V �[�{�
whered ½ �{¾ � 
T�w� ö �;��� 
��éw´��� 
T� ÷ =

(17.9)

Introduce now a parametric set of vectors [�Å��Ð [� ½ 2 ¾ where [� ½ 2 ¾ �*
 and Ðy�E
 .
Theorem 17.1. Given [� ½ 2 ¾ - / p 0 the set

� v	w[x ��� � � V Ð [� ½ 2 ¾ �ò& Ð���
 � is closed

and bounded if � is positive definite.

Proof. The complementarity points can be written as d � Ðk�Z�rd � 
T� V �[� ½ 2 ¾ and in

particular, � � � Ðk�(� � � � 
T� V Ð �[� ½ 2 ¾� . The ray � � � Ðk�,� Ðu� 
 is unbounded only if�[�;½ 2 ¾ � 
 . Assume this is the case. Since [� � � 
 , we should have [� ½ 2 ¾ a� �[� ½ 2 ¾� �
 . Since � is assumed positive definite, so is � N 2�{� and we have the following

inequalities 
Ãa [� ½ 2 ¾ a� �[� ½ 2 ¾� � ? [� ½ 2 ¾ a� � N 2�T� [� ½ 2 ¾� aE
O= (17.10)

This can only be true if equality is satisfied on both sides which leads to [� ½ 2 ¾� ��

and therefore, �;��� Ð��W� �;��� 
�� . In this case, the solution set is the singleton �T��� 
T�
which is closed and bounded.

Otherwise, if there is at least one negative component in �[� ½ 2 ¾ , and then, we

have [Ð¡� �Y� �÷´] r " s� PQ" � d � 
T� ¦ � �[� ½ 2 ¾¦ � (17.11)

and the solution set is:
� ����� Ðk��� �;��� 
�� V Ð �[� � &{Ð�- © 
O� [Ð « � . This is a closed and

bounded set as it is a linear mapping of the closed interval © 
<� [Ð « - /
.

Before proceeding to prove an equivalent result for the multivariate case, we

need to establish a number of preliminary results.

Lemma 17.2. The sets ������� ����� are convex for any real matrix � and vector� .
Proof. Let � ½ 2 ¾ and � ½ Ú ¾ be distinct elements in the set ������� � ��� . Pick a non-

negative scalar z - © 
O�� « and consider the vector �Q� z �¸� z � ½ 2 ¾ V	� �W? z � � ½ Ú ¾ . This
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17.3 Characterization of the sets ������� � �;�
and ������ � ���

.

vector is also in the set since� �KVo�(�T�	�;��� z �W��� �(V z �(�T�	� ½ 2 ¾� V*� ��? z � �È�{�	� ½ Ú ¾�� z � � �KV��È�{�V� ½ 2 ¾� � Vº� ��? z � � � �KV��(�T�	� ½ Ú ¾� ���
 V 
`�u

and similarly:� ´�KVo�Ô´�T�	�;��� z �W��� ´�(V z �Ô´�{�V� ½ 2 ¾� V*� ��? z � �ã´�{�	� ½ Ú ¾�� z � � ´�KV��ã´�T�	� ½ 2 ¾� � Vº� ��? z � � � ´�KV��Ô´�T�	� ½ Ú ¾� ��E
<=

(17.12)

The last inequality holds since both terms in the next to last equation are non-

negative.

We proceed with a similar result for the sets ��e����� ����� .
Lemma 17.3. The set ���� � � � - / p 0 & ��´� ��
<� � �(V�[� �(V��(�T�V�;� �u
O� � ´�ÈV£[� ´�(V�ã´�T�	�;� �E
O� [�È- / p 0 �

is convex.

Proof. Pick � ½ 2 ¾ � � ½ Ú ¾ - ��e� , z - © 
O�� « , and let [� ½ 2 ¾ � [� ½ Ú ¾ - / p 0 be vectors such

that � ½ ¦�¾ - �e����� � � V [� ½ ¦¿¾ �~�8§�� �;� � . Repeating the calculation of Lemma 17.2

produces� �YV [� ��� z � VE�(�T�	����� z �Î�.� �YV z �M[� ½ 2 ¾� V*�È�{�V� ½ 2 ¾� � Vu� �D? z � �M[� ½ Ú ¾� V*�È�{�V� ½ Ú ¾� �� z Ç � �(V�[� ½ 2 ¾� V��È�{�V� ½ 2 ¾� È V*� ��? z � Ç � �(V£[� ½ Ú ¾� V��(�T�	� ½ Ú ¾� È� 
 V 
 � 
O� (17.13)

and similarly,� ´�YV [� ´��� z � VE�Ô´�T�	����� z �Î�.� ´�YV z �M[� ½ 2 ¾´� V*�ã´�T�	� ½ 2 ¾� � Vu� �D? z � �M[� ½ Ú ¾´� V*�ã´�T�	� ½ Ú ¾� �� z � � ´� V�[� ½ 2 ¾´� Vo� ´�T� � ½ 2 ¾� � V*� ��? z � � � ´� V�[� ½ Ú ¾´� V�� ´�T� � ½ Ú ¾� ��E
O= (17.14)

The inequality in (17.14) follows since each of the two terms in the penultimate

line are non-negative.

We now go back to the definition of the complementarity points for a given

index set � , as defined in (17.9) to prove the following:

Theorem 17.4. The set ������ � ��� is a finite union of polytopes and therefore, it is

a closed, bounded, and compact subset of
/ p 0 if the matrix � is positive definite.

Proof. The set !#����� � �;�w� � [���E
 &¥d � 
�� V �� ½ �{¾ [�È�*
O� [�È�E
 � is a polyhedron. By

the decomposition theorem of polyhedra (see [256], Corollary 7.1b), this can be

written as a sum of a polytope
õ ����� ����� and a cone � ����� � ��� , i.e., !%����� � ���b�õ ����� � ��� V � ����� � ��� . The cone consists of a set of unbounded rays � ����� � ���Î�
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17 Complementarity II: Splitting and Other Tricks

& ±;8 � �[� ½ ¦ " ¾ � �[� ½ ¦ � ¾ �M=>=>=M� �[� ½ ¦ � ¾ � , where & ±;8 � � � is the positive span of the given set of

vectors. The elements of ������� � �;� corresponding to the elements [�y- !#����� � ���
are ��e����� � ���W� � �Q�M[� ½ 2 ¾ V�[� ½ Ú ¾ �'& [� ½ 2 ¾ - õ ����� � ���~� [� ½ Ú ¾ -¡� ����� � ��� � = (17.15)

Now, �k�M[� ½ 2 ¾ V£[� ½ Ú ¾ �Z� �Q� 
�� V �[� ½ 2 ¾� V �[� ½ Ú ¾� . From Theorem 17.1, if the matrix � is

positive definite, the unbounded ray Ð �[� ½ Ú ¾ -4� satisfies Ð �[� ½ Ú ¾� � 
 and therefore,

we have ��e����� � ���w� � �Q�M[�;��& [�È- õ ����� � ��� � = (17.16)

The set �� � ��� � ��� is a linear mapping of a polytope, and is therefore a polytope

for any index set � . Since ������ � �;�Z� ¾ � ��e����� ����� is a finite union of polytopes,

it is a closed and bounded set. Since polytopes in
/ p

are compact sets, so is������ � ��� .
Corollary 17.5. The sequence of iterates � ½ jM032 ¾ - v	w[x � [��� )� � �,��� V [� �#� � � ½ j ¾ �
is bounded and has a converging subsequence.

Proof. The iterates all lie within the space ��������#� � ),�~� ��� . Since ���#� � ),� is positive
definite for any )� � C5
 , Theorem 17.4 applies and therefore, the sequence is

bounded as it is a subset of ���������� � ),�,� �;� . From the Bolzano-Weierstrass theorem,

the sequence must have a converging subsequence.

17.4 Convergence rate

Assuming the index set is fixed between iterates, it is possible to estimate the

norm of the difference in � ½ j ¾� . Expanding the norm of the difference between

iterates �(�{���#� � ),� � ½ j>0â2 ¾� � ?D� � ? [� �#� � � ½ j ¾� ��È�{����� � ),� �#� ½ j>032 ¾� ? � ½ j ¾� �w� ? [� �T����� � �#� ½ j ¾� ? � ½ j N 2 ¾� �,�4 � ½ j>0â2 ¾� ? � ½ j ¾� 4 a 4 � N 2�{� ��� � ),� [� �T�%��� � 4 � ½ j ¾� ? � ½ j N 2 ¾� 4 = (17.17)

And therefore, the convergence rate depends on the spectral radius of the itera-

tion matrix � N 2�{� ��� � ),� [� �{�%�#� � . Unfortunately, little can be said about that. One

might expect that when the friction coefficients—the nonzero elements of matrix�
—are small enough, the mapping should be a contraction.

17.5 Application to box friction

Box friction is a simple approximation to dry friction. At each contact point§ , we have an operator
� ½ ¦¿¾ which projects the velocity vector of the system of

rigid bodies � , into the plane tangent to the contact normal, i.e.,
� ½ ¦¿¾ �i� � ½ ¦¿¾� ,

where � � is the velocity in the tangent plane. For box friction, we choose
� ½ ¦¿¾

to have two rows only which are perpendicular to each other. In the case of
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17.5 Application to box friction

static friction where there is no sliding, the constraint reads
� ½ ¦¿¾ ��� 
 . This

leads to Lagrange multipliers � ½ ¦¿¾ - / Ú
and a tangential contact force given by( ½ ¦¿¾� � � ½ ¦¿¾ a � ½ ¦¿¾ . If the Lagrange multipliers � ½ ¦¿¾ are allowed to take on any

value in
/ p

, the constraint
� ½ ¦¿¾ ���A
 will be satisfied. However, if we restrict

these multipliers to lie within the simple box: ç ½ ¦¿¾ a � ½ ¦¿¾ a¯< ½ ¦¿¾ , then, the

constraint will not be satisfied and we have residuals
� ½ ¦¿¾ �o� Ó ½ ¦¿¾0 ?EÓ ½ ¦¿¾N � Ó ½ ¦¿¾0 ,

where Ó ½ ¦¿¾N �.
 , and Ó ½ ¦�¾0 � Ó ½ ¦¿¾N , are the positive and negative components of the

slip velocity, respectively.

These equations and conditions can be written as follows� ½ ¦¿¾ �K?BÓ ½ ¦¿¾0 ?BÓ ½ ¦¿¾N ��

ba�� ½ ¦¿¾ ?�ç ½ ¦¿¾ c�Ó ½ ¦¿¾0 �E

Ãau?w� ½ ¦¿¾ V < ½ ¦�¾ c�Ó ½ ¦¿¾N = (17.18)

Introducing the matrices �c with block form �c ½ ¦¿¾ � © �;�>?�� « a , and agglomerated

in the block diagonal �c � �<�%* 9 � �c ½ 2 ¾ � �c ½ Ú ¾ �M=>=>=M� �c ½ + ¾ � , and �( ½ ¦�¾ � � ½ ¦¿¾ © �;�� «Ãa ,�( � �<�%* 9 ���( ½ 2 ¾ � �( ½ Ú ¾ �M=>=>=>� �( ½ + ¾ � where 7 is the number of contact points, and( � ×ØÙ 
 
Û

 
Û
�( 
Û
 ÜÞÝß � (17.19)

which is a matrix with nonnegative entries. We now have the system matrix

� � ×ØÙ � 2 d`a 
d � Ú ? �cba
 �c 
 Ü Ýß (17.20)

and the corresponding mixed LCP is×ØÙ � 2 d a 
d � Ú ? �cba
 �c 
 Ü Ýß ×ØÙ Ñ� Ó Ü Ýß V ×ØÙ �tj� è� i
Ü Ýß � ×ØÙ ÿ 
� Ü Ýß
ba ö ÑÓ ÷ c ö ÿ� ÷ �E
<� (17.21)

where � i � © ?1ç ½ 2 ¾ ��< ½ 2 ¾ �>?1ç ½ Ú ¾ ��< ½ Ú ¾ �>=>=M=>�>?1ç ½ + ¾ ��< ½ + ¾ «Ãa . In the case of symmetric

bounds, we have ?1ç ½ ¦¿¾ �A< ½ ¦¿¾ �E
 .
Taking the Schur complement of the variables � , we have the following trans-

formed matrix, � and � vectors�� �Àö � 2w? dÅa � N 2Ú d dÅa � N 2Ú �cba? �c � N 2Ú d �c � N 2Ú �cba ÷ � ��Å�Àö �6jÅ? d � N 2Ú � è� i ? �c � N 2Ú � è ÷ � �� �Àö ÑÓ ÷ �
(17.22)
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17 Complementarity II: Splitting and Other Tricks

Figure 17.1: The operator splitting scheme applied to the inclined plane problem.

which lead to the LCP �� ��`V ��Å� �é
Ãa �� c �é �E
O= (17.23)

In this case, the sequential scheme case updates the lower and upper bounds,ç ½ ¦¿¾ ��< ½ ¦¿¾ such that ç ½ ¦�¾ � ? � ½ ¦¿¾ Ñ ½ ¦�¾ < ½ ¦�¾ � � ½ ¦¿¾ Ñ ½ ¦�¾ (17.24)

and this is written as � i � ( i j � j and we therefore have the sequence� ÆÍ032 - v	w[x � ���� ),�,� � V ( � ½ Æ ¾ �,= (17.25)

Since the matrix ��i� ),� is positive definite for )ÎCº
 , the results of Theorem 17.4

apply and we have a converging subsequence.

17.6 Numerical experiments

A simple test case is to let a rectangular box slide down an inclined plane.

For typical geometric interference libraries, as described in [85] for instance,

this leads to four contact points, and that is a degenerate problem. What is

presented in Figure 17.1 is the effective measured friction coefficient as a function

of the tangent of the inclination angle
��* � � � � . The expected curve is a ramp up

to the point where
��* � � � �6� � , where � is the (static) friction coefficient (no

distinction is made here between static and kinetic friction coefficients). For

angles
�
such that

��* � � � �¡C � , the line should lie flat at � eff � � . However,

it does matter how the iteration sequence is started. Indeed, if the first solve

assumes � � 
 , the sequence converges. Assuming � � �
in the first pass

however, an increasing number of iteration is needed as the inclined plane is

angled toward the vertical. Much more investigation is needed to improve the

convergence rate and stabilization of the splitting scheme for friction.

Simulation data is shown Figure 17.2. This corresponds to applying the split-

ting technique in combination with the block pivot mixed linear complementarity

problem (MLCP) solver of Section 16.7.1 with protection against cycling based

on hash tables and restart. The example consists of ñ 
 identical cylinders con-

fined within four posts. The cylinders are dropped from a moderate height and

are originally separated. They stack as they fall under gravity. This sample

illustrates that convergence is not guaranteed and that it depends more on fac-

tors other than the condition number. What is most likely for this example is

that contact configurations become infeasible due to early approximation errors.

Investigations on large realistic data sets are part of planned future work.
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Figure 17.2: Convergence of the splitting scheme to solve dry frictional con-

tact problems for stacking problem involving ñ 
 identical cylinders

dropped on top of each other in a pile. Convergence is linear in

general but can stagnate with a large residual error.
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17.7 End notes

Splitting schemes are common. Lötstedt [191] immediately tried that on his fric-

tion formulation, deciding it was better to solve a sequence of QPs than an LCP

with a non-symmetric matrix. The splitting discussed in this section is applied

in one form or another in the engineering literature [77, 142, 238, 2, 273, 191] to

address all sorts for frictional contact problems. But as shown in Section 17.3

and Section 17.4, the sequence of iterates for this splitting is closed and bounded

but not necessarily convergent, and so this is not a robust method. In addition,

the convergence is at most linear, like a fixed point iteration, which is not very

good. What is clear though is that the regularization parameter does improve

the situation. This was seen also in an existence proof for quasistatic frictional

contacts by Klarbring and Pang [160], for instance. Of course, diagonal pertur-

bations are nothing new but in the formulation of Chapter 4 and Chapter 10, it

does correspond to physical models.

A high performance solver for contact problem needs to use some form of

splitting for parallelization and so more remains to be done to pick a converging

subsequence among the iterates.
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18 Solving the Linear Problems

Linear algebra is at the heart of any computational task. This is so important in

fact that computer designs are driven by linear algebra benchmarks and no effort

is spared to make sure that dense matrix operations, such as the GEMM, are

available, fast and efficient, for any given computer platform. This is good news

for a developer but there is a rub. Computer designs have become increasingly

complicated due to differences in performance characteristics of different subunits

such as memory banks and CPUs, to name just two. These discrepancies mean

that certain types of operations performed on certain types of data organized

in a specific way in memory are very fast, but others are orders of magnitude

slower. For this reason, great care must be taken in organizing data in a computer

program and making sure that those algorithms which are fast on current CPUs

can be used on the problems considered.

This motivates the present chapter which looks at the logical algorithms pre-

sented in previous chapters from an implementation viewpoint, namely, which

data, what format, what operations, how. Section 18 provides a short back-

ground and Section 18.2 details the types of operation needed and the corre-

sponding types of format best supporting these. Section 18.3 provides a review

of known identities of saddle point problems in order to describe a known sparse

factorization strategy in Section 18.4, which works as long as the graph of the

matrix is a rooted tree without any closed loops. Gauss-Seidel iterations are then

discussed in Section 18.5 with special emphasis on the matrix structure found

in multibody problems. A conjugate gradient method adapted for the regu-

larized problems described in Section 4.5 and using the sparse factorization of

Section 18.4 is found in Section 18.6. Simple techniques for factorization updates

and down-dates, necessary operations for the implementation of complementarity

solvers, are provided in Section 18.7 and this is followed by general observations

in Section 18.8.

18.1 Introduction

Numerical linear algebra—or matrix computations—plays a central role in all

computations involving strongly coupled components. Performance and accu-

racy of nontrivial computations are intimately connected to performance and

accuracy of the underlying numerical linear algebra algorithms and implemen-

tations. This is why an entire chapter is devoted to this topic in the specific

context of multibody simulations.
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18 Solving the Linear Problems

18.2 Special matrices, formats, and operations

The matrices involved in multibody dynamics include the mass matrix  , which

is a square �y�(� real, symmetric, and positive definite, and the Jacobian matrix^ which is rectangular 7 �¡� real matrix, usually with 7ªa � .
Assumption is made explicitly that matrix  is block diagonal. In fact, the

point was made several times in Chapters 3, 4, and 10 that it is preferable to

work with the large sparse representations of the augmented system matrix, by

contrast with reduced coordinate techniques where the effective mass matrix � is

made as small as possible and usually very dense and ill-conditioned as well [28].

Therefore, matrix  is assumed to have the block diagonal format � �¨�%* 9 �  ½ 2 ¾ �  ½ Ú ¾ �>=M=>=>�  ½ p>ì ¾ �~� (18.1)

and �   is the number of bodies in the system. It does help to think that the

dimensions of each block matrix  ½ ¬ ¾ are identical but this is not necessary

and will not be explicitly assumed in what follows. In general, the blocks  ½ ¬ ¾
have � ½ ¬ ¾Ç �y� ½ ¬ ¾Ç with l p
ì¬,q 2 � ½ ¬ ¾Ç � � . All body based vectors in the system, in

particular, the velocity vector �á- / p
have a conforming partitioning� a �mò �Z½ 2 ¾ a ���Z½ Ú ¾ a �>=>=M=>���Z½ p
ì ¾ a ó � (18.2)

where each block has dimensions � ¬
, i.e., � ½ ¬ ¾ - / p�r ä sí . It is be possible to use, say,

a quaternion representation for the orientation of a rigid body so that the position

vector is �È- / ¦ , but then, use the angular velocity vector Ôo� ð � ��� h�(- /�É
, with

matrix
ð � ��� defined as in (13.64), so the dimensions of position and velocity

vectors may not match but the grouping is identical. This sort of details is

relegated to technicalities of implementations.

In general, we call a body vector any vector which has one block entry per

body, i.e., any vector that allows the same block partition as the velocity vector.

Note also that most operations involving the mass matrix actually involve

its inverse  N 2
. Given the presumed block diagonal format and the fact that,

at least for point particles and rigid bodies, the inverse is easily computed, we

arrive at a representation for the inverse mass matrix which involves the elements

displayed in Table 18.1.

With this format, it is possible to pack all the mass matrix blocks into a

contiguous array of size l ¬ � ½ ¬ ¾Ç ��� ½ ¬ ¾Ç . One can also exploit symmetry properties

as well to reduce storage if needed.

Operations involving the mass matrix include the matrix-vector product\ � �  d V �Z\%� (18.3)

where �¸���*- /
, and both d and \ are real, body vectors. Assuming that both d

and \ can be traversed sequentially, the only operation needed is the partitioned

one \ ½ ¬ ¾ � �  ½ ¬ ¾ d ½ ¬ ¾ V �Z\ ½ ¬ ¾ � F ����� �O�M=>=>=~� �  >� (18.4)
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Description Symbol Size of data set

Total dimension of mass ma-

trix

� single entry

Total number of bodies in this

subsystem

�   single entry

Dimensionality of velocity

vector for each body

� ½ ¬ ¾Ç one for each bodyF � �;���O�>=>=M=~� �   , andl p
ì¬�q 2 � ½ ¬ ¾Ç � �
Block matrix data  ½ ¬ ¾ one for each body F ���� �O�M=>=>=~� �  
Table 18.1: Requirements and dimensions for the system mass matrix.

which is easily done optimally.

There is also a matrix-matrix product operation of the form� � � ^  V � � � (18.5)

which is described below once the Jacobian matrix storage format is fully speci-

fied.

Jacobian matrices are agglomerated from constraint conditions which are usu-

ally grouped. For instance, a ball joint between two bodies introduces three

constraint equations which have the same block pattern, whilst a hinge joint

introduces five equations. This level of blocking appears as^ a � ò ^ ½ 2 ¾ a ^ ½ Ú ¾ a =>=>= ^ ½ p O ¾ a ó � (18.6)

where � î is the number of constraint block, and where each block row ^ ½ ¦¿¾ is of
size 7 ¦��K� , with l ¦ 7 ¦ �*7 . The integer � î is the number of constraints being

considered. Each block row ^ ½ ¦¿¾ contains only a few non-zero column blocks

with indices, F ½ ¦�¾2 � F ½ ¦�¾Ú �M=>=>=>� F ½ ¦¿¾p'r � sì � where � ½ ¦¿¾  is usually 1 or 2. This is the case for

most of the common mechanical constraints such as hinge, prismatic joints, and

contact constraints. In this format, each column block corresponds to a single

physical body, with the same labeling used for the mass matrix.

To parallel the concept of body vectors, we introduce constraint vectors which

are real vectors, dá- / +
, with the following partitioningd a � ò d ½ 2 ¾ a d ½ Ú ¾ a =>=>=�d ½ p O ¾ a ó �:d ½ ¦�¾ - / p'r � sO � (18.7)

and we note that these vectors include the constraint velocity, ^	h� and the La-

grange multipliers Ð among other examples. So now, for each constraint index§ , there is a corresponding block d ½ ¦¿¾ for any constraint vector. In order to

randomly access a given constraint vector d , one needs a map between each

constraint index § and the address of the first element of d ½ ¦¿¾ .
Jacobians can be decomposed one level further by introducing a Jacobian block,^ ½ ª ¬ ¾ � which is a matrix of dimensions � ½ ª,¾î ��� ½ ¬ ¾Ç associated to one and only
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Description Symbol Size of data set

Total number of con-

straints in the subsystem

� î single entry

Total number of nonzero

Jacobian blocks in the sub-

system

� ¬
single entry: � ¬ � l p Oª q 2 � ½ ª�¾ 

Dimensionality (number of

rows) for each constraint

� ½ ¬ ¾î one for each constraint F ��;���O�>=>=M=~� � î and l p Oª q 2 � ½ ª,¾î �*7
Number of bodies attached

to a constraint

� ½ ¬ ¾  one for each constraint F ��;���O�>=>=M=~� � î
List of bodies attached to

each constraint

ç ½ ¬ ¾  one for each constraint F ��;���O�>=>=M=~� � î
List of constraints attached

to each body

ç ½ ª�¾î one for each body Ä �£�;� �<�>=>=>=>� �  
List of constraint blocks at-

tached to each body
z ½ ª,¾î one for each body Ä �£�;� �<�>=>=>=>� �  

List of constraint blocks at-

tached to each constraint
z ½ ¬ ¾  one for each constraint F ��;���O�>=>=M=~� � î

Block Jacobian data ^ ½ ¦�Á ª,¾ � ¬
blocks, one for each body

(global index Ä ) in each con-

straint § : each block � §,� Ä � has di-
mensions � ½ ¦¿¾î �á� ½ ª,¾Ç .

Table 18.2: Requirements and dimensions for Jacobian matrices

.

one constraint, Ä , and one and only one body F . There are � ¬
such blocks where� ¬ � l p Oª q 2 � ½ ª�¾  . These blocks can be stored contiguously in a packed format

and to do this, one needs the data described in Table 18.2.

Jacobian matrices define two types of matrix vector products, mapping body

vectors and constraint vectors to each other as followsd � � ^ \ V �Jde� body to constraint\ � � ^ a d V �Z\%� constraint to body
(18.8)

where \ is a constraint vector, d is a body vector, and �¸���º- /
are real scalars.

Depending on the data layout and organization, each of these two operations

is either a gather or a scatter type, i.e., the process involves collecting data

from different memory locations to update an array sub element—gather—, or,

conversely, an array sub element is used to compute updates to different memory

locations—scatter.

There are two types of traversals depending on whether the constraint vector

or the body vector is traversed sequentially and these are now described.
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18.2 Special matrices, formats, and operations

Description Symbol Size of data set

List of bodies attached to

given constraint

ç ½ ¬ ¾  one per constraint F ��;� �<�>=>=>=>� � î
List of constraints at-

tached to given body

ç ½ ª�¾î one per bodyÄ ����� �O�>=M=>=~� �  
Body vector random ac-

cess index

�¨\ ½ ª�¾ one table for the sub-

system with one entry

per body index Ä ��;� �<�>=>=>=>� �  
Constraint vector random

access index

�Vd ½ ¬ ¾ one table for the sub-

system with one entry

per constraint index F ��;� �<�>=>=>=>� � î
Table 18.3: Minimal requirements for gather and scatter operations

Constraints traversal

If the constraint vector is accessed sequentially and the body vector storage allows

random access, then, for each constraint index § , we need to retrieve the ¯ ¦ indices
of the bodies involved, i.e., ¯ ½ ¦¿¾¬ � F ����� �O�M=>=>=~��¯ ¦ and from this, look up the relevant

component \ ½   ¾ and compute the appropriate block matrix-vector product. This

makes the operation d � � ^ \ V ��d a gather type and \ � � ^Åa d V �Z\ a

scatter type.

Bodies traversal

Conversely, if body vectors are stored and accessed sequentially and constraint

vectors allow random access, then, for each body index ¯ , we need to retrieve theï   indices of the constraints attached to body ¯ , ï ½   ¾æ ��çâ� �;� �<�>=>=>= ï   . For each of

these ï - � ï ½   ¾æ &�ç#�£��� �O�M=>=>= ï   � , we identify the corresponding component of the

constraint vector d ½Ìî ¾ and perform the appropriate matrix-vector update. This

makes the operation d � � ^ \ V ��d a scatter type and \ � � ^Åa d V �Z\ a

gather type.

The list of requirements for implementing these operations is summarized in

Table 18.3 below.

Matrix matrix operations

In terms of matrix-matrix operations, there are three cases involving mass-like

matrix  and Jacobian-like matrices ^ � � � with identical structure� � � ^  V � �� � � � ^ a V � �� � � � a ^*V � � = (18.9)
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18 Solving the Linear Problems

The first of these is very simple to implement since all is needed is to traverse

each block ^ ½Eî Á   ¾ of the matrix ^ sequentially, look up corresponding matrix

block  ½   ¾ , and perform the elementary product operation^ ½Ìî Á   ¾  ½   ¾ � ? ^ ½Ìî Á   ¾  ½   ¾ = (18.10)

The best way to implement this is to allocate enough space for two copies of the

data contained in ^ , and store both ^  and ^ .

The second operation described in (18.9) is the construction of the Schur com-

plement � . There is a simple block algorithm for computing this which is optimal

and which we now describe.

First observe that matrix � maps constraint vectors to constraint vectors and

therefore, it allows a partitioning into blocks � ½ ¦�Á ª,¾ of size 7J½ ¦�¾ � 7J½ ª�¾ , where
both indices ï � x range from �;� �<�>=>=>=>� � î . Now, it is clear from the rules of matrix

multiplication that � ½ ¦%Á ª,¾ � p
ìÑ¬,q 2 � ½ ¦�Á ¬ ¾ ^ ½ ª:Á ¬ ¾ a � (18.11)

where the indices have been permuted in the block representation of ^ a . Now,

obviously, ^ ½ ª ¬ ¾ is a zero block if body with index F is not found in constraintÄ , and likewise with
� ½ ¦�Á ¬ ¾ . This means that the sum in (18.11) is limited toF - � ç ½ ¦¿¾  &�ç����;� �<�>=>=>=>� � ½ ¦�¾  �

. In other works, for most cases, we have only one or

two bodies to consider. But note also that if we fix constraint § and body indexF , the only non-zero terms in (18.11) come from constraints with index Ä which

are linked to body index F .
Now, therefore, if there is a list ç ½ ¦¿¾  for each constraint § containing the indices

of the bodies it refers to, as well as a list ç ½ ¬ ¾î for each body containing the indices

of the constraints it is related to, we can perform the multiplication as described

in Algorithm 18.2.1. This is not particularly efficient because of the repeated

search operation in the inner loop.

Algorithm 18.2.1 List search based matrix-matrix multiply algorithm

initialize all � blocks

for §â�£�;� �<�>=>=>=>� � î do ¿ build � row-wise

for F � head � ç ½ ¦¿¾  �~�>=>=>=M� tail � ç ½ ¦¿¾ ¯,� do ¿ Loop over related columns

for Ä � head � ç ½ ¬ ¾î �~�>=>=>=M� tail � ç ½ ¬ ¾î � do

Find block ^ ½ ¦�Á ¬ ¾ in constraint §
Update : � ½ ¦�Á ª,¾x� � � ½ ¦�Á ¬ ¾ ^ ½ ª:Á ¬ ¾ a V � � ½ ¦�Á ª�¾

end for

end for

end for

One way to avoid that is to build a sorted list of relative blocks for each

rigid bodies. This is easily done when the Jacobian blocks are computed withIK� �M� complexity. The result is the array of sorted lists, z ½ ¬ ¾î , containing the
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18.2 Special matrices, formats, and operations

addresses of the blocks ^ ½ ª:Á ¬ ¾ in increasing order of constraint index Ä . The

Schur complement algorithm of Algorithm 18.2.2 is now optimal in the sense

that no search operation is performed any more, only direct list traversal and

kernel computations. The computational cost can be reduced further by changing

the inner for-loop to only consider the lower triangle, i.e., only considering indices<�a f .
Algorithm 18.2.2 Block list matrix-matrix multiply algorithm

initialize all � blocks

for f ����� �O�M=>=>=~� � ¬
do ¿ build � row-wise

Look up constraint index § for block f
Look up body index F for block f
for <4� head � z ½ ¬ ¾î �,�>=>=M=>� tail � z ½ ¬ ¾î � do

Look up constraint index Ä for block <
Update : � ½ ¦�Á ª�¾ � � � ½ ¦�Á ¬ ¾ ^ ½ ª:Á ¬ ¾ a V � � ½ ¦�Á ¬ ¾

end for

end for

To construct as truly sparse representation of the Schur complement matrix,

one must also be careful not to touch unnecessary memory. This is easily done

by keeping track of which pair of indices ��ï � x � has been looked at so far, and

clearing block � ½ ¦�Á ª�¾ only the first time it is visited.

Of course, eliminating search operations is not enough to make a matrix-

matrix multiply algorithm optimal and there is much that could be done to

the data layout to optimize performance. However, as it is, the complexity of

Algorithm 18.2.2 is IK�s� î [�   [� î � , where � î is the number of constraints, and [�   is
the average number of bodies per constraint, and [� î is the average number of

constraints per body. To see this, note that the first loop goes once over each

block and the number of blocks is in fact � î [�   . Then, for each block, we need

to go over the related blocks. Assume that a given block is related to body with

index F . There is one and only one related block for each other constraint that

body F is involved with. Therefore, the total number of operations is¾ � z � p äÑ¬,q 2 � ½ ¬ ¾î � � î [�   [� î � (18.12)

where � ¬
is the total number of blocks. This complexity analysis should dispel

the widely spread myth that direct matrix methods for multibody systems have

inherent complexity of IK��� É � or I6� 7 É � . However, as we shall see below, the worst

case complexity of computing the Schur complement � is IK� 7 Ú � , unfortunately.
The last form of matrix-matrix product in (18.9) is the inside out version of

Algorithm 18.2.2 though no search is necessary. Indeed, the blocks in matrix� ½   Á � ¾ , where ¯� r are body indices, are computed as� ½ ¦�Á ª,¾ � p OÑ¬�q 2 � ½ ¬ Á ¦¿¾ a ^ ½ ¬ Á ª,¾ = (18.13)
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18 Solving the Linear Problems

This means that the blocks
� ½ ¬ Á ¦¿¾ and ^ ½ ¬ Á ª�¾ both come from a single constraint

and that we can avoid all search operations by looping over the constraints and

then looping over bodies. All we need to assume here is that each constraint Ä
has a sorted list of blocks z ½ ª�¾  . This leads to Algorithm 18.2.3. Again, the exact

sequence of this looping might not be optimal from a performance viewpoint but

this is the minimum operation count ignoring memory look ups.

Algorithm 18.2.3 Block matrix-matrix multiply algorithm

initialize all
�

blocks

for f ���;� �<�>=>=>=>� � ¬
do ¿ Loop directly over the blocks

Look up body index § of Jacobian block f
Look up constraint index F of Jacobian block f
for z � head � z ½ ¦¿¾î �,�>=>=M=>� tail � z ½ ¦¿¾î � do

Look up body index Ä of Jacobian block z
Update :

� ½ ¦�Á ª,¾x� � � ½ ¬ Á ¦¿¾ a ^ ½ ¬ Á ª,¾ V � � ½ ¦�Á ª,¾
end for

end for

A good library will provide implementations of these operations, abstracting

the data format as much as possible so that it is possible to test alternative

implementations and chose those formats offering best performance.

With the formats provided, all the matrix-matrix multiply algorithm can make

use of the GEMM-based approach of K̊agström, Ling and van Loan [149] to

deliver high performance, both during matrix construction and subsequently,

during matrix factorization.

18.3 Saddle point identities

The saddle point problem of optimization translates to the linear algebra prob-

lems of a special type, namely, involving a matrix of the block form

� � ö  ? ^ a^  ÷ � (18.14)

where sub-matrix  is a square ���y� symmetric and positive definite, matrix^ is 7 ��� , usually with 7 ' � , and matrix  is square 7 � 7 matrix which

is symmetric and positive semidefinite. A matrix with the form given in (18.14)

is called bisymmetric. Dollar, Gould, Shilders and Wathen [74, 75] recently

published a comprehensive review of techniques applying to the present problem.

A review of methods is found also in Benzi, Golub, and Liesen [48]. The present

section only covers the basic techniques.

Consider the two vectors \�- / p
and dá- / +

. It is easy to verify thatò \ a d a ó ö  ? ^Îa^  ÷ ö \d ÷ ��\ a  \ V d a  d��id a  de� (18.15)
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18.3 Saddle point identities

since we assumed that  was positive definite. Therefore,
�

is positive definite

or semidefinite according to the whether  is positive definite or semi-definite.

It is interesting to note that
�

is not symmetric.

Note also that ö  ? ^Îa^  ÷ ö \ d ÷ � ö  ^Îa^ ?D ÷ ö \?�d ÷ � (18.16)

which means that we can use a factorization of the symmetric matrix� � ö  ^Îa^ ?D ÷ � (18.17)

to solve linear problems of the form
� � ��¯ .

Saddle point matrices
�

satisfy the following identities as is well known (see

for instance [52], Chapter III §4 and exercises therein). In what follows, } is

a lower triangular matrix with unit diagonal,
�

is an upper triangular matrix

with unit diagonal, and
�

is a block diagonal matrix. The following two block

factorizations are readily verified

� � } [� } N a � ö � 
^  N 2 � ÷ ö  

 ^  N 2 ^ÎaáV  ÷ ö � ?  N 2 ^ a
 � ÷� � } � } a � ö � 
^  N 2 � ÷ ö  

 ? ^  N 2 ^Îa ?� ÷ ö �  N 2 ^Îa
 � ÷ � (18.18)

using the identity} �Àö � 
^  N 2 � ÷ ��� } N 2 �Àö � 
? ^  N 2 � ÷ ��� � ? } � (18.19)

which is easily verified. With these identities in mind, it should be clear that the

Schur complement matrix � � ^  N 2 ^ a V b� (18.20)

plays a central role in the determination of the spectrum and factorization of
�
.

In fact, assuming that the inverse  N 2
is easy to compute, a factorization of

matrix � allows the solution of the linear problem
� � � ¯ using only straight

forward matrix-vector operations.

Note also that the spectrum of matrix
�

is the union of the spectrum of

matrices  and � , whereas that of matrix [� is the union of the spectrum of

matrix  and the negative spectrum of � . Now, since matrix � is symmetric

and at least positive semi-definite, the spectrum of � contains both positive and

negative eigenvalues and, therefore, � is indefinite.
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18 Solving the Linear Problems

Since all block matrices in (18.18) are easily inverted, explicit formulae for the

inverses are found to be

� N 2 � } a [� N 2 } N 2 � ö  N 2 ?  N 2 ^Îa3� N 2 ^  N 2  N 2 ^Îa3� N 2? � N 2 ^  N 2 � N 2 ÷� N 2 � } N a � N 2 } N 2 � ö  N 2 ?  N 2 ^Îa3� N 2 ^  N 2  N 2 ^Îa3� N 2� N 2 ^  N 2 ? � N 2 ÷ = (18.21)

These formulae illustrate once more the crucial role played by the Schur comple-

ment matrix � . Direct factorization of saddle point matrices, especially in the

symmetric indefinite form � has been the subject of much research and software

packages such as the ma27 and ma57 codes [79, 80, 78], among others. Itera-

tive techniques with preconditioners are found in Dollar, Gould, Schilders, and

Wathen [74], which contains a description of Algorithm 18.6.2, in fact.

There are alternatives to factoring matrix � or
�

directly, exploiting the over-

all optimization superstructure but treating matrix ^ as dense. The monograph

of von Schwerin [272] details the list of options. However, the alternative choices

involve QR factorization of the Jacobian matrix ^ as well as generally dense

matrix-matrix products and that therefore, these choices are not appealing, es-

pecially in view of the fact that there are few, if any, sparse QR factorization

libraries available at this time [197, 216].

18.4 Sparse factorization

As observed in Section 18.2, the mass matrix  and Jacobian matrix ^ are both

very sparse. Altogether, we expect that the rows of matrix
�

contain no more

than �M
 non-zero block in the upper half, no more than î blocks on average in

the bottom section. More precisely, assuming the average number of bodies per

constraint is [�   , then, the fill fraction of matrix
�

isî .E. � � �W� î .E. ��� �w� �áV �;7 [�  �s�áV 7i� Ú = (18.22)

It is expected that a high performance sparse library designed for handling

indefinite matrices, symmetric or otherwise, such as ma27 [80] [79], or Su-

perLU [72], or the more recent ma57,duff:2004:mcs, or even umfpack [71],

can deliver high performance here. This has not yet been benchmarked ac-

curately, perhaps due to the fact that most interesting large scale multibody

problems involve contacts and friction, not just equality constraints. Notably

though, umfpack does provide factorization update and down-date operations,

but not the ones needed to solve LCPs or QPs. The day might come yet. In the

meantime, here is how to grow your own.

Given that writing a multifrontal algorithm for processing saddle point matrix� is far from easy, we describe the simplest case of a sparse factorization based
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18.4 Sparse factorization

on topological consideration. To do this, we first note the recurrence formula� �Àö � 2�2 � aÚ>2� Ú~2 � Ú Ú ÷ �Àö � 
} Ú>2 } Ú Ú ÷ ö � 2 2 

 � Ú Ú ÷ ö � } a Ú>2
 }#aÚ Ú ÷� ö � 2�2 � 2 2 } a Ú~2} Ú>2 � 2 2 } Ú>2 � 2 2 }#aÚ>2 Vo} Ú Ú � Ú Ú }#aÚ Ú ÷ � (18.23)

which can be used to define the following transformations�� 2�2 � � 2 2Z� � 2 2��� Ú~2 � } Ú~2�� � Ú~2 � N 22 2 ��� Ú�Ú � � Ú Ú�? [� Ú>2 �� 2 2 �� aÚ>2 � � Ú�Úã? � Ú>2 � N 22 2 � aÚ~2 � (18.24)

which, applied recursively and in place on matrix � , yields the factors } and
�
.

It is a good idea to store a copy of the date before starting the factorization.

As easily seen from (18.24), neither of the first two transforms �� 2 2 or �� Ú>2 can
introduce new non-zero elements, but the last transform for �� Ú Ú can. Specifically,
the term �� Ú>2 �� 2�2 ���aÚ>2 has the potential to add new non-zero blocks. However, if

the block column � Ú>2 has only one non-zero block, say � ¬ 2 then we only have

diagonal updates and there are no fill-ins during factorization as we apply (18.24)

recursively to complete the computations of the factors } and
�
.

To analyze this structure, define a graph relationship in matrix � such that

on any block column § , the set of indices F of the non-zero block � ¬ ¦ above

the diagonal—those with �Ta F '£§ —are called the children of block �K¦Ã¦ , i.e.,� F & F '�§ and � ¬ ¦ ï� 
 � � children � §8� . This relationship is enough to build a

graph where the nodes are the block matrices � ¬ ¦ and the edges link the diagonal

nodes �È¦�¦ with their children, � ¬ ¦ such that F - children ��F � . For a symmetric

matrix, we have � ¦ ¬ � � a¬ ¦ and therefore, if there is a non-zero element � ¬ ¦ ï��

below the diagonal, i.e., with F C § , then, §`- children ��F � . Therefore, the case

where there is only one such element leads to a graph which is a rooted tree, i.e., a

graph in which each node has one and only one direct ancestor. This is precisely

what is needed to factor matrix � � } � } a without introducing any fill-ins.

This leads to computational work that is directly proportional to the number

of non-zero blocks. Such a matrix � with � diagonal blocks whose graph is a

rooted tree can have at most � ?*� non-zero off-diagonal elements, one in each

column.

Given a matrix � , we can first compute the graph by listing the children of

every node. If we find that this graph is a rooted tree, we can then relabel the

elements so that each node has an index which is less than that of its parent.

To do this, we start with an arbitrary node § and relabel it as � . Then, the � 2
children are re-labeled as � ?*�;� � ?��O�>=>=M=>� � ? � 2 . The same process is applied

recursively to each child F - � � ?*�;� � ?B�O�M=>=>=>� � ? � 2 � . This reordering defines

a permutation which can be applied to matrix � after which we can apply

formulae (18.24) recursively to obtain the factors without any fill-ins.
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18 Solving the Linear Problems

Storage can be saved by working in place, directly on the blocks �K¦ ¬ though.

Looking at (18.24), it is easy to see that each off-diagonal element � ¬ ¦ � F CA§
is touched once only, i.e., for each node F , the off-diagonal element � n ½ ¬ ¾ ¬ �� n ½ ¬ ¾ ¬ � N 2¬,¬ , where � ��F �w� parent ��F � . A diagonal block �(¦Ã¦ will be updated once

for each of the indices F - children � §8� as�È¦Ã¦ � ��¦�¦ ? Ñ¬ R
children ½ ¦¿¾ � ¬ ¦�� N 2¬~¬ � a¬ ¦ � ��¦�¦ ? Ñ¬ R

children ½ ¦¿¾ �� ¬ ¦ �� ¬,¬ �� a¬ ¦ = (18.25)

Obviously, if a child is always processed before it’s parent, then, we can use the

second equality of the last equation and we only have to work with the updated

data. This leads to Algorithm 18.4.1 below.

Algorithm 18.4.1 } � }3a factorization of symmetric matrix � whose graph is

a rooted tree and which is stored in variable size blocks � ¬ ¦ for F � § (lower

triangle). The elements of the tree are labeled so the index of the root is � and

for each F - � �;� �<�>=>=>=~� � �
, F - children � §8�y� F '�§ , and §w� parent ��F �W��� ��F � .¿ Walk up the tree starting from the leaf nodes.

for §â�£�;�>=>=M=~� � do

for F - child � §8� do�È¦�¦ � �È¦�¦ ? ��¦ ¬ � ¬~¬ � a¦ ¬
end for� n ½ ¦¿¾¿¦ � � n ½ ¦�¾g¦ � N 2¦�¦

end for

Algorithms for solving the triangular systems } \4� ¯ and }âa d�� ï are easily

derived by using the same recursion techniques and they are shown below in

Algorithm 18.4.2.

Algorithm 18.4.2 Solution of � \*� ¯ for symmetric block matrix � whose

graph is a rooted tree, using factorization � � } � }âa as per Algorithm 18.4.1.

Given matrix � � ��a whose graph is a rooted tree, decomposed in sparse

factors � � } � }#a as per Algorithm 18.4.1 and block vector ¯ with � variable

size blocks, the following procedure solves for � \���¯ .¿ Forward elimination: walk up the tree starting from the leaf nodes.

for §â�£�;�>=>=M=~� � do

for F - child � §8� do\ ¬ � \ ¬ ? � ¬ ¦ \ ¦
end for

end for ¿ Backward substitution: walk down the tree starting from the root

node.

for §â� � �>=>=M=M�M� do\ ¦ � � N 2¦�¦ \ ¦\ ¦ � \ ¦ ? �È¦ n ½ ¦¿¾ \ n ½ ¦¿¾
end for
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18.4 Sparse factorization

This is easily extended to the case of a bisymmetric matrix
�

for which we

want to compute the lower triangular factors } and diagonal elements �� in� � } [�Þ� . We do not need to compute the upper triangular
�

factor since� � � � ? }#a as is easily verified. As previously, we start from the recursion

formula

� �Àö � 2 2 ? � aÚ~2� Ú>2 � Ú�Ú ÷ �Àö � 
} Ú~2 } Ú�Ú ÷ ö [� 2�2 

 [� Ú�Ú ÷ ö � ? } a Ú~2
 � aÚ Ú ÷� ö [� 2�2 ? [� 2 2 } a Ú~2}3aÚ~2 [� 2�2 } Ú Ú [� Ú Ú � aÚ Ú ? } Ú>2 [� 2 2 }#aÚ>2 ÷ � (18.26)

which yields the recurrence relations�� 2 2 � [� 2�2�� � 2 2M��� Ú>2 � } Ú>2�� � Ú~2 [� N 22 2 ��� Ú Ú � � Ú Ú V �� Ú>2 �� 2�2 �� aÚ~2 � � Ú Ú V � Ú>2 � N 22 2 � aÚ~2 = (18.27)

Obviously, when applying recurrence (18.24), one must keep track of whether

the diagonal block is negative definite or positive definite but this requirement

is lifted in the application of recurrence (18.27).

The sparse factorization algorithm described in this section was “rediscovered”

numerous times and has been described in one form or another in [86, 139, 192,

37, 27] for the multibody context, and at least in [79] for the general sparse matrix

context. Note that both [27] and [28] discuss the connection between robotics

techniques designed specific methods to handle tree-structured mechanisms such

as [86, 184] for instance, and the direct approach based on constraints described

here.

Another point to note here is that the exact blocking structure of the original

matrix � or
�

was left unspecified. In both [27] and [37], it is explicitly assumed

that the first level of blocking is that of a single rigid body and this obviously

creates a problem if one or more of the bodies is anchored to the universe with

a constraint. But note however that for a single rigid body with coordinates �
subject to an agglomerated constraint �Q� ���W�u
 , the effective mass matrix can be

thought of as[ ½ ¦�¾ �Àö  ½ ¦¿¾ ^ ½ ¦¿¾ a^ ½ ¦¿¾ ?D ½ ¦¿¾ ÷ � or � ½ ¦¿¾ �Àö  ½ ¦�¾ ? ^ ½ ¦¿¾ a^ ½ ¦¿¾  ½ ¦�¾ ÷ = (18.28)

Note that this changes the recurrence relations (18.24) and (18.27) to the extent

that we may no longer assume that diagonal blocks
� ¦�¦ or [� ¦�¦ are symmetric

and positive (or negative) definite. Nevertheless, this allows a factorization of a

broader class of systems.

In fact, if appropriate care is taken to factorize the diagonal blocks suitably,

we can use any level of grouping which means that submatrix ��ª�ª might be a

multibody subsystem in itself.
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It should also be clear that any partitioning of the form� �Àö ��" �^Îa�^ � ÷ � (18.29)

leads to the same form of block factorization as were presented so far in this

section provided � " is invertible. Obviously, if we choose � " to be the submatrix

of � which consists of a maximum spanning tree of the graph of � , then, �6" can
be factored quickly using the foregoing sparse technique and that can be used to

compute the Schur complement � � �(" which can be factored using a direct or

iterative, dense or sparse method. This was described in some detail in [37].

18.5 Gauss-Seidel type iteration methods

In a general, dense linear algebra problem, each and every variable is coupled

to each and every other one. Untangling this web of interdependencies and

identifying a suitable computational sequence allowing to evaluate each variable

as a function of already known data is essentially what any matrix factorization

algorithm performs.

The all-at-once character of direct factorization methods and the high compu-

tational cost—especially the I6�s� É � complexity order—make direct methods less

than attractive in general, despite accuracy guarantees.

The fundamental principle behind a large family of iterative methods, of which

of Gauss-Seidel is the best known member, is that one might be able to estimate

the values of the solution vector, \ ¦ , one at a time. This is expected to work

well if the variables are only weakly coupled, a statement that will be made clear

shortly.

Consider a square matrix _ of dimensions ���á� and the splitting_ � }yV � V � � (18.30)

where } � � � � are all square matrices of size �	�y� like _ . Matrix } is strictly

lower triangular,
�

is block diagonal, and
�

is strictly upper triangular. The

splitting is such that any non-zero element of _ , r ¦ëª , say, appears at position� §,� Ä � only once in either } , � , or � .
Consider a square matrix _ of dimension � �o� and the linear system of

equations _ \��.¯ , where \�� ¯(- / p
are real vectors, and where ¯ is given data.

Suppose we already have an estimate [\ for the solution. The residual error for

this candidate solution is [�È��¯Q? _Y[\ . Taking the view that the § th component of

the solution vector \ is mostly responsible for the § th component of the residual

error vector, we can force the value of the error to 
 by replacing [\ ¦ with the

solution of �K� ¦QV r ¦�¦M[\ ¦ ? r ¦Ã¦ \ ¦ ��
O= (18.31)

where 
('E��'E� is known as the relaxation parameter. For ��'J� , the iterations
are under-relaxed and conversely for �BC@� , over-relaxed. The parameter � can be
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18.5 Gauss-Seidel type iteration methods

chosen optimally if the spectrum of matrix _ are well-known [52] but in general,

the choice of � is a black art. When in doubt, one should set ����� .
One can apply the update rule (18.31) on an arbitrary sequence of indices, and

there will likely be debate until the end of time as to what is the “best” sequence

to pick, between sequential order, zigzag-, random pics, largest & \`& � ¦ first, etc.

The asymptotic convergence always remains linear but of course, in one applies

only a few iterations, using the right order is important. The resulting process

is detailed in Algorithm 18.5.1 below.

Algorithm 18.5.1 Basic Gauss-Seidel algorithm

Initialize: \ � \ ½ " ¾ ��� � _ \H?�¯� Ñ���

repeat

for Ä �£�;� �<�>=>=>=>� � do

pick index § ¿ can go sequentially or randomly� � r N 2¦�¦ � ¦� � � Vo_ à�¦ �\ ¦ � \ ¦kVÝ�
end forÑ � Ñ V �

until ÑáCEÑ;+ � � or 4 � 4 a f:¾ ç
The real problem here is that forcing � ¦ ¢¤ 
 might increase the value � ª � Ä ï�*§ .

Nevertheless, the process is monotonic for certain classes of matrices, notably so

for symmetric positive definite ones, as shown below.

To get a better understanding of what this means, assume that the indices

are traversed sequentially so that in Algorithm 18.5.1, §Î� Ä in the inner loop.

A short analysis of the operations in Algorithm 18.5.1 reveals that the main

operation is � ¦�¦ \ ½ jM032 ¾¦ �u¯ ª ? mo Ñ ª�Pk¦ � ¦®ª \ j>032ª V Ñ ¦%P<ª }â¦®ª \ jª pq�= (18.32)

In words, the value of \ ¦ is updated using the newly updated values \ ¬ forF � �;� �<�>=>=>=>�8§ã? � , but the old values of \ ¬ for F �m§ V ���8§ V �O�>=>=M=>� � . The

consequence is that� \ ½ j>032 ¾ ��¯¸? } \ ½ j>032 ¾ ? � \ ½ j ¾ � and grouping \ ½ j>032 ¾ dO§��Lç xTz� � Vo} �O\ ½ j>0â2 ¾ ��¯¸? � \ ½ j ¾ � so that\ ½ j>0â2 ¾ � ¶ \ ½ j ¾ V x � where¶ � ? � � Vo} � N 2 � � and x � � � V�} � N 2 ¯= (18.33)

This shows clearly that the Gauss-Seidel process is a stationary iterative process

and that it converges if and only if matrix
¶

has spectral radius less than unityÒ � ¶ ��'J��= (18.34)
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18 Solving the Linear Problems

It is well-known that for diagonally dominant matrices _ , which includes sym-

metric positive definite matrices, Ò � ¶ �È' � . Proofs and examples are found in

the book by Kelley [158] on iterative methods.

The rate of convergence of any iterative process is linear meaning that the

norm of the error is expected to behave as4 � ½ j ¾ 4 � I6� � j �,� (18.35)

where �J' � . In practice, this means that each digit of accuracy costs a fixed

amount of computational time which is not exactly very good. This said, Gauss-

Seidel iterations are smoothing in the sense that they spread the error over the

components of the residual vector. This is a welcome feature in certain applica-

tions [52].

The one consideration retained here for improving on the basic Gauss-Seidel

idea is blocking. Assuming that matrix
�

in the splitting (18.30) is block di-

agonal, and assuming that each diagonal block
� ¦Ã¦ is invertible, then, a block

Gauss-Seidel process can be constructed which generally has a better conver-

gence rate than the original. To see this, consider a random matrix _ of size�H�b� and estimate the spectral radius of the iteration matrix as a function of the

block size F . Obviously, if F � � , the spectral radius is 
 and we need just one it-

eration to compute the solution. Figure 18.1 illustrates what can happen for two

different random matrices, plotting the spectral radius as a function of blocking

size. The top line on the plot is from a matrix of the form _ � d(dÈa�V � �
,

where entries of �*��� matrix d are uniform deviates, ¯ ¦®ª - © 
<�M� « , and � � ñ
here. For this case, blocking can move Ò ��_ � significantly below unity. For the

second line on the plot however, the matrix _ was generated by first producing a

set of eigenvalues Ð ¦ uniformly distributed between �� � ï and � ï , where ï is the
condition number. Set ï � �<�%* 9 � Ð�2� Ð�Ú��M=>=>=M� Ð p � , and then form the sandwich as_ � � ï � a with a random orthonormal rotation matrix

�
generated by produc-

ing random Givens rotation [107]. This technique is adapted from Alefeld Chen

and Potra [3]. For this case, the spectral radius is mostly unaffected by blocking,

illustrating that this is not a sure fire method.

There is much written about special applications of Gauss-Seidel methods

where it is possible to get faster convergence, at least during the first few iter-

ations. It is also possible sometimes to construct a very good starting approxi-

mation or to construct a good preconditioner. This is not discussed any further

here, however.

For constrained mechanical systems with block diagonal, symmetric and pos-

itive definite mass matrix  , and agglomerated constraint Jacobians ^ of com-

patible size, the regularized Schur complement is ��$ � ^  N 2 ^ÎayV � , where �
is a diagonal matrix with positive entries of compatible dimensions. The Gauss-

Seidel algorithm can be applied to this and some savings can be made in the

computations by exploiting the structure of the system. In particular, it is not

necessary to compute the entire matrix ��$ but only the diagonal blocks, and
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Figure 18.1: Blocking typically—but not necessarily—decreases the spectral ra-

dius of the GS iteration matrix, increasing the convergence rate.

The plot contains data from two �T
�
 � �T
�
 random matrices with

different initial condition numbers.

these are simply © ��$�«�¦Ã¦ � Ñ ¬ ^ ½ ¦ ¬ ¾  ½ ¬ ¾ N 2 ^ ½ ¦ ¬ ¾ a V � ¦�¦ � (18.36)

where the index F labels all the bodies involved with constraint § .
Next, consider that each constraint § , produces a multiplier Ð ½ ¬ ¾ , and this in

turn generates body forces j ½ ¬ ¦¿¾î � ^ ½ ¦ ¬ ¾ a Ð ½ ¦¿¾ for each of the bodies involved in

constraint § . For each body, the net constraint force is then l ¦ ^ ½ ¦ ¬ ¾ a Ð ½ ¦¿¾ , and
the index § only has to run over the constraints which body F is involved with.

Now, the splitting formula for index § reads� ½ ¦�¦¿¾ Ð ½ ¦¿¾ �u¯ ½ ¦¿¾ ? Ñ ¬ ª ^ ½ ¦ ¬ ¾  ½ ¬ ¾ N 2 ^ ½ ª ¬ ¾ a Ð ½ ª,¾�u¯ ½ ¦¿¾ ? Ñ ¬ ª ^ ½ ¦ ¬ ¾  ½ ¬ ¾ N 2 j ½ ¬ ¾î = (18.37)

In the last sum though, the contribution from Ð ½ ¦¿¾ is not included. What this

means really is that it is possible to keep Ð ½ ¦¿¾ for each constraint and then,

keep the total constraint force j ½ ¬ ¾î on each body to avoid building the whole

matrix �e$ and to perform only operations involving the list of bodies involved in

a given constraint, as long as the Ð ½ ¦¿¾ contribution can be removed from bodiesF involved in constraint § . Note also that only the inverse mass matrix is needed
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18 Solving the Linear Problems

and this is now written
� � �<�%* 9 � � ½ 2 ¾ � � ½ Ú ¾ �>=>=>=M� � ½ p
ì ¾ � . Similarly, the matrix

product Ô ½ ¬ ¾ � ^ ½ ¦ ¬ ¾ � ½ ¬ ¾ can all be precomputed.

The residual error for component § is then� ½ ¦¿¾ ��� ½ ¦¿¾ Ð ½ ¦¿¾ ?�¯ ½ ¦�¾ V Ñ ¬ Ô ½ ¦ ¬ ¾ j ½ ¬ ¾î �
(18.38)

where the sum now extends over all constraint forces.

When applying projected Gauss-Seidel on complementarity problems, it is not

enough to compute just the change in Ð ½ ¦�¾ since there are bounds to satisfy. For

this reason, a slightly more complicated version of the algorithm is provided in

Algorithm 18.5.2. This version involves storing the net constraint forces on each

body but the individual constraint forces associated with each constrained body

on each constraint. Several variants are possible and simpler versions can be

constructed when the main solve operation in the inner loop is not an MLCP.

It is of course possible to treat each individual constraint equation one at

a time, which is the standard Gauss-Seidel procedure, but it is also possible

to go the other way around and pack several constraints, with their associated

bodies, in a diagonal block when splitting the system matrix �%$ . Doing this

properly requires partitioning the system in suitable groups which are as nearly

disconnected. When this is done, the MLCP solver in the inner loop might have

an easier time if the smaller problems are not so degenerate as the larger one. In

addition, once could choose different MLCP solvers for different groups. Results

for this type of grouping were presented previously [170] and the results show

that this is indeed very advantageous. In addition, the structure of the Gauss-

Seidel is parallelizable with little overhead as long as most of the time is spent at

the core operation of solving the MLCP. Since multicore CPUs are now common,

this is the way to go when speed is needed. For problems that can be split easily,

speedups of up to �M
 can be observed [170]. This appears to be creditable to the

fact that splitting removes degeneracies and ill-conditioning in subproblems but

that is not entirely certain. There is the issue of accuracy which has not been

properly investigated yet though.
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18.5 Gauss-Seidel type iteration methods

Algorithm 18.5.2 Gauss Seidel Iterations for Multibody Systems

Given block inverse mass matrix
� � �<�%* 9 � � ½ 2 ¾ � � ½ Ú ¾ �>=>=>=M� � ½ p
ì ¾ � , Jacobian

blocks ^ ½ ¦ ¬ ¾ and precomputed Ô ½ ¬ ¾ � ^ ½ ¦ ¬ ¾ � ½ ¬ ¾
Given vector ¯
Given bound vector çÍ��<
Build blocks

� ½Eî ¾ � l ^ ½Eî ¬ ¾ Ô ½Eî ¬ ¾ a and factorize

Allocate j)  vector holding forces for each body, set to 0

Allocate j î vectors holding forces for each body F in each constraint, set to

0

repeat

for ï �����>=>=>=>�87 do ¿ Loop over constraints

for F �£�;�>=>=M=>� F î do ¿ Gather from bodies in constraint ï
Find global index ¯ ¬ of body with index F in constraint ïj ½   ¾  ä � j ½   ¾  ä ?�j ½Ìî ¾î ¬� � ¯¨½Eî ¾ ? Ô ½Ìî   ä�¾ j ½   ¾  ä

end forÐã½Eî ¾ � v	w[x ��° x¬M® � � ½Eî ¾ ���{��çL½Eî ¾ ��<Å½Eî ¾ ���
for F �£�;�>=>=M=>� F î do ¿ Scatter new forces to the bodies

Find global index ¯ ¬ for body F in constraint ïj ½Eî ¾î ¬ � ^ ½Eî   ä�¾ a Ð ½Eî ¾j ½   ¾  ä � j ½   ¾  ä V j ½Ìî ¾î ¬
end for

end for

until Error is small enough.
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18 Solving the Linear Problems

18.6 A preconditioned conjugate gradient method

The classical definition of the saddle point problem uses the symmetric form of� in (18.17), but with @��
 . To be specific, write �T� � r where� � ö  ^ba^  ÷ � � �Àö \ d ÷ � r �Àö ¯ï ÷ � (18.39)

The simplest iterative method for solving this is a relaxation process whereby

we first make an approximation of d with d ½ j N 2 ¾
, say, and then solve for  \ ½ j ¾ �¯�? ^ a d�½ j N 2 ¾

. This is then used to update the value of the approximation

using d ½ j ¾ � d ½ j N 2 ¾ V � Ç ^ \ ½ j ¾ ? ï È . This will be stationary when the term

in parenthesis vanishes, i.e., when we satisfy the constraint equation ^ \b½ U ¾ � ï
which solves the system as desired. The choice of � is essential for the convergence

rate and it is difficult to estimate the optimal value as it depends on the condition

number of the matrix � � ^  N 2 ^Îa . One can update � dynamically as per the

gradient method as shown in Braess [52], Section 5.2.

The idea for improve on this is to apply the CG algorithm on the Schur com-

plement matrix � � ^  N 2 ^Îa�V  , but without having to compute � , i.e., using
only matrix-vector operations involving ^ , ^Åa , and  N 2

and  . Braess [52]

does this in Algorithm 5.2 for the case where @��
 . To recover the correct mod-

ifications to include  ï��
 , first consider the case where matrix � is available and

perform the conjugate gradient (CG) algorithm to solve for � dH� ï ? ^  N 2 ¯ã� �ï .
Vector \ can then be recovered with \¡�  N 2 ��^Îa d V ¯,� . What is needed is the

value of the current gradient � ½ j ¾ , the local search direction x ½ j ¾ , the step mag-

nitude � ½ j ¾ , and the factors � ½ ¬ ¾ . This is detailed in Algorithm 18.6.1, in which

the � -norm is defined as: 4 ��� � 4 Ú� � ��� � a ����� �,= (18.40)

Algorithm 18.6.1 Conjugate gradient algorithm

Given: matrix � and vector �ï , d ½ " ¾ and � C*

Initialize: � ½ 2 ¾ � � d ½ "�¾ ? �ï , and x ½ 2 ¾ ��? � ½ 2 ¾
repeat� ½ j ¾y� 4 � ½ j ¾ 4 Ú � 4 x ½ j ¾ 4 Ú�d ½ jM032 ¾x� d ½ j ¾ V � ½ j ¾ x ½ j ¾� ½ j>0â2 ¾y� � ½ j ¾ V � ½ j ¾ � x ½ j ¾� ½ j ¾x� 4 � ½ j>0â2 ¾ 4 Ú � 4 � ½ j ¾ 4 Úx ½ j>032 ¾x� ? � ½ jM032 ¾ V � ½ j ¾ x ½ j ¾
until

4 � ½ j ¾ 4 ' �
The aim now is to modify Algorithm 18.6.1 to avoid computing � . To this end,

introduce auxiliary vectors so that all that is needed matrix vector multiplication
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18.6 A preconditioned conjugate gradient method

for ^ and ^Îa , as well as solutions of the linear system  �\¡� �¯ for different right
hand side vectors �¯ as the algorithm progresses. This latter system is presumed

to be easy to solve.

Observe that the gradient of the quadratic form
2Ú d a3� d V d a �ï is�k� d¨�W� � d V �ï = (18.41)

Using \��  N 2 � ¯ V	^ a d¨� , then, the expression for the gradient can be reduced

to �Q� \%��d¨�W� ^ \ V  d6? ï .
Next, the equation \¡�  N 2 � ¯ Vi^ a d¨� is evaluated for \D½ j>032 ¾

and d�½ j>0â2 ¾
, and

using the update rule d ½ j>0â2 ¾ ��d ½ j ¾ V � ½ j ¾ x ½ j ¾ from Algorithm 18.6.1 above,\ ½ j>032 ¾ �  N 2 Ç ¯ Vo^ a d ½ j ¾ Èy�º\ ½ j ¾ V � ½ j ¾  N 2 ^ a x ½ j ¾ = (18.42)

This suggests storing the vectors � ½ j ¾ � ^Îa x ½ j ¾ and R ½ j ¾ �  N 2 � ½ j ¾ . With

these, we can easily compute the expression� ½ j ¾ � 4 � ½ j ¾ 4 Ú � ��R ½ j ¾ a � ½ j ¾ V 4 d ½ j N 2 ¾ 4 ÚÅ �,� (18.43)

efficiently as well. Combining these observations, we arrive at Algorithm 18.6.2

listed below, in which all iteration indices have been dropped for clarity. This al-

gorithm requires one solution of a linear system involving matrix  , one matrix-

vector multiplication of the form ^ \ , one of the form ^ÅaK� , and one of the formòd , as well as two scalar products with vectors of length � , and one with vectors

of length 7 . Testing the termination condition requires to take the norm of two

vectors of length 7 and two of length � .
Algorithm 18.6.2 Uzawa Algorithm with conjugate directions

Given: dZ½ " ¾ - / +
, � � � � K CE


Initialize: dH�Ad ½ " ¾ , solve  \¡��¯ V¡^ba d ½ "�¾ for \ . Set x � ? � � ^ \ V  dZ? ï ,é � � a � , and �Å�u d .
repeat� � ^ a xR �  N 2 �� � �n � v 0 ] � Kd � d V � x\ � \ V � R� �  d� � ^ \ V �D? ïé 2 � �{a��� � �� "é � é 2x � ? �`V � x
until

1 � � 11 K 1 ' � K and
1 � v 11 � 1 ' � �

Of course, a CG algorithm is not so useful unless it is preconditioned. The

choice of matrix  in Algorithm 18.6.2 is limited by the necessity to keep the
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18 Solving the Linear Problems

matrix � î positive definite, and the requirement that the action of  N 2
should be

easy to compute. When matrix  vanishes, there is little choice for  . However,

if  ï��
 and block diagonal, we can repartition the original system as follows

� � ×ØÙ  ? ^ a 2 à ? ^ a Ú à^ 2 à D2 2 
^ Ú à 
 ZÚ Ú ÜÞÝß � ö � ? �^ a�^ � ÷ � (18.44)

where we defined^ � ö ^ 2 à^ Ú à ÷ � �^ � ò ^ Ú à 
 ó � � � ö  ? ^ a 2 à^ 2 à D2 2 ÷ � �@��ZÚ�Ú�� (18.45)

and assumed that Î2�ÚD�u
O� ZÚ>2Z��
 .
Using this partition of

�
, we can now apply Algorithm 18.6.2 using � instead

of  . This amounts to performing CG iterations on the matrix�� �mò ^ Ú à 
 ó ö  ? ^ba 2 à^ 2 à D2�2 ÷ N 2 ö ^ÎaÚ à
 ÷� ^ Ú à Í  N 2 ?  N 2 ^ a 2 à Ç ^ 2 à  N 2 ^ a 2 à V D2�2�È N 2 ^ 2 à  N 2 Î ^ a Ú à = (18.46)

Matrix �� is still positive definite because it is the Schur complement of the

positive definite block matrix � of (18.45) in the positive definite matrix
�

of (18.44). Positive definiteness is preserved under the Schur complement oper-

ations [69].

This preconditioned solver was developed in 2005 and is the core of the Master’s

thesis of Dalg̊ard [70] which dealt with cloth simulation. The literature did

not appear to cover the case where matrix  was non-zero. But since then,

Algorithm 18.6.2 did appear [74], along with a variety of techniques for solving

saddle point problems. More investigation is needed to select a suitable technique

for multibody systems.
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18.7 Factorization updates and down-dates

When solving LCPs, there is a need to solve linear systems of the form�e�{�V�;� � ?D� � � (18.47)

where � is a square ���á� matrix, � � �(- / p
are � -dimensional real vectors, and�B- � �;� �<�>=>=>=~� � �

is an index set. The matrix ���{� is a principal submatrix of � .
Now, if a factorization of � is known and if the index set � is close to the

full set
� ��� �O�M=>=>=~� � �

, it is possible to update the factorization of � to obtain a

factorization of ���{� and to solve system (18.47) with a relatively small number

of operations. This section is devoted to that problem.

We shall assume in what follows that matrix � is symmetric and positive defi-

nite so that it is possible to compute the Cholesky factors � � }w}wa without any

pivoting operation. This simplifies much of the presentation. In addition, this

is one important benefits of the regularization theory presented in Chapter 4.

For any given constrained mechanical system, given knowledge of the scaling of

the mass matrix, it is possible to estimate the regularization parameters needed

to guarantee that the final matrix is positive definite enough to avoid all piv-

oting operations during factorization. When the regularizations are too small

though, one has to resort to pivoting and minimal perturbation as described in

Higham [126].

Assume that matrix � is partitioned along the two index sets, �W��� , with � � �	�� �;���O� î �M=>=>=,� � �
and �Ò²K��� ²

, so that� �Àö �e�{� ���Mè�<è<� �Oè;è ÷� N 2 � �� � ö ��e�{� ����Mè��<è<� ��Oè;è ÷ � (18.48)

where the notation �� � � N 2
was introduced for clarity. The inverse of the block�e�T� is denoted with � N 2�T� and the goal of the following calculation is to derive an

expression for � N 2�T� . A simple calculation of the matrix products shows that�¡�� �Àö �e�{� ��e�T�(V��e�è ��Oè<� ���T� ��e�èYV��e�Mè ��Oè;è� è<� �� �T� V�� è;è �� è¨� � è¨� �� �è V�� è;è �� è;è ÷ �Àö � �{� 

 � è;è ÷ � (18.49)

and therefore, looking at the expression on the first row, second column, we can

deduce that �e�è � ? �e�T� ��e�Mè �� N 2è;è � (18.50)

and therefore, substituting the appropriate terms we arrive at the expression���T� Ç ��e�{� ? ����Mè �� N 2è�è ��Oè<� È�� � �{� � (18.51)

from which we read off the expression for � N 2�{�� N 2�{� � ��e�{� ? ��e�èK�� N 2è;è ��Oè<� = (18.52)
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The upshot here is that all the terms and factors on the right of the equation are

known once we have factorized the matrix � , with the exception of the factor�� N 2è;è for which we still need a computational procedure. Hopefully, the index set

is almost full so that most of the constraints are active in which case the matrix��Oè;è is smaller than ���{� and therefore, factorization of that matrix is faster. The

algorithm we now proceed to develop works with � and its factorization as well

as with the matrix ��Oè;è . All the factors involved will be computed by repeatedly

solving for the system of linear equations� \¡��¯� (18.53)

with a number of different right hand sides.

Observe first that  r N 2
is the identity matrix and therefore, we can solve

for each column § of the matrix  N 2
by solving the linear system \¡��� ¦ � (18.54)

where � ¦ is the unit column vector with � at position § and zeros everywhere else.

We can construct the matrix � N 2è;è with Algorithm 18.7.1.

Algorithm 18.7.1 Computing ��<è;è
Initialize

� ¦®ª ��

for § in � do

set � � ?E
 and then � ¦ � ?J�
Solve for � \��r�
Set

� è<¦ � ?�� è
end for

The other terms we need in solving for ���T�	�;� � ?D� � are of obtained from the

following two sets of equations equationsö ��e�{� ��e�è��<è<� ��Oè;è ÷ ö � �
 ÷ �Àö ����T� � ���Oè<� � � ÷ � andö �� �{� �� �è��Oè¨� ��<è;è ÷ ö 
� è ÷ � ö �� �Mè � è��Oè;è � è ÷ = (18.55)

Therefore, solving for the linear system� <4� ö � �
 ÷ � (18.56)

produces < � � ��e�{� � � � and< è � ��Oè<� � � = (18.57)

362



18.7 Factorization updates and down-dates

Next, solve the linear system ��Oè;è d è �A< è � (18.58)

which produces d è � �� N 2è;è < è � �� N 2è�è ��Oè<� � � = (18.59)

Finally, solving the linear system \¡�Ad�� where d�� ö 
d è ÷ � (18.60)

produces the solution by setting�;� �º\ � ?�< � � Ç ��e�Mè �� N 2è;è ��Oè¨� ? ��e�{� È � � � ? Ç ����T� ? ��e�Mè �� N 2è;è ��Oè¨� È � � = (18.61)

This algorithm is analogous to the standard Sherman-Morrison-Woodbury for-

mula which is spelled out in [107] p. 50, and is the subject of [97], but not

identical.

We summarize those results in Algorithm 18.7.2 which solves for ���{�	�;� ��?D� � .
Algorithm 18.7.2 Block Down-dating algorithm to compute �%�T�	�;� � ?D� �

Compute ��Oè;è using previous Algorithm 18.7.1

Factor ��<è;è � }w}#a using Cholesky

Set ¯�� � � a� � 
�� a and solve for � <4��¯
Solve for ��<è;è d è �A< è
Set dH� � 
O�:d aè � a and solve for � \¡�Ad
Set �;� �º\ � ?�< � and �~è �u

Note that Algorithm 18.7.2 is applicable to pure LCP case but it is easy to

extend this to the case where we have both upper and lower bounds as follows.

Assume that the set � is now the list of all variables which are either at a lower

or an upper bound and therefore, for these variables, the value of the � vector

is �>è � [�~è . The principal subproblem now reads ���{�V�;�6VE�e�è�[�~è�V � � . We can

therefore apply Algorithm 18.7.2 to this by modifying the vector � in the obvious

way.

Algorithm 18.7.2 involves two solves with the full matrix � . An alternative

computation method allows to skip one of these which we now derive. We start

from the principal subproblem equation:���T�	�;� � ?D� � ? �e�è�[�~è = (18.62)

The objective is to write ��� in terms of � N 2 � only, i.e., to avoid all extra

solves. We start with multiplying both sides of the equation with � N 2�{� � ��e�{� ?��e�Mè3�¨��Oè;è � N 2 ��Oè<� . Also note that ��� N 2 ��� � � ����T� � �yV ��e�è � è . Using all these
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identities we have:���e�{� � N 2 � � � ��e�T� � � ? ��e�è3� ��Oè;è � N 2 ��Oè<� � � (18.63)� ��� N 2 ��� � ? ��e�è � è ? ��e�è3� ��Oè�è � N 2 Ç ��� N 2 ��� è ? ��Oè;è � è È (18.64)� ��� N 2 ��� � ? ��e�è3�<��Oè;è � N 2 ��� N 2 ��� è = (18.65)

Noting that �e�è�[�~è � ? �e�{� ��e�è3� ��<è;è � N 2 [�,è , we have the result:�;� � ���e�{� � N 2 Ø ?D� � ? �e�è�[�~è Ú (18.66)��? ��� N 2 �;� �(V ��e�è3�¨��<è;è � N 2 ��� N 2 ��� èYVº�����T� � N 2 �e�{�`����Mè3�¨��Oè;è � N 2 [�~è (18.67)�;� ��? ��� N 2 �;� �(V ��e�è3� ��<è;è � N 2 Ç ��� N 2 ��� èYV�[�~è È(= (18.68)

We therefore have a new version of Algorithm 18.7.2:

Algorithm 18.7.3 Block Down-dating algorithm to compute �%�T�	�;� � ?D� � ?�e�è�[�~è
Initialize: solve ��� ½ " ¾ � ?D�
Compute ��Oè;è using Algorithm 18.7.1

Factor ��Oè;è � }w}#a using Cholesky

Set < è � ? � ½ " ¾è V�[�~è
Solve for ��Oè;è d è �A< è
Set �;� � � ½ " ¾� V ����Mè d è and �~è � [�~è

18.8 End notes

Presented in this chapter were essential elements for fast and efficient implemen-

tation of the linear algebra core of any multibody computational code. This is

not the final word, however. To get best possible performance in practice, con-

sideration must be made of specific CPU features. Currently, this also implies

introducing parallelism in the early stages to exploit multicore CPUs which have

become commodities, and it is none too early to get symmetric multiprocessor

(SMP) systems at consumer prices.

The real fun starts after the basic implementation of the algorithms listed in

this chapter, when trying to get the most out of each clock cycle on the CPU.

All block operations—which have not been detailed—can be implemented using

the vector instructions now available in the SSE3 extensions of the x86 processor

family. This allows to perform various operations either on four-dimensional sin-

gle precision vectors or on two-dimensional double precision vectors in a single

clock cycle. After taking this into account, it becomes necessary to use various

tiled storage formats to get maximum performance. Implementing direct meth-

ods which exploit sparsity minimally, using skyline storage and a suitable version

of the Cholesky factorization [141], say, and optimizing the block operations with
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SSE3 instructions, is challenging but feasible. Experience tells that this strategy

delivers higher performance than directly using dense algorithms from LAPACK,

for instance, because there is usually some sparsity in the Schur complement ma-

trices. The real benefit of growing your own is that it is possible to implement

the updating and downdating algorithms efficiently.

Sparsity is ubiquitous in multibody systems. Indeed, a typical constraint equa-

tion involves one or two rigid bodies. Ignoring exotic constraints involving very

many bodies, as can be used for a cable model [253] for instance, the fill ratio of

the matrices of multibody problems is expected to be very near zero. For � bod-

ies with S degrees of freedom and 7 constraint equations each coupling � bodies,

the matrix dimension is
¶ � S �iV 7 , but the number of non-zero elements is

approximately î S ��V�ñ 7À� I6� ¶ � , and the matrix size is
¶ Ú

, giving a fill ratio

of IK� ¶ N 2 � .
Therefore, preconditioned iterative sparse methods are expected to deliver the

needed high performance. Some good reviews have recently been published on

these methods [74, 75, 48] and more work is needed to tailor a fast and robust

technique for multibody systems.

365



18 Solving the Linear Problems

366



19 Conclusion

The discrete principle of least action is a powerful tool. It was used systemati-

cally in the present thesis to analyze several different elements which are often

incompatible. Good methods for dissipative systems do not necessarily apply

to conservative ones, and vice versa. Likewise, good strategies for discretizing

smooth systems may or may not apply to nonsmooth ones. But the discrete

principle of least action dealt adequately with all cases.

Integration methods designed specifically to address DAEs, or stiff problems,

or designed to preserve certain invariants, often rely on higher order discretiza-

tion. Yet again, the discrete least action principle yields satisfactory low order

discretization to integrate such problems.

Low order integration methods perform less computational work per step. This

does not necessarily make for savings in the computational budget though, since

stability can be quickly lost at low order. The remedy is to lower the time step,

sometimes drastically. This is why higher order methods are often better. They

can take bigger steps and do less work overall. But for real-time applications,

like for the �M
T
 meter sprinters, overall is not what counts. Time is of the essence

and efficiency is a lesser concern than speed.

The discrete principle of least action does provide a good resolution to this

dilemma. The stepping formulae it produces are all symplectic and though this

is not a guarantee of unconditional stability, it is a guarantee of global stabil-

ity, whenever local stability requirements are met. Global stability also implies

that the trajectories produced by a discrete mechanical integrator shadow the

exact trajectories of a perturbed physical system [100, 196]. In other words,

the computed trajectories are time-discrete samples of the exact solution of a

physical system that is not very different from the one being simulated. More

stability analysis must be done to understand the ramifications of this and the

detailed nature of the perturbed problem. For simple systems such as the gyro-

scope presented in Chapter 15 however, the perturbed system can be computed

exactly [51] and can be shown to differ from the original problem by terms of

second order in the time step.

For the context of interactive physics, this shadowing property is invaluable

since what is seen on the computer screen is faithful to physics. It is better

to provide the correct dynamics of an approximate physical problem than to

relinquish on interactivity or on model complexity due to slow execution speed,

or to settle for animations that merely imitate physical motion.

The need for raw speed is not limited to interactive simulations though, and

science offers many opportunities to apply the discrete mechanical integrators

advantageously. Molecular dynamics is one such case. The evaluation of thermo-
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dynamical quantities requires the simulation of very large systems with millions

of molecules. This can be both slow if the wrong methods are used, and pointless

if the simulated dynamics does not exhibit the correct geometric properties. If

a strongly stable discrete mechanical integrator is used with a very large time

step, one can quickly compute approximate thermodynamic properties. These

approximations are the exact properties of a slightly different physical system

because of the shadowing properties of discrete mechanical integrators. This

might sound sloppy but many properties of gases and liquids are now well under-

stood thanks to simulations executed with the Lennard-Jones potential, which

is a coarse approximation. Leimkuhler and Reich [178] provide a good survey

of the aims and techniques of molecular dynamics and a deeper analysis of the

consequences of using integration methods that are faithful to the physics. The

main conclusion to draw is that low order methods, inaccurate as they may be,

are useful in scientific work and not simply a good device to deceive the users of

interactive simulations.

But even a broadly applicable principle is not a panacea. It is not the intention

here to claim that discrete mechanical integrators solve all problems related to

numerical integration, not even all those related to integration of mechanical sys-

tems. For one, methods with higher order and higher accuracy are desirable and

it remains to be seen how difficult it is to construct these for complex mechanical

systems, including a mix of constraints and forcing terms.

To recapitulate, it was shown in Chapter 3 how to construct low order discrete

mechanical integrators by approximating the integrals of energetic terms, namely,

the potential energy, the kinetic energy, and the Rayleigh dissipation functions.

Applying the principle of least action for conservative systems, d’Alembert’s

principle of vanishing virtual work for forced and dissipative systems, or the

Fourier inequality for systems with closed boundaries, a stationarity condition

yields the discrete Euler-Lagrange equations, which define a three-terms nonlin-

ear recurrence—a discrete time stepping scheme. Discretizations of the different

terms can be mixed and matched, each one being chosen after considering stabil-

ity requirements. As seen in Chapter 10, a variety of nonsmooth forcing terms

can be successfully discretized also, provided Fourier’s inequality is taken into

account.

The stepping equations can be numerically regularized directly, of course. But

as shown in Chapter 4, diagonal regularization terms can be introduced by giving

finite potential energy to the ghost variables, leading to a semi-implicit discrete

time-stepping scheme, and this is in direct correspondence with the Rubin-Ungar

theorem on constraint realization. The fast oscillations which correspond to

small ghost potential energy can be damped reliably by introducing Rayleigh

dissipation functions acting directly on the ghost variables, and discretized in a

stable way as well. Such regularization and stabilization terms guarantee that

the stepping equations are well-posed and always solvable, even when nonsmooth

forcing terms are included, as was shown in Chapter 10, and exhibit strong linear

stability as shown in Section 4.6. Because these regularization and stabilization

terms appear directly in the Lagrangian, they are in fact physical models and
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the parameters can be used, within stability limits, to model physical phenomena

such as joint or contact compliance, or a small viscous creep in dry contacts.

The strength of the variational formulation is felt again in the discretization of

the free rigid body as done in Chapter 15. In this case, the differential geometry

of the problem is accounted for by the discrete variational principle once the

correct parametrization is chosen. This leads to corrections to the stepping

equations which would have been difficult to guess by other means based on

Taylor series expansions. Indeed, this goes back to the roots of the discrete

variational principle, in the work of Moser and Veselov [208] which dealt precisely

with the free rigid body problem.

Discrete mechanical integrators may not be a silver bullet but they are a

worthy addition to numerical analysis, and a life buoy for the physicist eager

to perform simulations, but not necessarily willing to invest years in studying

the beautiful techniques of numerical analysis. She can just write down the

Lagrangian, estimate the time integrals over a short interval R , differentiate to

recover the stationarity conditions, and start stepping away.

But there is a rub, of course. The discrete Euler-Lagrange equations are at

least linearly implicit for many important cases. This is not only true for all forms

of constraints, but also for quickly varying potential functions. The implicit mid-

point rule studied in Sections 2.4.3 and 3.7 is a case in point. What happens

exactly when these equations are solved only approximately is not known in

general. If the symplectic nature of the flow destroyed when either the solution

is approximated? Which types of approximations can preserve the geometry?

These are open questions. It may be possible to model the effect of an approx-

imation with additional correction terms in the Lagrangian, as was the case for

the regularization, but that is not certain. There is more work to do to identify

robust and fast numerical numerical methods for solving the Euler-Lagrange,

and especially so for the case of dry frictional contact problems.
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Below are brief technical descriptions of and most of the technical terms and all

acronyms used in the main text. The numbers following each item is the section

number where there are mainly used in the text.

3D graphics

The computational process producing a digital two-dimensional image, con-

taining color and intensity information for each pixel on a rectangular

screen, from a collection of three-dimensional geometric objects represented

with vertices edges and triangulated faces with given position and orienta-

tion, by performing a projection on a viewing plane from a given view point.

The computational process involves translating and rotating all the the ob-

jects, selecting the visible objects and portions thereof using view frustum,

backface, and occlusion culling, texture mapping, computing lighting and

shading effects, projecting into the view plane, and antialiasing, as well as

a growing number of additional techniques which can make the rendered

scene more realistic. All these operations involve floating point arithmetic

and require high performance, usually available on a special purpose pro-

cessor on a separate acceleration card.

3D model

A mathematical representation of a three-dimensional object suitable to

be displayed using standard 3D graphics rendering techniques. Typical 3D

models are collection of geometric primitives including points, edges and

triangles. Points are known as vertices in 3D graphics because they also

carry lighting information for the rendering process, but this is not relevant

to the present context. Because of explicit tessellation (decomposition into

triangles), 3D models of simple shapes such as spheres and cones, are nons-

mooth since their surface normals are discontinuous whenever two triangles

meet at an edge.

ACM: Association for Computing Machinery

The first educational and scientific computing society, founded in 1947

and based in the US. The ACM publishes eleven peer reviewed scientific

journals and sponsors more than 100 yearly international conferences for

special interest groups (see SIG). SIGGRAPH (see entry) is one of them.
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Action

Given a mechanical system with configuration space
�
, tangent bundle

� �
,

generalized coordinates and velocities � and h� , respectively, the functional

over paths defined over a finite time interval, h�  e© fÍ" � f 2 « ¢¤ � �
, defined as�ã© h� « ��t �#"�%$ � zM| � � � z �~� h� � z ��� .

Algebra

An algebra consists of a set ] and two binary operators generally denotedV and � , so that ] is closed under the action of the operators. In other

words, given any two elements \%��d@- ] , we have both \ V d@- ] and\ � d�- ] . The addition operator, V , is always commutative (Abelian) so

that \ V dá�rd V \ but the multiplication operator � is not necessarily so.

In general, \ � d ï��d � \ . For the case were \ � d���d � \ , the algebra is said

to be commutative.

Algorithm

A finite set of well defined instructions whose execution accomplish a given

task on a given set of input data in finite time, with a well defined end

state.

Algorithmic complexity

An asymptotic estimate of the increase in computational cost of a given

algorithm as a function of the size of the problem being solved. This is

written as IK��� n � where � is the problem size and � is the complexity

order for algorithms which terminate in polynomial time. For that case, if �s� � is the computational cost for solving a problem of size � , the limit. �Ã� p�032 � N n  ��� � is a constant. Problems whose solution can be verified

in polynomial time but which are not known to have a direct polynomial

solution algorithm are called
¶ ! -hard.

AMS: American Mathematical Society

The AMS was founded in 1888 and is based in Providence, Rhode Is-

land, USA. Its aim is to further mathematical research and scholarship.

The AMS publishes eight scholarly journals as well as indexes and re-

views of over 1,800 journals. It organizes several international conferences

yearly. The MathSciNet online database which provides reviews of millions

of articles—and does export to BIBTEX—is invaluable.

Analytic mechanics

In contrast with the Newtonian formulation, analytic mechanics is entirely

stated in terms of energy which is divided into kinetic and potential. These

two types of energy are scalar functions which can be expressed in terms

of the kinematic variables, namely, the generalized coordinates �6- �
and

the generalized velocities h� , as � � �{� h����� and
! � ����� , respectively. The equa-

tions of motion of Newton’s first two laws are recovered using a variational
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principle. For conservative systems, one can use Hamilton’s principle of

least action though for dissipative systems, d’Alembert’s principle of vir-

tual work is required. The analytic formulation makes it easier to change

to curvilinear coordinate systems and to analyze the various symmetries of

a given system.

Angular momentum

For a point particle in three dimensions with position \ and momentum � ,
the angular momentum about a point di- /ãÉ

is the vector ç � d¨�ã�dò \Y?�dp� .
A consequence of Galilean relativity is that ç � d�� is constant when only cen-

tral forces directed toward the origin act on the particle. For this case,

the particle is confined to move in the plane tangent to ç � 
�� . Changing the

angular momentum of a point mass requires a force j which is not collinear

with the vector \¡?td . This generates a torque � �«ò \Y?�d¨j , which is the

rate of change of angular momentum, namely, hç�� � .
For a rigid body, the summation of the angular momentum over the con-

stitutive point masses yields the expression ç#� ù Ô , where ù
is the inertia

tensor and Ô is the angular velocity vector, both expressed in the inertial

frame of reference.

Ball joint

A joint such that, starting from either body, the motion of the second is

a pure rotation about a point fixed in the body frame of the first. The

origin of the rotation is fixed in both bodies. Ball joints are also known

as gimbals and ball and socket joints. Practical ball joints never allow the

full range of rotations about the common point but the mathematical ide-

alization does because of limitations in their constructions. Because of the

global properties of the group of rigid rotations �wI6��î � , physical construc-
tions involving three hinges—corresponding to the three Euler angles—are

subject to gimbal lock which is a singular point that can in fact break the

device. The description used in robotics suffers from the same singularity.

A quaternion representation of this joint is free of singularity, however.

BDF: Backward Difference Formula

A family of integration methods based on backward differences. Specifi-

cally, the BDF family approximates the value of the time derivative h\ in

the differential equation
( � \%� h\�� f �w�u
 , with a polynomial interpolant using��?*� previously computed values for a method of order � . BDF methods

are generally implicit and have large stability regions.

Bilateral constraint

A general constraint relation which is satisfied as a strict equality. For such

a constraint, the corresponding multiplier is generally unrestricted, unless

another general constraint is imposed on this multiplier.

381



Glossary

Bisymmetric matrix

A matrix  of size �(��� is bisymmetric if it can be split as  � }DV � ? }âa
where

�
is block diagonal and symmetric, and } is strictly lower diagonal.

A bisymmetric matrix is positive definite as long as
�

is since \ a  \��\ a � \ , the other terms cancel each other.

BLAS: Basic Linear Algebra Subroutines

A FORTRAN programming interface definition for software libraries of

subroutines implementing fundamental dense linear algebra operations. It

is divided into three levels of increasing algorithmic complexity. The Level

1 interfaces describe vector-vector and scalar-vector operations, those in

Level-2 describe matrix-vector operations, and those in Level-2 describe

matrix-matrix operations. The list of operations performed by the BLAS

was judiciously chosen to express all the fundamental operations needed

in the development of linear algebra algorithms and is a good template to

follow when implementing a library of linear algebra operations for special

matrix and vector formats.

Body frame

A rigid frame of reference attached to a moving body. A point d Õ in this

frame has inertial coordinates d��@\ V*� d¨Õ , where \ is the center of mass

of the body. If the point d Õ is fixed in the body frame, then, its velocity ishd�� h\ V ÖÔ � dOÕ , where h\ is the velocity of the center of mass and Ô is the

angular velocity of the body as seen in the inertial frame. The body frame

is noninertial.

Box friction

A dry friction model in which the tangential forces are such that they

maintain zero tangential velocity in each perpendicular direction as long as

the corresponding multiplier is within the box bounds © ?Dj ½ max ¾ � j ½ max ¾ « .
Otherwise, the tangential force takes the corresponding maximum value,

opposing a constant force to the sliding velocity. Box friction differs from

Coulomb friction in that it is not isotropic, each sliding direction being

considered independently, and the bounds are independent of the normal

force.

Calculus of variations

The study of derivative of functionals, usually defined as integrals of func-

tions j   / p � / p ¢¤ /
, evaluated over paths \   / ¢¤ / p

, so �ã© \ « �t �#"�%$ � z j � \ � z �~� h\ � z �8� . Variational calculus allows to derive the stationary

conditions for �ã© \ « , which can then be used to solve for the path \ �sf � .
Cartesian coordinates

Given an orthonormal basis
� é ½ ¦¿¾ � of

/ p
, any � -dimensional vector \ can

be written as a linear combination \ � l ¦ � ¦�é ½ ¦¿¾ . The coefficients � ¦
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are called the coordinates of vector \ with respect to the basis
� é ½ ¦¿¾ � .

When the basis vectors are chosen so that the components are é ½ ¦¿¾¦ � �
and é ½ ¦¿¾ª ��
O��§ ï� Ä , the coefficients � ¦ are the Cartesian coordinates.

Cayley-Hamilton theorem

A real or complex square �*��� matrix _ is a root of its own minimum

polynomial � � Ð�� , so that � ��_ ��� � +¦ q 2 ��_ ?�Ð ¦ � p �Z� l � ¬ _ ¬ �@
 , where 

here means the �E�4� zero matrix, and _ ¬

is the F th power of matrix _
with the standard definition that _ " � � p

.

Central force

A force between two bodies acting in the line joining the mass centers.

CG: Conjugate Gradient

An algorithm for the solution of linear systems of equations of the form_ \��.¯ , where _ is a real, square, symmetric and positive definite �	�4�
matrix, and ¯ is a real � -dimensional vector. The CG method is special

because it only requires matrix-vector multiply operations, namely, _ d , for
some � -dimensional vector d , as well as � -dimensional inner products of� -dimensional vectors. The CG method can exactly solve a linear system� stages in infinite precision, but it is considered an iterative method with

superlinear convergence in finite precision. It is the archetype of Krylov

subspace methods.

Characteristic polynomial

Given a real or complex square �*��� matrix _ , the characteristic poly-

nomial � � Ð�� is given by the determinant � � Ðk�Î� �¨�~� ��_ ?�Ð � p � , which is a

monic polynomial of degree � and which can be written in factored form

as � � Ðk�W� � + ¬,q 2 � ÐY?�Ð ¬ � 2 ä , where Ð ¬ � F ����� �O�M=>=>=~��7 , with 7ªa � , are the7 distinct roots of � � Ðk� , and the integers � ¬ - �
are the multiplicities of

each root so that l + ¬,q 2 � ¬ � � .
Chart

A local coordinate system of a manifold
µ

in a neighborhood of a point \y-µ
which maps points in

/ p
to points in

µ
. For a differentiable manifold,

the charts are differentiable functions of the Cartesian coordinates. For

a smooth manifold, the charts are infinitely differentiable and invertible

whenever two of them overlap.

Condition number

Given a matrix _ of size �B�¡� , the condition number is the ratio of mod-

uli of the largest to the smallest eigenvalue. A singular matrix thus has°>±�� � ��_ �ã� �
. The condition number plays an important role in stability

analysis of algorithms.
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Cone

A cone is a point set � ¹ / p
which is closed under positive linear com-

binations so that �#\ V �Jdu- � for any two elements \%��du- � and any

positive scalars �W���*CE
 . The cone is finitely generated if there are 7 basis

elements, \ ¦ - � �8§�� �;���O�>=>=>=>�87 , such that any element dJ- � can be

represented as a positive linear combination of the \ ¦ s, d4� l � ¦ \ ¦ ��� ¦ �
O�8§w���;� �<�>=>=>=>�87 .

Configuration space

For a mechanical system, the set
�

which can precisely and completely

describe the state of the bodies in the system but without regards to the

velocities. For systems of unconstrained point masses, this reduces to
� �/ p

but for a single rigid body in three dimensions, we have
� � /ãÉ ���wI6��î � .

In general,
�

is a differentiable manifold.

Conservative systems

Mechanical systems which conserve energy over time. The study of these

systems is central to analytic mechanics.

Constraint

Any restriction on the generalized coordinates � , the generalized velocitiesh� , any of the generalized forces j ½ ª,¾ � Ä � �;���O�>=>=M= of a mechanical system.

Constraints are written as 7 nonlinear relations ¯ � �{� h� � j ½ 2 ¾ � j ½ Ú ¾ �>=>=M=>� f �°l
 , where the inequality sign is understood component-wise, each element

function ¯ ½ ¦¿¾ satisfying either an equality or an inequality relation, the

bilateral and unilateral components, respectively. A constraint alters the

motion of the system and thus generates constraint forces j ½ ¦�¾ for each

of the ¯ ½ ¦¿¾ . For each ¯ ½ ¦�¾ , the constraint force j ½ ¦�¾ is the product of a

scalar—the constraint multiplier—with a generalized direction vector.

Constraint elimination

A bilateral holonomic kinematic constraint of the form �Q� �{� f �¡� 
 with�¡  / � � ¢¤ /
, restricts the configuration space

�
to a differentiable mani-

fold
µ F �

with dimension
�<��� � µ �W� � ?i� . If the manifold

µ � � N 2 � 
T�
allows for a global chart, one can globally change of coordinates to produce

the � ?@� -dimensional generalized coordinates, ���- µ
. In general, con-

straint elimination is always possible locally but, numerically, this requires

the use of orthogonal factorization (QR), subspace identification, as well

as subspace projections. Each of these operations is generally expensive

to perform numerically. For the case of unilateral constraints, one must

also determine when they are active, i.e., when they should be satisfied as

equality relations, or when they are breaking, i.e., when the relation is a

strict inequality.
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Constraint multiplier

Given a general constraint relation ¯k½ ¦¿¾ l 
 , the generalized force is the

product of a scalar, which is called the constraint multiplier, and a vector.

The reason is that the mechanical system has � degrees of freedom before

the addition of the constraint and, assuming it is a well posed problem, the

equations of motion consist of � differential relations in the � degrees of

freedom. Adding a well behaved constraint relation to the system removes

one of these degrees of freedom and thus must introduce an additional

variable, lest the system of differential equations become overdetermined.

If it were overdetermined, this would mean that one of the equations could

be eliminated—this last constraint relation for instance—without altering

the problem. Otherwise, there are then �6V � differential relations in �YV �
unknowns.

Constraint stabilization

A numerical procedure designed to guarantee that constraint violation for

each and every general constraint component is kept small. Such a pro-

cedure necessarily corresponds to additional forces applied to the system.

Such forces are also necessarily oscillatory in nature, since they act to keep

the constraint violations near the desired value of 
 , and they may or may

not be dissipative.

Constraint violation

For a generic constraint component function ¯ ½ ¦¿¾ � �{� h� � j ½ 2 ¾ � j ½ Ú ¾ �>=>=M=>� f � , any
configuration of the mechanical system such that the corresponding equal-

ity or inequality relation is not satisfied is said to violate the constraint.

When this happens, either the value of the component function ¯Q½ ¦�¾ for an
equality relation, or its negative part for an inequality relation, respectively,

is the numerical value of the constraint violation.

Contact constraint

A general constraint relation which is kinematic and bilateral is called a

contact constraint. This is usually written as ïL� �{� f �H� 
 , with Jacobian � ´ ï � ´ � , with multiplier Ñ (for normal), and producing the constraint

force  a Ñ . When scleronomic, contact constraints are ideal. In addition,

the multiplier Ñ satisfies both a non-negative and a complementarity con-

dition so that 
ja ï c ÑJ� 
 . Contact constraints are used to impose

nonpenetration conditions between solids. Contact constraints produce

discontinuities at such times when the inequality condition becomes satis-

fied as an equality, i.e., such instants f�" such that ïL� � �gf8"1V ),�,� fÍ"DV ),��C 

for )DCE
 , but . �Ã� $ E "#ïL� � �sfÍ"WV ),�~� fÍ"¸V ),�W��
 . Such discontinuities are called

impacts.

Convex combinations

A weighted sum of elements such that the weights are all non-negative
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and sum up to � . For a finite set of points \ ¦ - ] �8§Î� �;���O�>=>=>=>� � , this is

combinations of the form lm� ¦ \ ¦ where � ¦ �*
 for all §w���;� �<�>=>=>=>� � .
Convex hull

Given a point set ] , the convex hull °M± ��] � is the set containing all the ele-

ments in ] as well as all the possible convex combinations of the members

of ] .

Coordinate reduction

See constraint elimination in this glossary.

Copositive matrix

An ���H� real matrix _ such that for any � -dimensional real non-negative

vector \ with \ ¦ �£
 , \ a%_ \	�£
 . When \ a%_ \�C.
 for any non-negative

vector \ ï� 
 , the matrix _ is strictly copositive. Positive semi-definite

matrices are copositive and positive definite matrices are strictly copositive.

As a simple example, if matrix _ can be split as _ �  V � where  
is positive definite and

�
is nonnegative, then, \ a#_ \��u\ a  \ V \ a � \i�\ a � \ . This last term is nonnegative since © � «g¦®ª � 
 , and \ ¦ � 
 by

assumption.

Copositive plus matrix

An ����� matrix _ that is copositive and such that whenever \ a� \4� 

for \�lJ
 , then, ��_	V	_�a �8\i�£
 . This definition follows directly from the

termination criterion analysis of the Lemke algorithm.

Coriolis force

In a noninertial frame which has local angular velocity Ô with respect to

the inertial frame, any object not acted upon by any force (or negligibly so)

and moving with linear velocity h\ experiences an acceleration
|\��m?1ÖÔ h\ ,

where Ô and \ are vectors measured in the noninertial frame. Note the

factor of two and the fact that the body must be in motion with respect

to the noninertial frame. These spurious forces are thus unrelated to the

gyroscopic forces of rigid bodies.

Cottle-Dantzig algorithm

A principal pivot method to solve
x¬M® �  � ��� for given real, symmetric,

positive semi-definite �È��� matrix  and real � -dimensional vector � . This
algorithm proceeds by solving principal subproblem of increasing dimension� ¬

, starting with � 2ã�.� . At each stage F , the solution of the subproblem

with size � ¬ 032`� � ¬ V � starts from the solution of the previous problem

of size � ¬
and uses pivoting operation to remove infeasibility.

Coulomb friction

The model of tangential force at a contact point. For contacting bodies with

normal force ÑBC 
 , the tangential force j ½ � � p ¾ acts in the contact plane,
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preventing any relative tangential motion as long as
4 j ½ � � p ¾ 4 ' � Æ�Ñ , where� Æ1CE
 is the coefficient of static friction, and depends on the properties of

the contacting materials. Sliding occurs when the condition cannot be met,

at which point
4 j ½ � � p ¾ 4 � � ¬ Ñ where � ¬ C 
 is the coefficient of kinetic

friction, and
4 j ½ � � p ¾ 4 opposes the sliding velocity to maximize dissipation.

In general, � ¬ ' � Æ and the coefficient of kinetic friction is weakly depen-

dent on the sliding velocity, so that � ¬ � 
��È� � Æ and � ¬ � � ��� � Æ is in the

range 0.8–0.9. Also, the net tangential force is almost independent of the

contacting areas.

D’Alembert’s principle

The variational principle stating that virtual work vanishes along the phys-

ical trajectory. This is more general than the principle of least action

because it does not require the mechanical system to be conservative.

Subjecting an otherwise conservative system with generalized coordinates� and action � to polygenic forces j , d’Alembert’s principle states thatÿ �yV t6j a ÿ ���u
 over the entire trajectory. The virtual displacements are

assumed to satisfy all other constraints. See also the entry for Fourier’s

inequality.

DAE: Differential-Algebraic Equations

For the differential equation j ��hd���de� f �1�£
 , (see DE) for an � -dimensional

vector d �gf � , if the Jacobian matrix
´ je� ´ d is singular, having only rank7 ' � , then it is a differential algebraic equation. The equations can be

split locally into a differential part and an algebraic part by introducing

the 7 -dimensional vector \ and the � ?º7 -dimensional vector � which

satisfy the combined equations �j �<h\�� \�� � � f �b�A
 , the differential part, and��Q� \%� � �H� 
 . The index of the DAE is the number of derivatives of the

function �� one must apply in order to locally eliminate the � (algebraic)

variables from the system. DAEs of index one can be solved with standard

ODE methods, and DAEs of index 2 can be solved using special purpose

methods. DAEs of index 3 and above, the higher order DAEs, are generally

difficult to solve.

DAI: Differential-Algebraic Inequalities

A differential algebraic inequality is a differential inequality of the formj ��hd���d���l*
 , (see DE), where the inequality sign is understood component-

wise meaning that each equation is either an inequality or an equality,

such that the matrix
´ je� ´ hd is singular, and where the inequality sign

is understood component-wise. Except for linear systems, this type of

problem has not been studied widely.

DI: Differential Inclusion

This is much like a differential equation (DE) but here, the simple explicit

case reads: h\o-�j � \Q� , i.e., the derivative of function \ �gf � is considered to
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be a set. Differential inclusions occur in the study of nonsmooth problems

such as dry Coulomb friction.

Differential form

The integrands of oriented integrals over � -dimensional domains in
/ p

.

Given a � -form Ô n and a � -dimensional surface � - / p
, the integral t � Ô n is

a scalar. Smooth differential � -forms can be differentiated with the exterior

derivative, to produce a � V � -form, e.g., S n 032 � d Ô n .
Discrete action

Given a discrete Lagrangian
B = � � " ���L2� R � , for some configuration manifold�

, the discrete action for fixed time step R is the sumC = � � " �>=M=>=>���>éÅ� R ��� l ¬,q é N 2¬,q " B = � � ¬ � � ¬ 032L� R � , and the discrete action for

variable time step R ¬ is the sumC = � � " �>=M=>=>���>éÅ� R 2�M=>=>=M� R é1�W� l ¬,q é N 2¬,q 2 B = � � ¬ ��� ¬ 032L� R ¬ 0â2,� . The discrete prin-
ciple of least action states that the discrete action is stationary with respect

to variations of the arguments, either � ¬ or � ¬ and R ¬ , which satisfy all con-

straints. For variable time step, the constraint l�¬ R ¬ � f 2ã? fÍ" must be

imposed.

Discrete energy

Given a discrete Lagrangian
B = � � " � �L2� R � , the discrete energy is the partial

derivative

ß = � � " � �L2� R 2,�4� ? ´ B = � � " � ��2� R ��� ´ R 2 . This can be conserved if using a

variable time step. For fixed time step, the discrete energy fluctuates.

Discrete Euler-Lagrange equations

Given a discrete action for fixed or variable time step, the discrete Euler-

Lagrange equations are the sufficient conditions for the discrete action to

be stationary with respect to variation of the generalized coordinates � ¬ ,
subject to constraints. For the fixed time step case, the stationary condi-

tions are� 2 B = � � ¬ � � ¬ 032L� R � V � Ú B = � � ¬ N 2L� � ¬ � R �y�À
 , and this defines a nonlinear

three-term recurrence relation
F�G?I   � � � ¢¤ � � �

, where � � ¬ 032L� � ¬ �1�FHG?I � � ¬ � � ¬ N 2,� . For the variable time step case, the stationary conditions

are subject to an additional constraint, namely, that l�¬ R ¬ � f é@? fÍ" .
The resulting discrete Euler-Lagrange equations then preserve the discrete

energy.

Discrete Lagrangian

Given a Lagrangian |   � � ¢¤ /
, defined as a | � �{� h��� , for some configura-

tion manifold
�
, a discrete Lagrangian is the approximation of the integralB = � � " � �L2� R ��� twv" � zM| � � � z �~� h� � z ��� , which is a function of the endpoints� " � ��2 .
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Discrete time-stepper

A computational method for a dynamical system producing a state vector\ ¬ 032 at discrete time F`V � as a function of the state vector \ ¬
at time

k. It is a numerical representation of the map
F  OU ¢¤ U such that that\ ¬ 032�� F � \ ¬ � , where \ ¬ - U and U is the configuration space of the

dynamical system.

Discrete-variational method

An application of the discrete principle of least action to produce a discrete

time stepping scheme.

Discretization error

Numerical errors resulting from using discrete approximations of continu-

ous functions.

Dissipative systems

Nonconservative systems which monotonically dissipate energy over time.

Driver

A driver is a nonholonomic, bilateral, rheonomic constraint imposing a

velocity restriction. A hinge driver for instance might impose a fixed hinge

velocity which amounts to a relative angular velocity between the jointed

bodies.

Dry friction

Any model of the tangential friction forces between contacting bodies which

exhibits stiction or static friction.

Dynamic

That which changes in time, without regards to how or why it changes.

Dynamics

The study of causes and effects of forces in a mechanical system.

Effort constraint

General constraint relations which do specifically depend on the general-

ized forces or the constraint multipliers are called effort constraints. Such

constraints are always nonideal and nonholonomic, and they may be either

bilateral or unilateral. Unilateral effort constraints produce discontinuities

in both constraint forces and in generalized velocities. Effort constraints

serve to include constitutive laws which are experimentally known relations,

linear or otherwise, between forces and kinematic variables. A typical ex-

ample is the Coulomb friction cone condition which imposes a restriction

between the magnitude of the tangential and normal forces at a contact

point. This nomenclature is borrowed from the systems engineering litera-

ture.
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Eigenvalues and eigenvectors

For a square �i�K� matrix _ , an � -dimensional vector \ and a scalar Ð are

a right eigenvalue-eigenvector pair if _ \¡��Ð�\ . Similarly, d and Ñ are a left

eigenvalue-eigenvector pair when dk» _ � ÑVd�» , where d¨» is the Hermitian

conjugate of d . A right eigenvector \ satisfies the homogeneous linear

system ��_ ?BÐ � p �Í\y�@
 and a left eigenvector d satisfies the homogeneous

linear problem d » ��_ ?�Ñ � p �á�:
 , which means that both _ ?�Ð � p and_ ?EÑ � p are rank deficient matrices. Therefore, the eigenvalues Ð and Ñ
are in any case roots of the minimum polynomial of _ . Each eigenvalue of

matrix _ has at least one right and one left associated eigenvector. In the

case where the set of eigenvectors of matrix _ span all of
/ p

, the matrix_ is said to be diagonalizable.

Energy

A fundamental principle in physics, energy is not easily defined in terms

of other quantities. The change of energy of a mechanical system which

moves from � �sf " � to � �gf 2 � along a path  is the negative of the net work done

along this path, so energy can be defined as“the ability to do work”, though

this is not always consistent. Energy has multiple forms such as kinetic,

potential, as well as thermal, and is additive. In classical mechanics, energy

is the constant scalar function of the generalized coordinates and velocities

which corresponds to time translation symmetry via Noether’s theorem in

systems which are not explicitly dependent on time. This results in defining

energy as the sum of kinetic and potential terms. In classical mechanics,

energy can be negative and is only defined up to an arbitrary constant.

Energy momentum preserving integrator

A numerical integration method designed to preserve the energy and mo-

mentum when applied to a conservative mechanical system.

Euler angles

Any set of three angles describing successive rotations about the principal

coordinate axes in
/�É

to generate an arbitrary rotation matrix so that� � � p � � � É � � p � � � Ú � � p " � � 2 � , where � p�� � � ¦ � is a rotation by angle � ¦
about local or global coordinate axis �#¦ . As long as no two successive axes��¦ � ��¦ 032 are coincident, this construction can generate all rotation matrices� - �wIK��î � . There are 24 different anti-clockwise conventions. Computing

the angles from a given � is not always unique however because �wIK��î � is not
a flat manifold. The degeneracy means, in particular, that it is not always

possible to recover the h� ¦ s from the angular velocity vector Ô . Indeed, the
Jacobian mapping Ô to the h� ¦ s is rank deficient at the degenerate points

and therefore, not invertible.

Euler-Lagrange equations

Given a scalar function j � \�� h\Q� of the � -dimensional time-dependent vector\ �sf � and its velocity h\ �gf � , the Euler-Lagrange equations read
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 , and any solution of these equations is then a

stationary point of the functional �ã©�h� « �ut ��"�%$ � z j � \ � z �,� h\ � z ��� , where h� is the

path � \ �gf �~� h\ �sf �8� for f - © f8" � f 2 « .
Extended reals

The set of real numbers with the explicit addition of
�`�

, where the usual

rules involving infinities are followed, namely, (i) for each \y- /
, \ ��� ��`�

, (ii) for each real \�- /
, \e� �E� �@
 , (iii) for each non-zero real \�-/ ��\ ï�@
 , \e�;
(�à8�9�� � \Q� � � , (iv) non-zero real \�- / � \ ï� 
 , � \ � � �`�

,

(v) 
{�;
 is undefined, and (vi)
�`� � 
 is undefined.

Exterior derivative

The generalization of the vector differential operators div, grad and curl,

to arbitrary differential forms defined on manifolds. For a scalar function�   / p ¢¤ /
, the exterior derivative d

�
reduces to the familiar gradient.

Force

That which can cause changes in the state of uniform linear motion of

physical bodies.

Fourier’s inequality

When applying d’Alembert’s principle of virtual work, it is assumed that

the configuration manifold
�

is an open set and thus, the virtual displace-

ments
ÿ � can be chosen in any open neighborhood of the configuration

variable �6- �
at a given time f . When

�
has a closed boundary though,

the virtual work may not necessarily vanish and in fact, d’Alembert’s prin-

ciple is replaced by the inequality
ÿ �oV t6j a ÿ �jam
 . This is known as

Fourier’s inequality and is central to the analysis of any nonsmooth prob-

lem. In fact, this inequality is a form of complementarity condition since it

holds strictly as an equality whenever � is away from the closed boundary,

and strictly as an inequality when � is on a boundary.

Galilean relativity

Under the assumption that time is universal, advancing at the same rate

and accessible instantly everywhere, the laws of physics—and thus the re-

sult of any physical experiment—are identical in all frames of reference

which move at constant linear velocity with respect to each other. The

mathematical formulation of the laws of physics are therefore explicitly in-

dependent of the origin of the coordinate system, its absolute orientation,

and its absolute velocity. Any two reference frames which differ by a trans-

lation of the origin, a rotation of the coordinate axes, or a constant linear

relative velocity, are rigorously equivalent for the purpose of describing the

laws of motion.

The assumption that time is universal breaks down when moving at very
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high speed or subjected to very high acceleration as explained in Einstein’s

special and general relativity theories.

Gather operation

In numerical linear algebra, any operation which involves copying data that

is not stored contiguously in memory into a contiguous storage location.

Gauss’ principle of least constraint

The postulate that, for a mechanical system with momentum � and gener-

alized forces j subject to general constraint relations, the trajectories sat-

isfying the constraints minimize the scalar function
4 h�H?Bj 4 Ú . Being based

on accelerations, Gauss’ principle of least constraints is less fundamental

than the principle of least action.

Gauss-Seidel

An iterative process that is used to solve linear and nonlinear equations by

successively solving simple one-dimensional problems. The convergence is

linear.

GEMM: General Matrix Multiply and add

The fundamental numerical linear algebra operation consisting of comput-

ing the updated product  � � _Îd£V �� for given general, real, dense

matrices _ � d and  of compatible sizes, and � and � are scalars.

Generalized coordinates

For a mechanical system with � degrees of freedoms with configuration

space
�
, the generalized coordinates �J� � ��2L� �~Ú��>=M=>=>��� p � a are � -tuples

which can represent all the elements in
�
. The generalized coordinates

may or may not form a vector space. The term generalized coordinates

appeared in Hamilton’s work (as quoted in [284] and [173] for instance) to

contrast with Cartesian coordinates and to specifically include the case of

curvilinear coordinates which do not form a vector space, except locally.

The Euler-Lagrange equations of motion are invariant under continuous

coordinate transforms and are thus valid for any choice of generalized co-

ordinates.

Generalized directional derivative

A generalization of the directional derivative for nonsmooth functions j  / p ¢¤ / +
satisfying a Lipschitz condition near some point \ , so that4 j � d¨�3?Bj �#� � 4 a � 4 d(? � 4 whenever de� � are within a sufficiently small

neighborhood of \ . The generalized directional derivative j I � \KÀ��¨� in the

direction of ��- / p
is defined as the limit of the supremum of the ratios� j � \ V )��¨��?Ej � d¨�8� �;) as ) ¤ 
 from above and d ¤ \ . This reduces to

the one-sided Gâteaux derivative when choosing d��º\ , and is the Gâteaux

derivative when ) is not restricted to )bC�
 . This is sometimes referred to

as the Clarke derivative after its main author [66].
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Generalized forces

For a mechanical system with generalized coordinates �Y- �
, the general-

ized forces are the vectors j so that work, the line integral
Ä �.t6j a � � ,

should have the same value as when evaluated in the original Cartesian

coordinate system definition. If �j is the force vector in Cartesian coordi-

nates, the generalized forces become jº� � ´ �;� ´ \k� N a �j , For a monogenic

force with potential �! � \Q� , first express the Cartesian coordinates as func-

tions of the curvilinear ones (this is where the inverse comes from), \ � ��� ,
and then, compute

! � � � \Q�8�K� �! � \ � ���8� . The generalized forces can then

be computed as j�� ? ´ ! � ��� � ´ � a , as usual. A similar argument applies

to dissipative forces derived from Rayleigh functions. For other cases, the

inverse Jacobian is always needed.

Generalized gradient

For a nonsmooth function j   / p ¢¤ / +
which is piecewise continuous, the

generalized gradient
´ j � \Q� is the convex hull of the set of all the gradients

of different continuous branches of j in a small neighborhood of the point \ ,
in the limit where the neighborhood vanishes. For instance, the generalized

gradient of the absolute value function & \�&�� � \ Ú is the set © ?��;�M� « .
Generalized momentum

In analytic mechanics, given a Lagrangian | � �{� h�;� , the generalized mo-

mentum is the derivative with respect to the generalized velocity � �´ | � � � h��� � ´ h� a . This definition reduces to the Newtonian mechanics, namely,�á�*7 h\ �sf � , for the case of point particles in Cartesian coordinates but gen-

eralizes to curvilinear coordinate systems as well.

Generalized velocities

Given a configuration space
�

for a mechanical system with generalized

positions � . If � �gf � is a permissible trajectory so that � �sf ��- �
for all times f ,

then, the time derivatives h� are the generalized velocities. The distinction is

made to correctly compute the velocities in a curvilinear system. Assuming

for instance that
� � / p

, and choosing a curvilinear coordinate system� � \Q� , the generalized velocities then become h��� � ´ �;� ´ \Q� h\ , and the term

in parenthesis is the Jacobian of the coordinate transformation.

Ghost particles

In a mechanical system, a point particle which has nonpositive mass. Ghosts

are only present in the analytic formulation of mechanics when constraints

are introduced. Their coordinates are the values of the constraint multi-

pliers and they usually have exactly zero mass. The framework of analytic

mechanics allows to treat ghost particles systematically along with all other

physical bodies using just one universal set of rules. An isolated ghost par-

ticle with generalized coordinate � and finite negative mass ?ã7 subject to

potential function ? ! � ��� has the same mechanics as that of a point particle
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of mass 7 subject to the potential
! � �;� but it satisfies a “maximum action

principle”. The term ghost particle is also used in high energy physics when

constraints are imposed on fields, which is analogous to this case.

Gravity

A central force of attraction between any two physical bodies whose poten-

tial is inversely proportional to the distance and directly proportional to

the product of the masses:
! � ^ �O7�2 74Ú 4 \ ½ 2 ¾ ?�\ ½ Ú ¾ 4 N 2

, where ^ � is the

universal gravitational constant. Near the surface of the Earth, which is a

large distance from the center, neglecting the reaction force on the Earth

itself, this potential reduces to the simple form
! �£7 r � < a \ for a point

particle with mass 7 and position \ , where r � is the constant acceleration

of gravity and < is a unit vector pointing upwards.

Group

A group consists of a set ] , a unit element �È- ] , and a binary operation� acting on elements of ] , so that: (i) ] is closed under the action of �
so that for \���d�- ] , \ � d�- ] , (ii) each element \�- ] is invariant when

operated on by � so � � \��A\ � �¡�A\ , (iii) for each element \�- ] there

exists an inverse \ N 2 - ] such that \ � \ N 2 �º\ N 2 � \¡��� . When the binary

operation commutes so that \ � dH�Ad � \ for all pairs of elements \%��dá- ] ,

the group is Abelian, and non-Abelian otherwise.

Gyroscope

A gyroscope is a device consisting of an axially symmetric rigid body at-

tached by a ball joint to a point on the symmetry axis and rotating at

very high speed about the symmetry axis. When the rotation speed is high

enough, the body keeps a fixed orientation in space which is useful in the

navigation of aircrafts and missiles. The mathematical representation of

this problem is called the Lagrange top.

Gyroscopic forces

The extra force terms arising from a configuration dependent mass matrix � ��� when evaluating the Euler-Lagrange equations of a given mechanical

system. For a rigid body, this is ÖÔ ù Ô in the inertial frame where
ù

is

the inertia tensor and Ô is the angular velocity vector as seen from the

inertial frame, and to
ÖÔ Õ ù " ÔwÕ in the body frame, where

ù " is the constant

inertia tensor and ÔwÕ is the angular velocity evaluated in the body frame.

Gyroscopic forces are workless as easily seen in this case since Ô a ÖÔ  � ����Ô��
 . By extension, any force term that is workless is called a gyroscopic force.

Rigid body gyroscopic forces are also called non-inertial forces. They are

not Coriolis forces, however, since the gyroscopic forces do not vanish in

any frame of reference.
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Hinge joint

A joint such that, starting from either body, the motion of the second is a

pure rotation about an axis both fixed in the body frame of the first. Me-

chanical joints are made by firmly attaching a peg on a body and drilling a

hole in the second. The common axis shared by the peg and the hole is the

hinge axis. Each body then has an axis which is fixed in both orientation

and position. The effect of the constraint is to maintain colinearity between

these two axes as well as preventing translation along the rotational axis.

Hinge joints are also known as revolute joints. Mathematical definitions

of hinge joints must be carefully designed lest they do not distinguish be-

tween colinearity and anti -colinearity. A quaternion based definition does

distinguish the two cases.

Holonomic constraint

A general constraint relation which is satisfied as a strict equality and

which depends only on the generalized coordinates and time. Holonomic

constraints are denoted as the restriction �k� �{� f �W�u
 and the corresponding

multiplier is written as Ð and they generate generalized constraint forces as^Îa Ð where the matrix ^ � ´ � � ´ � is called the Jacobian of the constraint.

Holonomic constraints are always bilateral and ideal when they are sclero-

nomic. They can sometimes be eliminated if the structure of the manifoldµ
they impose on the configuration space

�
is simple enough.

Homogeneous function

A function j � \k� such that j � �#\k�(�5�0ó{j � \k� is homogeneous of degree z .
For a function of multiple arguments �Q� \ ½ 2 ¾ ��\ ½ Ú ¾ �>=>=>=M��\ ½ + ¾ � , the function

is homogeneous of degree z ¦ in the § th argument when the identity�k� \ ½ 2 ¾ ��\ ½ Ú ¾ �>=M=>=>� �#\ ½ ¦¿¾ �>=>=M=�\ ½ + ¾ �w���Pó � �k� \ ½ 2 ¾ ��\ ½ Ú ¾ �>=M=>=>� \ ½ ¦�¾ �>=>=M=�\ ½ + ¾ �
is satisfied. From Euler’s homogeneous function theorem, we have� ´ j � \k� ´ \k�8\4� z j � \Q� , and similarly for homogeneous functions of multiple

arguments.

Homokinetic joint

A joint such that, starting from the first, the motion of the second body is

a rotation about a point fixed in the body frame of the first but without

rotation about the polar axis. This means that if we attach both bodies

with separate hinge joints to the world, the hinge angle of the first and

second bodies will be identical. This is a superior rotational transmission

device when compared to a Hook joint but is more difficult to build and

more fragile.

Hook joint

A joint such that, starting from either body, the motion of the second is

a rotation about a point fixed in the first body frame but restricted to

maintain a perpendicularity condition between an axis fixed in the body
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frame of the first and an axis fixed in the body frame of the second. The

physical construction of a Hook joint consists of a pair of crossed axis

soldered together, and each axis then mounted on a hinge in one of the two

bodies. The resulting mechanism allows to transmit rotation about an axis

fixed in the first body to the second, without requiring the two rotation

axes be aligned. However, the rotational velocity of the second body about

its rotational axis varies with the net rotational angle.

Ideal constraints

General restrictions on a mechanical system whose constraint forces do not

change the energy of the mechanical systems, i.e., those whose mechanical

action is workless. When the constraint force does work on the system,

dissipative or otherwise, the constraint is called nonideal, as in the specific

case of effort constraints.

Impact

Any physical process which produces a finite impulse F for an arbitrary

small time interval, or at least, a time interval which is much smaller than

the resolution of a measurement apparatus or the time step of a simulation.

Impacts serve to decouple the time scales in a simulation or an analysis of

the motion, resolving the action of the impulsive forces separately from all

others whose impulses vanish over the chosen time interval.

Impulse

The time integral of a force j over an interval © f�" � f 2 « is an impulse, F �t �#"�%$ j . Given Newton’s second law written as h�á��j , where � is the momen-

tum, the impulse is thus equal to the net change in momentum between

the times fÍ" and f 2 . Though the definition of impulse makes no reference

to the size of the interval © f8" � f 2 « , it is customary to use the term mostly

for the case of an impact. Indeed, if a force is very large but only over a

very short interval of time, so that the limit . ��� $ E " t � 0 $� � z j�� F , the force

is called impulsive and it produces a discontinuity in the velocity since we

still have � �sf3V ),�W?m� �sf �D� F , which means that, assuming constant mass7 , the velocity h\ has a jump discontinuity at f .
Inertia

That which restrains the action of a force in changing the quantity of

motion. For a point particle, this is the mass and for a rigid body, the

inertia tensor. Inertia is unrelated to dissipation.

Inertia tensor

A positive definite matrix describing the rotational inertia of a rigid body.

A rigid body in a state of constant rotation about a given axis opposes a

different inertia to torques applied along any of the three coordinate axes.

Given there are three possible independent axes of rotation, there is a total
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of six combinations to consider. These are collected in a symmetric matrixù
in the world frame and is a rank 2 tensor. The inertia tensor depends

on the distribution of mass within the rigid body and can be evaluated

in the body frame as the constant matrix
ù " . Since

ù " is symmetric and

positive definite, it can be diagonalized with an orthonormal coordinate

transformation. When this is chosen so the diagonal values are sorted in

decreasing order, the coordinate axes of this frame are called the principal

axes and the corresponding three inertia value are the principal inertiae.

Inertial frame

Any frame of reference in which the three laws of Newtonian mechanics

can be verified. In particular, any frame in which there is no observable

Coriolis force. Any two inertial frames of reference differ by a translation,

a rotation, and a constant relative linear velocity, but rigorously share the

same universal time, both in absolute value and in the rate of flow. The

relationship between two inertial frames is called a Galilean transformation

and these form a group. The independence of the laws of physics under

Galilean transformations is called the Galilean principle of relativity. Since

all inertial frames are equivalent, any such is called “the inertial frame”.

Interactive physics

A computer simulation of a physical system which responds in real-time

with minimal delays to user inputs, and is used to drive multisensory de-

vices such as, for instance, real-time 3D graphics displays, motion plat-

forms, haptic devices, and sound systems.

Interactive simulations

Any simulation of a system, physical or otherwise, designed to respond to

user inputs with visual or other sensory cues without significant time delay.

Joint

A joint is a bilateral, kinematic, ideal, scleronomic constraint relation,

which involves either two bodies or a single body. In the latter case, the

body is said to be constrained to the world or the inertial frame. Math-

ematical joints are idealization of mechanical devices designed to connect

various moving parts. Systems composed only of bodies connected with

joints allow a particularly simple description of the motion based on kine-

matic analysis, the topology of the interconnection graph, and constraint

elimination. Such techniques are known as articulated body or composite

body methods.

Joint angles

The coordinates describing the relative motion of two bodies connected by

a joint. Since the relative motion of two bodies is the manifold
/ãÉ �wI6��î � ,

allowing arbitrary relative translations and rotations, a joint restricts this
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relative motion to a manifold
µ - /�É �wIK��î � of dimension 7m� �<��� � µ �Z'S . After choosing a coordinate chart on this manifold, the relative motion is

described by the coordinates of that chart. Since the manifold
µ

might not

be flat, the general term joint angles is preferred. This terminology comes

from robotics where the most important joint is a hinge, since they are

easy to build and since most motors naturally produce rotational motion.

Keller’s algorithm

A principal pivot algorithm to solve
x¬M® �  � ��� for given, real, �E�4��! -

matrix  and � -dimensional vector � . The algorithm proceeds by main-

taining a feasible candidate solution at all stages and pivoting on the most

negative slack variables.

Kinematic

That which is related to motion.

Kinematic constraint

A general constraint relation which does not depend on the generalized

forces of a mechanical system is called a kinematic constraint. It imposes

a restriction only on the kinematic variables, namely, the generalized coor-

dinates � , the generalized velocities h� , and the time f .
Kinematic variables

In a mechanical system, those variables which describe the state of the

motion. This qualifier specifically excludes all forces, masses, and inertia.

Kinematics

The study of the geometry of motion but without regards to what causes

it. Kinematics is the part of mechanics which excludes dynamics.

Kinetic energy

The net work needed to bring a physical body from rest to a given value of

generalized velocity h� . For a point particle of mass 7 with Cartesian coor-

dinates \ and velocity h\ , this is the line integral t Å j a � \ . Using Newton’s

second law of motion, j�� 7 |\ , and noting that
|\ � \ is the total deriva-

tive of � �L�;�T� 4 h\ 4 Ú , the line integral is computed to be � 7��;��� 4 h\ �gf � 4 Ú , and is

independent of the path of integration  . This definition is then used addi-

tively to construct the kinetic energy of more general physical bodies after

resolving them as aggregates of point particles. Kinetic energy of a general

system is written
� � �{� h�;� and it takes either the form � ��;�T� h� a  � ��� h� for a

configuration dependent mass matrix  � ��� , or � ������ h� a  h� for a constant

mass matrix  .

Kinetic friction

Kinetic friction is a force acting in the tangential plane of contacting bod-

ies subject to dry friction. It acts directly against the sliding velocity but
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is (largely) independent of the magnitude of same. The magnitude of the

kinetic friction force is well approximated by � ¬ Ñ where � ¬ CE
 the coeffi-

cient of kinetic friction, and Ñ is the magnitude of the normal contact force.

Generally, � ¬ is smaller than the static friction coefficient � Æ for the same

materials by �
 – ��
 %. It varies quickly with the relative contact speed near

zero but quickly levels out. Kinetic friction acts in the same direction as

viscous friction would but in sharp contrast to the later, it is very nearly

independent on the relative sliding speed but, instead, linearly dependent

on the magnitude of the normal contact force, i.e., the magnitude of the

force pushing the bodies against each other.

KKT: Karush-Kuhn-Tucker conditions

The KKT conditions are the necessary and sufficient complementarity con-

ditions which are met at an optimal point of a nonlinear program consisting

of minimizing a continuously differentiable function j � \Q� subject to contin-

uously differentiable constraints R�� \Q�W��
 and �k� \k���E
 . For linear systems,

the KKT conditions lead to a linear problem with a saddle-point matrix.

For this reason, saddle-point matrices are also called KKT matrices by

some authors.

Lagrange function

The difference between kinetic and potential energy expressed in gener-

alized coordinates. The most general form is a function | � �{� h�O� f � , which
includes possible time dependence, but most common model used is the

time independent form | � � � h�;��� � � �{� h���1? ! � ��� . When holonomic con-

straints are considered, the augmented Lagrangian is modified to include

terms of the form Ð a��Q� � � f � where Ð is a Lagrange multiplier (a ghost vari-

able) and �Q� � � f �Å�A
 is the rheonomic kinematic holonomic constraint to

enforce. The augmented Lagrangian is then a proper Lagrangian function

of the extended arguments �{� h� � Ð�� hÐ .
Lagrange multiplier

Given a function j   / p ¢¤ /
which is to be minimized (or maximized) sub-

ject to the restriction �Q� \Q�w��
 for �á  / p ¢¤ / +
, the Lagrange multiplier is

the vector of proportionality constant in the equality
� je� � \4��Ð a � � � � \

which is satisfied at any stationary point of the restriction of j on the

manifold �Q� \Q�w�u
 .
Lagrange top

A symmetric rigid body of mass 7 designed so that the three principal in-

ertiae are
� 2Z� � Úb' � É . It is attached to a point lying on the symmetry axis

at some distance ç from the center of mass. The distance ç is chosen so that

the principal inertiae about the fixed point which are
� 2 V 74ç Ú � � 2 V 74ç Ú � � É ,

satisfy
� 2�� � Ú`C � î . The Lagrange top problem is to start the rigid body

with a small angle
�
from the vertical, rotating at high speed about the
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symmetry axis but being at rest otherwise, and to compute the resulting

motion. When subjected to a constant downward gravitational force, the

heavy symmetric top exhibits simultaneous precession and nutation. Pre-

cession is a slow rotational motion about the constant vertical axis aligned

with the gravity force, and nutation is an oscillatory motion of the position

of the center of mass along the same vertical axis.

LCP: Linear Complementarity Problem

Given a square �E�4� matrix  and an � -dimensional real vector � find� -dimensional real vectors � and é such that  �ÈV �K� é subject to the

condition that 
ûa � c é �:
O� i.e., ��¦ � é1¦ �À
 , and ��¦�é1¦ � 
 for all§�� �;���O�>=>=>=>� � . Computing the solution of an LCP is
¶ ! -hard in general

though the average computational complexity is similar to that of matrix

factorization.

Least action principle

In mechanics, the principle stating that the action functional—the time in-

tegral of the Lagrange function—has a stationary value with respect to first

order infinitesimal variations compatible with imposed constraints, when

evaluated on the physically realized trajectory. This variational principle

yields the equations of motion of a mechanical system via the calculus of

variations.

Lemke algorithm

A pivoting algorithm to solve
x¯¬M® �  ����� for a given �u�B� real matrix and real � -dimensional vector � . The Lemke algorithm processes more

LCPs than any other solution algorithm, either computing a solution � � é
or determining that no solution exists, since the only condition for the algo-

rithm to terminate with a conclusive answer is that matrix  be copositive.

The performance of the Lemke algorithm is also quite good on average, of-

ten terminating with � pivot operations. However, the pivot operations

used in the algorithm are not principal pivots and this destroys any sym-

metry that might be present in  . In addition, the algorithm cannot be

restarted from an approximate solution.

Lie algebra

Given an � -dimensional Lie group ^ , consider the infinitesimal elementsü ½ ¦¿¾$ � �¿� V ) ¥~¦ . For small enough ) , these elements are linear injectionsµ ¢¤ µ
and can be represented by matrices. To first order in ) , the

composition of two maps
ü ½ ¦¿¾$ � ü ½ ª�¾$ is the linear combination

�¿� V ) �s¥>¦�V�¥�ª � .
By continuity, the difference

ü ½ ¦¿¾$ þ ü ½ ª�¾$ \â? ü ½ ª�¾$ þ ü ½ ¦¿¾$ \ must be an infinitesimal

of order IK� ),� and from bijectivity, that is also a map in ^ . Therefore, the

operators ¥>¦ form an algebra with binary operations“ V ”and the Lie bracket© ¥>¦ � ¥�ªM« � ¥~¦�¥ ª ? ¥�ª¥~¦ � ï�¦®ª ¬ ¥ ¬ , where the ï�¦®ª ¬ coefficients are the structure

constants. This is the associated Lie algebra g of a Lie group ^ .

400



Glossary

Lie group

A Lie group ^ is such that the set ] (see entry for Group) is a differentiable,� -dimensional manifold of smooth maps
ü   µ ¢¤ µ

, defined over some

manifold
µ

, and such that the binary operation � is the map composition

operator
þ
so that for

ý � ü - ] ,
ýuþ(ü - ] . In other words, for any\�- µ

, the result of
ý � ü on \ is

ý � ü � \Q�8� . By the assumed group property,

these maps are invertible and therefore bijective. By the manifold property,

these maps can be expanded in a � -dimensional basis of operators, ¥¦ �8§W��;� �<�>=>=>=>� � , at least in a small ball of radius ) of the identity operator defined

as
�¿�   µ ¢¤ µ

,
�¿� \4� \ for all \ . These infinitesimal generators form a

Lie algebra.

LU: General Matrix Factorization

Given a square �i�6� matrix _ , the LU factorization (also known as PLU)

is the computation of a permutation matrix ! , a unit lower triangular,

matrix } , and an upper triangular matrix
�
, all of size �E�y� , such that_ � !Å} � . This is achieved using Gauss-Jordan pivot operations in which

multiples of a given row are added to others to annihilate non-zero entries in

a given column. Permutation of rows and columns—pivoting—is necessary

to avoid zero or small divisors when performing the pivots and to maintain

numerical stability. LU factorization has complexity IK�s� É � and is stable

when using complete pivoting, searching through the entire matrix at each

stage to identify the best pivot. Once the factors } and
�

are computed,

one can easily solve for \ in _ \á��¯ with direct operations with } and
�
.

Manifold

A point set
µ

that is locally isomorphic to
/ p

in an open neighborhood� � \Q� of all points \y- µ
, where � , which is the same for all points, is the

dimension � � �<��� � µ � . A manifold allows a chart mapping points in
/ p

to

points in � � \Q� , establishing a curvilinear coordinate system. Collection of

charts allow to represent any point \y- µ
as a function of vectors d�- / p

,

each centered at some origin d ½ ¦¿¾ , §â����� �O�M=>=>= . Only differentiable manifolds

are considered, namely, those whose charts are all differentiable functions

of their Cartesian coordinates. A simple example of a manifold is the set of

points on the unit circle in two dimensions, and the charts would produce

the polar angle
ü
, perhaps using either the tangent or cotangent function in

different sectors to avoid the singularities of these on the coordinate axes.

Mass

A positive scalar 7 CE
 associated with each physical body in a mechanical

system, which is both the inertia of the body with respect to forces applied

at the center of mass as well as the parameter 7 used to compute the

gravitational potential energy. No distinction is made between inertial and

gravitational mass.
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Mass matrix

For a mechanical system with � -dimensional configuration space
�

with

generalized coordinates � , generalized velocities h� , Lagrangian | � �{� h�;� , and
momentum �£� ´ | � �{� h��� , the (possibly configuration dependent) �J���
matrix  such that �á�  � �;� h� . Cases where the momentum is not linear

in the generalized coordinates are not considered.

Mechanics

The description of the causes of the motion of physical bodies. The term

mechanics by itself is often taken to apply specifically to the study of the

motion of point masses, and various qualifiers are then added to cover

the study of other physical bodies such as continuum mechanics, fluid me-

chanics, or rigid body mechanics. By extension, the analysis of ordinary

differential equations, a fundamental element of mechanics, is often called

mechanics as well. The denomination “classical mechanics” contrasts with

quantum mechanics and relativistic mechanics, which study the special case

of very small and very fast moving objects, respectively.

Minimum polynomial

Given a real or complex square �y�6� matrix _ with characteristic polyno-

mial � � Ðk�¸� � + ¬,q 2 � ÐH?BÐ ¬ � 2 ä � �¨�,� ��_ ?BÐ � p � , the minimum polynomial of_ , � � Ðk� , is the monic polynomial with the same roots as � � Ðk� , but where all
the multiplicities have been removed, namely, � � Ð��Z� � + ¬,q 2 � ÐH?BÐ ¬ � . This

can be expanded to � � Ð��¸�Jl +¬,q " � ¬ Ð ¬ where � ¬ - �
, ��+ ��� .

MLCP: Mixed Linear Complementarity Problem

Given a real �E�4� square matrix  a real vector � of dimension � , and
extended real vectors çÍ��< of dimension � so that < ¦ ��ç ¦ - / V �T�`��� � the
MLCP is the problem of finding real � -dimensional vectors � � é 0�� é N � with
non-negative components so that: �`V �Å� é 0�? é N
ba � ?�ç c é 0o�*

Ãaj<á? � c é N �*
O�
where the perpendicularity sign is understood componentwise as in the case

of the definition of the LCP.

Momentum

In Newtonian mechanics, which specifically considers point masses in three

spatial dimensions, momentum is defined as the product of mass and ve-

locity. In Cartesian coordinates, for a point mass with position \y- /ãÉ
and

mass 7 , this is 7 h\ , often written as 7m� where �H� h\ . In analytic mechan-

ics, momentum is defined as ��� ´ | � � � h��� � ´ h� a . The two definitions are

identical for point masses but the analytic definition extends to curvilinear

coordinates as well.
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Monogenic forces

In a mechanical system with configuration manifold
�

and generalized

coordinates � , any generalized force j which can be written as the gradient

of a scalar function
! � ��� as j�� ? ´ ! � ��� � ´ � a . The condition for a force

to be monogenic is that the work done by the force along any closed path vanishes, i.e., that ô Å j a � �á� 
 for any contour  . Monogenic forces

are also called conservative or potential forces. For mechanical systems

subject only to monogenic forces, Hamilton’s principle of least action is

a sufficient and necessary variational condition for the motion to satisfy

Newton’s three laws of motion.

Multibody

A mechanical system composed of several physical bodies which are kine-

matically constrained to each other. This contrasts with many-body sys-

tems which are composed of very many physical bodies interacting only via

forces.

Murty’s principal pivot method

A principal pivot method to solve
x¬M® �  � ��� for given, real, ������! -matrix , and real vector � . The method proceed by performing a principal

pivot operation on the infeasible variable with the smallest index at each

stage. This is perhaps the simplest method to code, and unlike most other

principal pivot methods, it is not restricted to symmetric positive definite

or semi-definite matrices. It can also be started at an arbitrary candidate

solution and extended to solve problems with !#" -matrices. However, the

average performance on random problems is disappointing, performing up

to � Ú
pivots to solve a problem of size � .

NCP: Nonlinear Complementarity Problem

Given an � -dimensional mapping j   / p ¤ / p
, find real � -dimensional

vectors � and é , such that j ��� �È� é � subject to the condition that 
�a� c é �E
<� i.e., �;¦ � é1¦ �E
 , and ��¦�é1¦ ��
 for all §w���;� �<�>=>=>=>� � .
Newton-Raphson method

A numerical method to solve nonlinear systems of equations j ¦ � \k�W��
O�8§â��;� �<�>=>=>=>� � , where j ¦H  / p ¢¤ /
, and \@- / p

. The method proceeds by

solving a succession of linear systems,
( ½ ¬ ¾ � \ ½ ¬ 032 ¾ ?*\ ½ ¬ ¾ �¡� ?Dj � \ ½ ¬ ¾ � ,

where F is the iteration index, and © ( ½ ¬ ¾ «Ã¦®ª � ´ j ¦ � \ ½ ¬ ¾ � � ´ \ ª is the Jacobian
matrix. For the modified Newton method, Jacobian

(
is not updated

at every stage F . A variant of this method can also be used to solve

unconstrained minimization problems defined with a scalar function
�  / p ¢¤ /

, and this formulation applied to
4 j � \k� 4 Ú guarantees convergence

of the method when a suitable line search strategy is used. See [158] for

instance.
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Newtonian mechanics

The specific description of motion and its causes provided by Newton in the

Principia [215] according to a series of axioms and three fundamental laws.

The axioms define bodies as point masses, mass as proportional to weight,

inertia as the resistance to change of motion, momentum (the quantity of

motion) as the product of mass and velocity, forces as the actions which

cause change in the quantity of motion, and central (centripetal) forces

which act directly in along the line separating two bodies. The laws are as

follows (a)“Every body continues in its state of rest, or of uniform motion in

a right line, unless it is compelled to change that state by forces impressed

upon it” (b) “ The change of motion is proportional to the motive force

impressed; and is made in the direction of the right line in which that force

is impressed”(c)“To every action there is always opposed an equal reaction:

or, the mutual actions of two bodies upon each other are always equal, and

directed to contrary parts.” Newton mechanics is to be contrasted with

analytic mechanics which produces the same laws of motion but starting

from a different principle.

Noether’s theorem

In physics, the theorem stating that any given single-parameter Lie group

acting on the kinematic variables of a mechanical system which leaves the

Lagrange function unchanged by its action corresponds directly to a scalar

function of the same coordinates which is constant along the physical tra-

jectory. The theorem also provides a procedure based on the corresponding

Lie algebra to identify the said function.

Nonconservative systems

Mechanical systems which either dissipate energy through various friction

mechanisms, or gain energy through drivers and other rheonomic con-

straints.

Nonholonomic constraint

A general constraint relations which can definitely not be eliminated be-

cause it does not correspond to the restriction of the configuration space
�

to a differentiable manifold
µ F �

is called nonholonomic. Unilateral con-

straints are always nonholonomic. A kinematic bilateral constraints of the

general form r � �{� h� � f �W��
 is nonholonomic if it cannot be expressed as the

time derivative of a holonomic bilateral constraint of the form �Q� �{� f ���J
 ,
which means that the differential equation r � �{� h� � f �Y� 
 is not an exact

differential.

The term nonholonomic is specifically used to distinguish bilateral kine-

matic constraints which are nonholonomic, namely, constraints of the formr � �{� h� � f �w�u
 , since other types of nonholonomic constraints have their own

specific qualifiers.
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Noninertial frame

Any frame of reference in which at least one of the three laws of Newto-

nian mechanics do not hold. Usually, the first law is clearly violated by

the appearance of a Coriolis acceleration. This can be measured using a

pendulum for instance since the plane spanned by the supporting rod and

the velocity vector will then rotate about the axis of action of the gravity

force. The Earth itself is a noninertial frame as demonstrated by Foucault’s

famous pendulum.

Nonsmooth

A function with discontinuities.

Numerical error

The difference between an exact mathematical solution of a problem and

the approximate solution computed by a finite precision algorithm. The

sources of numerical error include discretization and roundoff from finite

precision arithmetic.

Numerical integration

Any algorithmic process designed to compute an approximate numerical

solution of a differential equation.

Numerical stability

A finite precision algorithm designed to solve a given mathematical prob-

lem is numerically stable when a small change in input data leads to a

corresponding small change in output data. For a linear problem, the ratio

of these errors often contains the condition number of the matrix, which

may be large. A useful refinement of the concept is that of backward sta-

bility. Backward stable algorithms produce the exact solution of a problem

with slightly different input data from the given one.

ODE: Ordinary Differential Equation

An ordinary differential equation is a differential equationj � \ ½ + ¾ ��\ ½ + N 2 ¾ �>=>=>=M� h\���\%� f �i� 
 such that the matrix
´ je� ´ \ ½ + ¾

is non-

singular. In particular, an explicit ODE is an equation which can be put

into the form \ ½ + ¾ � [j � \ ½ + N 2 ¾ � \ ½ + N Ú ¾ �>=>=>=M� h\���\%� f � . Applying order reduc-

tion on this as was done for differential equations (DE), this now readshdB� �j � de� f � . The case where
´ �j�� ´ f � 
 is called an autonomous explicit

ODE. Any ODE can be reduced to an equivalent ODE by adding the vari-

able f to the vector d .! -matrix

An �i�Y� real matrix _ such that all principal minors are strictly positive.

The class of ! -matrices includes the positive definite matrices as well as

the strictly copositive matrices.
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An ���á� real matrix _ such that all principal minors are non-negative.

Painlevé paradox

For a mechanical system subject to Coulomb friction, there exists certain

configurations for which there is no solution to the differential equations of

motion and certain other configurations allowing multiple solutions.

Path

For any topological space ] , a path is a smooth map
ü  ¨© fÍ" � f 2 « ¢¤ ] .

Penalty force

Any force designed to enforce a given general constraint relation on the

variables of a mechanical system. Penalty forces vanish when the constraint

relation is satisfied and increase quickly when it becomes violated. Penalty

forces often introduce highly oscillatory dynamics.

Pendulum

A point particle of mass 7 attached by a light rigid rod to a fixed point on

a ceiling, falling under the action of gravity. The oscillations period of a

pendulum are independent of the mass of the point particle and, for small

period, this is ��« u ç�� � , where � is the acceleration due to gravity and ç is the
length of the rod. By the conservation of angular momentum in this case,

the pendulum motion is confined to a plane spanned by the direction of the

thin supporting rod and the initial velocity vector. When reduced to two

dimensions, this is perhaps the simplest possible nonlinearly constrained

system and is a benchmark for all constrained integration schemes.

Pfaffian form

A vanishing differential form written as Ôo� _`� \Q� d \¡��
 .
Phase space

For a mechanical system, this is the space of all possible configurations and

velocities. If the configuration space is
�
, the phase space is the tangent

bundle
� �

. For simple one-dimensional systems, this is the Cartesian space

with coordinates \ and h\ .
Poincaré lemma

The generalization to arbitrary differential forms defined on manifolds of

the well-known vector differential identities stating that
�¨�öõ � 9 h1*�� � je�8�D��


and that 9 h�*�� � �<�lõ � �H� 
 for any twice-differentiable scalar function j  /¸É ¢¤ /
and vector function �á  /ZÉ ¢¤ /¸É

, and 9 h�*�� and
�¨�lõ

are the familiar

gradient and divergence operators, respectively. These latter identities are

easily verified assuming equality of mixed partial derivatives of the functionj and the component functions of � . The Poincaré lemma states that
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d
Ú � �u
 where

�
is any twice differentiable differential form, defined on an

arbitrary manifold
µ

.

Point particle

A physical body with no geometric extent. A point particle has scalar

mass 7 and position \J- / p
, where � �:��� � or î . Though this might

appear as a gross idealization, the motion of a rigid body does decouple

into translational motion and rotational motion. The translational motion

is rigorously equivalent to that of a point particle with the mass of the

entire body, which means that in studying the motion of the Earth Sun

system for instance, one can use point particles to represent both objects.

Paradoxically, in the study of molecular dynamics, molecules are often

modeled as multibodies since the internal degrees of freedom thus modeled

bear consequences on the bulk physical properties.

Polygenic forces

In a mechanical system, any generalized force which is not monogenic. For

a mechanical system subject to polygenic forces, d’Alembert’s principle of

vanishing virtual work is a necessary and sufficient variational condition

for the motion to satisfy Newton’s three laws of motion.

Positive definite matrix

A real �º��� square matrix _ such that \ a _ \�C 
 for all non-zero real� -dimensional vectors \ . Positive definite matrices need not be symmetric.

They are copositive plus and ! -matrices as well.

Positive semi-definite matrix

A real �Y�Î� square matrix _ such that \ a%_ \4�E
 for all real � -dimensional

vectors \ . Positive semidefinite matrices need not be symmetric. They are

copositive and !�" -matrices as well.

Potential energy

A real function of the generalized coordinates � , !   � ¢¤ /
which produces

generalized forces according ? ´ ! � ´ � a . Conversely, given any generalized

force j   � ¢¤ / p
, where � � �¨�Ã� � � � , such that ô Å j a¸� ��� � �Y�.
 for any

closed path  , then, the function
! �Jt ] j a¸� \k� � \ is a potential energy, up

to an arbitrary constant. Potential energy can be negative or positive. It

is possible in principle that a potential function depends on the generalized

velocities h� as well, as is the case for the vector potential of magnetic forces,

but this is not considered here.

Prismatic joint

A joint such that, starting from either body, the motion of the second is a

pure translation along an axis fixed in the body frame of the first. Specifi-

cally, no rotation of the second body about the translational axis is allowed.
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Much like for the hinge joint, the translational axis is fixed in both body

frames and the constraint maintains the colinearity condition. Prismatic

joint definitions can suffer from a singularity if the constraint definition

preventing rotation about the axis of translation are defined in terms of

the translation vector, which is common. Once again, this singularity is

lifted if the rotational constraints are imposed using quaternions.

Pullback

Given a smooth map between two manifolds
ü   µ ¢¤¨W

, the pullback
ü U

is the (locally) linear map transforming one-forms in
µ

back to the cor-

responding one-forms in
µ

, evaluated at matching points. It is the local

inverse of the pushforward and in the context of curvilinear coordinate sys-

tems, it is precisely the Jacobian matrix of the (locally) inverse coordinate

transform.

Pushforward

Given a smooth map between two manifolds
ü   µ ¢¤XW

, the pushforwardü U is the (locally) linear map transforming one-forms in
µ

to the corre-

sponding one-forms in
W
, evaluated at matching points. In the context of

curvilinear coordinate systems, the pushforward
ü U is precisely the local

Jacobian matrix of the coordinate transformation.

QP: Quadratic Programming

Given a real, square � �o� matrix
�

a real � -dimensional vector � , a

real 7 �K� matrix _ and a real 7 -dimensional vector ¯ , the quadratic pro-
gramming problem consists of finding the � -dimensional, real, non-negative

vector \ , with \ ¦ �J
 for all §�� �;� �<�>=>=>=>� � , which minimizes the functionj � \Q�Î� 2Ú \ a � \ V ¯ a \ subject to the 7 conditions that _ \¡?�¯��.
 . The

necessary and sufficient conditions met at the solution are known as the

linear Karush-Kuhn-Tucker conditions.

QR: Orthogonal Factorization

Given an 7 �y� matrix _ with 7 � � , the QR factorization is the com-

putation of a real orthonormal 7 � 7 matrix
�
, with

� a � � � +6� and
a real, 7 ��� , upper trapezoidal matrix � . Implementations of the QR

factorization usually include partial pivoting making it very reliable. The

QR algorithm can also be extended to be rank revealing. In that last ap-

plication, it is usually less computationally expensive than SVD, though

generally less reliable in rank determination.

Quaternions

Elements of the ring
� � � �H� r Ê V ¯ � V*ï Ë V x Ìt& r � ¯� ï � x - /��

where
Ê

is the multiplicative unit and the elements
� �sË>�ÍÌ satisfy the anticommuting

multiplication rules
� Ú �JË Ú �.Ì Ú � ? Ê

,
� ËÅ�5?âË � �.Ì , Ë�Ì�� ?�Ì�ËÅ� �

, andÌ � � ? � ÌY�BË . These are extended distributively to define the multiplication
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. The non-zero �È- �

have a unique inverse, � N 2
,

making
�

a division ring. Defining the norm
4 � 4 Ú � r Ú V ¯ Ú V�ï Ú V x Ú ,

the elements ��- �
with

4 � 4 � � form a subgroup under multiplication

which is isomorphic to �wIK��î � , and can thus be used to parametrize it.

The quaternion parametrization of �wIK��î � is free of singularity, unlike the

Euler angle representation. The cost is to have to use four variables and a

constraint
4 \ 4 �Î��� instead of only three variables.

Ray

A ray is the one-dimensional cone \ V �Kde� ���*
 , where \ and d are given� -dimensional vectors.

Rayleigh function

In a mechanical system with configuration manifold
�
, generalized and ve-

locities � and h� , a scalar function R � �{� h� � f � producing a polygenic general-

ized force j according to the rule já� ? ´
R � �{� h� � f ��� ´ h� a . Rayleigh functions

which are homogeneous of degree z in the variables h� dissipate energy at

the rate
� c � � f � ? z R � �{� h� � f � , making energy decay until R � �{� h� � f �Î�A
 .

If a Rayleigh function is convex and bounded below by 
 , the mechanical

system moves in such a way as to minimize its value. The archetype of

a Rayleigh function is � ���;�T� h� a � h� where � C5
 and
�

is an ����� con-

stant, real, symmetric, positive definite matrix. This produces a viscous

dissipative force já� ?�� � h� which ultimately vanishes when
� h�`��
 .

Regularization

The process of constructing a well-posed problem by adding small pertur-

bation terms to an ill-posed one. When the perturbation terms are judi-

ciously chosen, the solution of the well posed problem differs by a small

amount, proportional to the size of the perturbation, from the original,

ill-posed problem. In best cases, the solution—there might be more than

one—to the ill-posed problem is recovered by setting the regularization pa-

rameter to zero in the computed answer, i.e., deleting all terms which are

proportional to the regularization parameter.

Rheonomic constraint

A general constraint relation which depends explicitly on time. Rheonomic

constraints are generally nonideal as their action alters the energy of the

system. This does not preclude their elimination, however, for the specific

case of bilateral holonomic rheonomic constraints.

Rigid body

A physical body with finite extent in which the constituent parts are all

at fixed distances with respect to each other and, in consequence, at fixed

position with respect to the center of mass of the body. Rigid bodies are

idealizations of real physical bodies which are not easily deformed. The
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motion of a rigid body decouples exactly into translational and rotational

components, unlike the case of an elastic body where a small coupling

remains. The configuration space of a rigid body is
� � /ãÉ �y�wIK��î � .

In addition to the physical properties, a rigid body is considered to be

impenetrable and this imposes kinematic restrictions on the relative motion

of any two such.

Rubin and Ungar theorem

For a mechanical system subject to strong penalty forces designed to en-

force a holonomic constraint �Q� ���1��
 , the trajectories and velocities con-

verge uniformly to those of the corresponding constrained system as the

strength of the penalty forces is increase to infinity, though the penalty

forces themselves fail to converge except in the weak sense. Weak con-

vergence is established with respect to time integrals of inner products,

implying that time averages do converge.

Saddle-point matrices

A matrix � of size �oV 7 �o�oV 7 with the special block form � �ö _ ? dÅad  ÷ , where block matrix _ is of size ���6� , is symmetric, and pos-

itive semi-definite, block matrix d is of size 7 �¡� , and block matrix  is

of size 7 � 7 and usually symmetric, and positive definite. Saddle-point

matrices arise naturally in constrained optimization problems. Stationary

points for these are saddle-points of an objective function. In this case, � 
 . The matrix is then usually written as � � ö _ dÅad 
 ÷ , which is

symmetric but indefinite. The  block block matrix is usually a regu-

larization added for stability. Saddle-point matrices can be factored with

several optimized sparse packages such as UMFPACK [71], SuperLU [72],

and MA57 [78]. There is a large array of iterative methods for these as

well [74, 75, 48]. See also the entry for KKT conditions as saddle point

matrices are sometimes called KKT matrices.

Scatter operation

In numerical linear algebra, any operation which involves copying data from

contiguous memory locations to non-contiguous locations.

Scleronomic constraint

A general constraint relation which is not explicitly dependent on time

is called a scleronomic constraint. If all constraints are scleronomic, the

mechanical system is called scleronomic.

SIAM: Society for Industrial and Applied Mathematics

Founded in Philadelphia, USA, in 1951, SIAM exists to ensure the strongest

interactions between mathematics and other scientific and technological
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communities through membership activities, publication of journals and

books, and conferences. SIAM publishes 14 peer-reviewed journals in ap-

plied mathematics as well as a book series.

SIGGRAPH: Special Interest Group on Graphics

A SIG of the ACM devoted to the promotion and dissemination of infor-

mation on computer graphics and interactive techniques.

Simple harmonic oscillator

A mechanical system consisting of a one-dimensional point mass with co-

ordinate \ and mass 7 , subject to the force j	�m? F \ where F C 
 is a

constant. The point mass exhibits sinusoidal motion about the origin with

angular frequency Ô�� u F ��7 and period
� �J��« u 7�� F . This is the sim-

plest possible linear dynamical system and is a reference test case for any

numerical integration method.

Slack variable

Given an inequality r \ V ¯Î�E
 , the slack variable z is what must be added

to obtain an equality, i.e,. r \ V ¯W? z ��
 , with z �E
 .
Slider crank

A mechanical system designed to convert rotational motion from a driver

into translational motion. This is constructed using two rods attached

together with a hinge at their extremities. The free extremity of the first

rod is then attached to a powered hinge fixed to the inertial frame whose

axis is collinear with the connecting hinge between the rods. The free

extremity of the second rod is then connected to the inertial frame with a

prismatic joint whose axis is perpendicular to that of the three hinge axes.

By driving the fixed hinge at constant rotational speed, the extremity of

the second rod moves to and fro along the prismatic axis. This simple

mechanical system always exhibit a constraint singularity.

Sliding velocity

The relative velocity between two contacting rigid bodies projected in the

tangential plane of contact.

SMP: Symmetric Multiprocessor

A computer system containing multiple CPUs which share a memory bank

via a common memory bus.�âI6��î �
The special orthogonal group in

/�É
, containing all î¡��î real matrices �

such that �1a3� � � É , and such that
�¨�~� � � V � . This latter property is

what makes it “special”. The group �wI6��î � is a Lie group of dimension

three which is differentiable, connected, but not simply connected. Viewed
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as a manifold, �wIK��î � is not flat and thus, there no possibility to map

all the elements in �wI6��î � to elements in
/�É

with a single chart without

singularities.

Splitting

Any partitioning or additive decomposition of a mathematical problem.

This is usually chosen so that each subproblem is easier to solve and so the

couplings between them are small in some sense.

Spring

A force model producing a restoring force linearly proportional to the dis-

placement from a reference configuration. For two point masses with po-

sitions \ ½ 2 ¾ and \ ½ Ú ¾ , respectively, define the reference configuration so

that
4 \ ½ 2 ¾ ?�\ ½ Ú ¾ 4 �:ç " . The spring force on body one is then j ½ 2 ¾ �? FQ� ç�?Îç " � � ½ 2 Á Ú ¾ , where � ½ 2 Á Ú ¾ is the unit vector in the direction of \ ½ 2 ¾ ?Î\ ½ Ú ¾ ,

and jD½ Ú ¾ �£?DjD½ 2 ¾ , from Newton’s third law. In one dimension, this is the

simple harmonic oscillator but in higher dimensions, springs are in fact

nonlinear. In the general case, a spring is defined by introducing a non-

linear displacement function �Q� �;� of the generalized coordinates such that�Q� ���ã� 
 is a reference configuration. The generalized spring force is thenjá� ? FQ� ´ � � ´ � a � �k� ��� . The potential energy of a spring is simply � ������ � Ú � ��� .
Spring and damper

A simple dissipative force model consisting of a spring and a viscous damp-

ing force that is proportional to the velocity of the deviation from the

reference configuration. For the case of the simple harmonic oscillator,

the damping force is simple ?D¯ h\ , opposing the velocity linearly, leading to

an exponential decay of the oscillation amplitude. In the general case of

a spring defined with a displacement function �Q� �;� , the damping force is

given by ? FQ� ´ � � ´ � a � h� .
Static friction

For two contacting bodies with zero relative velocity in the tangential plane

of contact, the absence of relative tangential acceleration in response to

applied tangential forces up to a finite threshold. Consider for instance

a block of mass 7 resting on an inclined plane making angle
�
with the

horizontal, subject to the downward action of gravity force of magnitude7 � , with � CE
 . The gravity force resolved in the contact plane is 7 � 8 � � � ,
and should accelerate the block downward, even if there was a viscous

friction force of ?�� h\ ½ tang ¾ , where h\ ½ tang ¾ is the tangential velocity. But

the block maintains zero tangential and acceleration as long as
�1* � � ' � Æ ,

where � Æ1CE
 is called the coefficient of static friction. Static friction is not

limited to the Coulomb model however. See box friction.
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Stationary conditions

The necessary conditions for a scalar function
� � \Q� with general constraint

relations to have vanishing directional derivative in any direction allowed

by the constraint. A function satisfying the stationary conditions at a point\ U might have a minimum, maximum, or an inflection point at \ U .
Stiction

An abbreviation of static friction.

SVD: Singular Value Decomposition

Given a real 7 �o� matrix _ , the SVD is a factorization of the form_ � � � ! a where
�
and

!
are 7 � 7 and �`�Z� real, orthonormal matrices,

respectively, and � is real 7 �K� diagonal matrix with non-increasing non-

negative elements: �m� �¨�%* 9 � Ó�2� Ó�Ú;�>=>=>=M� Ó n �~���£� �Y� � � 7B� � �~� Ó�2B� Ó�Úo������ � Ó n � 
 . The SVD reveals the real rank of a matrix since that is

equal to the number of non-zero singular values Ó ¦ . The SVD is generally

much more computationally expensive than other factorizations but is the

most robust and reliable method for computing the numerical rank of an

arbitrary matrix.

Symmetry

For a mechanical system, any group of transformations acting on the con-

figuration space
�

or the tangent bundle
� �

, or on time itself, which

leaves the equations of motion unchanged. Symmetries are thus labeled

by their groups. For instance, Galilean relativity implies that mechanical

systems are unaffected by translation of the origin of the coordinate system

and thus, they have translational symmetry. Each symmetry group corre-

sponds to time invariant conserved quantities, called conserved currents or

invariants of motion, according to Noether’s theorem which is best formu-

lated in the analytic formulation of mechanics. By extension, any quantity

which is invariant under the action of a group of transformations ^ is said

to be symmetric under ^ .

Symplectic flow

A differentiable mapping of time,
ü �   µ ¢¤ µ

, which leaves a closed non-

degenerate differential two-form invariant. A differential form Ô is closed

if it has an identically vanishing exterior derivative d Ô*��
 and it is non-

degenerate if the matrix representation in terms of the basis two-forms has

full rank everywhere. The significance in physics is that the trajectories

of Lagrangian systems are in fact symplectic flows and thus, they preserve

certain oriented integrals. The non-degenerate two form in this case isÔ�� d Ø � ´ | � ´ h��� d � Ú .
Symplectic integrator

A numerical integration method designed to preserve the canonical two-

form when applied to a physical system.

413



Glossary

Tangent bundle

Given an � -dimensional manifold
µ

with elements \ , the tangent bundle� µ
is the disjointed union of the tangent spaces of all points �È- µ

. For

each point \ , the tangent space
� � is a linear vector space of dimension � .

Tangential plane

For two bodies in contact at a point, the surfaces defining the boundary of

these come into contact. When the bodies are defined by smooth enclosing

surfaces, the respective surface normals at the contact point coincide and

thus uniquely define the tangential plane of contact, tangential plane for

short. For the non-smooth surface case, assuming the contact is at a dis-

continuity point of either or both surfaces, the normal cones must overlap

and this defines an overlapping cone of tangent planes. Since nonsmooth

surfaces are not analyzed in great detail, only the simple definition of the

tangent plane is used.

Torque

Generically, torque is what causes the angular momentum to change. For

a rigid body, any force applied away from the center of mass generates

torque according to � � Ö� j , where j is the applied force, � ��dá?E\ , d
is the point where the force is applied, and \ is the center of mass, all

quantities expressed in the inertial frame of reference.

Unilateral constraint

A general constraint relation which is to be satisfied as an inequality re-

lation, which is usually chosen arbitrarily as the “ � ” relation. As a con-

sequence of the inequality relation, the intensity of the generalized force

produced by a unilateral constraint also satisfies an inequality condition.

Variational calculus

The study of the derivatives of functionals, usually defined as integrals

over finite paths h�	- © f8" � f 2 «â� / p
, of a scalar function j   / p � / p ¢¤ /

,

so �ã© h� « � t �#"�%$ � z j � \ � z �~� h\ � z ��� . Variational calculus allows to derive the

stationary conditions for �ã© h� « which can then be used to solve for the

optimal path, for instance.

Variational method

Any numerical method which is derived by requiring that a certain function

of the unknowns be a stationary point at the solution.

VE: Virtual Environment

An interactive computer system with multiple input devices controlled by a

user and multiple sensory output devices driven by a program. The driving
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program includes a limited representation of reality—the virtual world—

consisting of virtual objects having with simulated properties. Sensory

properties of the virtual objects are emulated by driving graphics, audio,

motion and haptic rendering devices from the main program. These em-

ulations are controlled in part by numerical simulations of corresponding

physical processes and in part by the user. VEs are interactive systems

and are designed to respond quickly to changes in user inputs. VEs vary

in the degree of immersion, realism, and fidelity, but they are generally

constructed to provide a faithful representation of specific aspects of the

real world. They are used for training, design, forensics, presentation, and

artistic purposes.

Virtual displacements

Given a mechanical system with configuration space
�
, generalized coor-

dinates � , and a physical trajectory � � �sf �,� h� �sf �8� , the virtual displacementsÿ � �gf � are infinitesimal variations of � �gf � restricted so the modified trajectory� �gf � V ÿ � �gf � satisfies all the constraints of the mechanical system. Because

the virtual displacements satisfy all constraints and act specifically at a

given time f , the operators
� � � f and

ÿ
commute and so, the generalized

velocities are displaced infinitesimally to h� V ÿ h�Å� h� V ���� ÿ � .
Virtual work

The work done by virtual displacements
ÿ � �sf � along the physical trajectory� �gf � for a mechanical system with configuration space

�
and generalized

coordinates � .
Viscous friction

A polygenic, dissipative force vanishing for zero velocity. The archetype

is a generalized force of the form ?�� � � ��� h� , corresponding to the Rayleigh

function R � �{� h�;�K� � ���;�T� h� a � � �;� h� . The parameter � is the viscous drag.

Viscous forces which vary with higher powers of the the velocity can be

constructed as well. This is similar to the damping term in the spring and

damper force model. Because viscous forces vanish in zero velocity, they

cannot be used to correctly model dry friction in general, and Coulomb

friction in particular. Viscous friction is also very different from kinetic

friction since in the latter case, the magnitude is very nearly independent

of the velocity. Viscous friction is an accurate model of the tangential

friction force between lubricated surfaces.

Wedge product

The antisymmetric exterior product of differential forms. For elementary

one-forms d \ ½ ¦¿¾ � d \ ½ ª,¾ , the wedge product is the two-form written Ô Ú �
d \ ½ ¦¿¾ Q d \ ½ ª,¾ . The wedge product is antisymmetric so that, in particular,

d \ ½ ¦¿¾ Q d \ ½ ª�¾ � ? d \ ½ ª,¾ Q d \ ½ ¦¿¾ . It is also linear and associative.
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Work

For a mechanical system with configuration space
�
, generalized coor-

dinates � , given a generalized force vector j , work is the line integralÄ � t Å j a � � along a given path  . With this sign convention,
Ä

is the

work done by the force on the mechanical system, so that ? Ä is the work

done by the system on whatever system is producing the force j . Work

has units of energy and generalized forces and coordinates are defined so

that this is true whatever coordinate system is chosen. For a general non-

conservative force, work is path dependent. Conservative forces are path

independent.

Zeno point

For a mechanical system subject to impact discontinuities, a Zeno point is

an instant f which cannot be crossed because it is preceded by infinitely

many impact events in any neighborhood f ?�) , where )ÎCE
 . For instance,
a super-ball dropped on a plane exhibits what appears to be a Zeno point

as it rebounds faster and faster with smaller and smaller amplitude as it

slowly looses energy at each impact. However, the ball eventually looses

so much energy that it does not even leave the plane. Numerical methods

designed to handle impacts must carefully avoid these apparent Zeno points

by introducing sufficient thresholds lest they become very inefficient.
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point method in contact problems with Coulomb friction based on a dual

splitting type technique., J. of Comp. and Appl. Maht., 140 (2002), pp. 245–

256.

[78] I. S. Duff, MA57—a code for the solution of sparse symmetric definite

and indefinite systems, ACM Trans. Math. Softw., 30 (2004), pp. 118–144.

422



BIBLIOGRAPHY

[79] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for Sparse

Matrices, Numerical Mathematics and Scientific Computation, Clarendon

Press, Oxford, 1986.

[80] I. S. Duff and J. K. Reid, The multifrontal solution of indefinite sparse

symmetric linear systems, ACM Transactions on Mathematical Software,

9 (1983), pp. 302–325.

[81] A. Dullweber, B. Leimkuhler, and R. McLachlan, Symplectic

splitting methods for rigid body molecular dynamics, Journal of Chemical

Physics, 107 (1997), pp. 5840–5851.

[82] K. L. Dunlap and M. M. Kostreva, Solving more linear complemen-

tarity problems with Murty’s Bard-type algorithm, Journal of Optimization

Theory and Applications, 77 (1993), pp. 497–522.

[83] P. E. Dupont and S. P. Yamajako, Stability of frictional contact in

constrained rigid-body dynamics, IEEE Transactions on Robotics and Au-

tomation, 13 (1997), pp. 230–236.

[84] K. Erleben, Stable, Robust, and Versatile Multibody Dynamics Anima-

tion, PhD thesis, Department of Computer Science, University of Copen-

hagen, Nov. 2004.

[85] K. Erleben, J. Sporring, K. Henriksen, and H. Dohlman, Physics-

Based Animation, Charles River Media, Boston, 2005.

[86] R. Featherstone, Robot Dynamics Algorithms, Kluwer Academic Pub-

lishers Group, Dordrecht, The Netherlands, 1987.

[87] R. C. Fetecau, J. E. Marsden, M. Ortiz, and M. West, Nonsmooth

Lagrangian mechanics and variational collision integrators, SIAM J. Appl.

Dyn. Syst., 2 (2003), pp. 381–416.

[88] A. Fischer, A special Newton-type optimization method, Optimization, 24

(1992), pp. 269–284.

[89] M. Fixman, Classical Statistical Mechanics of Constraints: A Theorem

and Application to Polymers, Proc. Nat. Acad. Sci., 71 (1974), pp. 3050–

3053.

[90] H. Flanders, Differential Forms with Applications to the Physical Sci-

ences, Dover Publications, New York, 1989.

[91] M. R. Flannery, The enigma of nonholonomic constraints, Amer. J.

Phys., 73 (2005), pp. 265–272.

[92] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes, Computer

Graphics: Principles and Practice, Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA, 2nd ed., 1990.

423



BIBLIOGRAPHY

[93] J. S. Freeman, G. Watson, Y. E. Papelis, and T. C. Lin, The

Iowa driving simulator: an implementation and application overview, SAE

Trans., 104 (1995), pp. 113–122.

[94] C. Führer and B. J. Leimkuhler, Numerical solution of differential-

algebraic equations for constrained mechanical motion, Numerische Math-

ematik, 59 (1991), pp. 55–69.

[95] C. W. Gear, Towards explicit methods for differential algebraic equations,

BIT, 46 (2006), pp. 505–514.

[96] C. W. Gear, G. K. Gupta, and B. Leimkuhler, Automatic integration

of Euler-Lagrange equations with constraints, in Proceedings of the inter-

national conference on computational and applied mathematics (Leuven,

1984), vol. 12/13, 1985, pp. 77–90.

[97] P. E. Gill, G. H. Golub, W. Murray, and M. A. Saunders, Meth-

ods for modifying matrix factorizations, Mathematics of Computation, 28

(1974), pp. 505–535.

[98] P. E. Gill, W. Murray, S. M. Picken, and M. H. Wright, The

design and structure of a fortran program library for optimization, ACM

Trans. Math. Softw., 5 (1979), pp. 259–283.

[99] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright,

Procedures for optimization problems with a mixture of bounds and general

linear constraints, ACM Trans. Math. Softw., 10 (1984), pp. 282–298.

[100] R. E. Gillilan and K. R. Wilson, Shadowing, rare events, and rubber

bands - a variational Verlet algorithm for molecular-dynamics, J. Chem.

Phys., 97 (1992), pp. 1757–1772.

[101] R. Glowinski, L. Shiau, Y. M. Kuo, and G. Nasser, The numerical

simulation of friction constrained motions. I. One degree of freedom models,

Appl. Math. Lett., 17 (2004), pp. 801–807.

[102] R. Glowinski, L. Shiau, Y. M. Kuo, and G. Nasser, The numerical

simulation of friction constrained motions. II. Multiple degrees of freedom

models, Appl. Math. Lett., 18 (2005), pp. 1108–1115.

[103] , On the numerical simulation of friction constrained motions, Non-

linearity, 19 (2006), pp. 195–216.
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[145] J. J. Júdice and A. M. Faustino, An experimental investigation of enu-

merative methods for the linear complementarity problem, Comput. Oper.

Res., 15 (1988), pp. 417–426.

427



BIBLIOGRAPHY
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gration of constrained mechanical systems using MEXX, Mech. Struct. &

Mach., 23 (1995), pp. 473–497.

[193] J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symme-

try: A Basic Exposition of Classical Mechanical Systems, no. 17 in Texts

in Applied Mathematics, Springer-Verlag, 1999.

[194] J. E. Marsden, J. Scheurle, and J. M. Wendlandt, Visualization of

orbits and pattern evocation for the double spherical pendulum, in ICIAM

95 (Hamburg, 1995), vol. 87 of Math. Res., Akademie Verlag, Berlin, 1996,

pp. 213–232.

[195] J. E. Marsden and A. J. Tromba, Vector Calculus, W. H. Freeman,

New York, third ed., 1988.

[196] J. E. Marsden and M. West, Discrete mechanics and variational inte-

grators, Acta Numerica, 10 (2001), pp. 357–514.

431



BIBLIOGRAPHY

[197] P. Matstoms, Sparse
� � factorization with applications to linear least
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Index

Action, 46

Algorithmic complexity, 342, 343, 350

Analytic mechanics, 43–47

conservation laws, see Noether’s the-

orem

constraints, 68–79

contact constraints, 77–79

effort constraints, 70–71

energy conservation, 53–57

forced and dissipative systems, 66–

68

holonomic constraints, 71–73

nonholonomic constraints, 74–77

symplectic flows, 59–60

variation of time, 53–57

Angular momentum, 51, 259, 260, 267

invariance, 55

quaternionic, 266

Ball joint, 271

Body frame, 208, 243

Box friction, 192, 332–334

Cartesian coordinates, 41

Cayley-Hamilton theorem, 32, 220, 222

Central force, 50, 53

Characteristic polynomial, 31, 32, 222

Chart, 45, 241

Complementarity problems

solvability, 297–299

solvability , 187

Condition number, 135, 136, 319, 320,

334, 352, 356

Cone, 297, 298, 331

augmented, 295

convex, 160, 296

dual of convex, 296

normal, 158, 160, 161, 163, 164

of matrix columns, 295

tangent, 160, 163

Configuration space, 41, 131

closed, 78

closed boundary, 162, 163

Conservative systems, 44, 45, 60, 66

Constraint stabilization, 105, 118, 149

Baumgarte’s technique, 122, 136

variational, 97–98, 158, 165, 168

Constraints

bilateral, 69, 70

contacts, 77–79, 168, 179, 181

effort, 69, 70–71

holonomic, 69, 71–73, 90–94, 97–

98

kinematic, 69

nomenclature, 69–70

nonholonomic, 69, 74–77, 94–98,

133, 175, 197

nonideal, 69, 172–190, 197

rheonomic, 69

scleronomic, 69

unilateral, 69

violation, 98, 106, 124, 158, 246,

253

Cottle-Dantzig algorithm, 309

Coulomb friction, 71, 177–194, 197,

297

analytic model, 180–185

approximations

box, 192

box approximation, 332–334

D’Alembert’s principle, 45, 47, 53, 66,
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INDEX

76, 172

Differential form, 57

Discrete energy, 56–57, 81

conservation of

during impacts, 164

dissipation, 119, 121, 176

during impacts, 167

Discrete Lagrangian, 47

augmented, 73

examples, 49

ghost terms, 74

of rigid body, 263–271

regularized, 93

symmetries, 52

Discrete variational method, 48

Dynamics, 40–43

Effort constraints

effort, 71

Eigenvalues and eigenvectors, 265, 267,

270

Energy, 29, 43–45

analytic definition of, 55–57

conservation of, 53–57

during impacts, 162

discrete, see Discrete energy

dissipation, 151, 173, 175, 262

dissipation of, 68, 95

kinetic, 43–45

potential, 43–45

Euler’s equations, 258–260

Friction cone, 179, 181, 183, 186

approximations

cylindrical, 191

polygonal, 183, 192

pyramidal, 191

Galilean relativity, 42

Galileo, 116

Gather operation, 340, 341

Gauss-Seidel iterations, 118, 350–356

for complementarity, 316

Ghosts, 73–74

Homokinetic joint, 251, 252

Hookes’ joint, 248

Impact

Newton’s restitution law, 152, 165,

166

Impulse, 164, 165, 177

Inertia, 132, 154, 198

Inertia tensor, 209–211, 256, 259, 275

augmented, 257, 263

modified, 262

parallel axis theorem, 272

Inertial frame, 133, 134, 208, 230, 243,

257

Invariants of motion, 38, 43, 57–66,

273

Joint, 131

Keller’s algorithm, 303–309, 320, 321

for MLCP, 306–309

Kinematics, 41–42

Kinetic energy

of ghosts, 92

Lagrangian, 45

augmented, 73

constant mass model, 46

for central forces, 53

of planar pendulum, 115

reduced, 116

of rigid body, 256–258

symmetries, 51

variable mass model, 46

Linear stability, 101–105

Mass matrix, 43

Matrix

bisymmetric, 349

copositive, 296, 328

copositive plus, 189, 296

symmetric positive definite, 295

symmetric positive semi-definite, 295

Minimization formulation, 80, 81

Monogenic forces, 44

Noether’s theorem, 51
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discrete, 52

Non-conservative systems, 44, 47, 71

Pfaffian form, 75, 76

Phase space, 41, 61

Poincaré lemma, 58, 60, 61

Point particle, 29, 41–43

kinetic energy of, 44

Polygenic forces, 44, 66, 177, 185

Rayleigh dissipation functions, 68, 95,

141

as nonholonomic constraint, 76

dissipation rate, 68

for constraint stabilization, 97–98

for dry friction, 177–190

for viscous damping, 68

forces produced by, 71

nonsmooth, 172–190

regularized, 95

Rubin Ungar theorem, 90–94, 139–149

Runge-Kutta methods

explicit, 62, 106

for DAEs, 124

stability, 110–112

symplectic, 83

Scatter operation, 340, 341

Simple harmonic oscillator, 29–38

discrete trajectory, 31–35

discretization, 30–31

numerical simulation, 35–38

Slack variable, 78, 174, 290, 311

Slider crank, 88, 131–136

Sliding velocity, 178, 179, 184, 203,

206

Splitting, 190, 327, 350, 354

for friction problems, 327–336

spook, 98–100, 123, 135, 136, 141,

143, 203

with dry friction, 158

Spring, 29, 62, 89, 117, 124, 125

Spring and damper, 151, 153, 154

Stationary conditions, 48

constrained, 74

inequalities, 157

Stiction, 178, 179, 182, 183, 201

Symplectic flow, 49, 113

Tangent bundle, 41, 242

Torque, 259, 260

Variational method, 47, 92, 136, 263

Virtual displacements, 45, 75–77, 172

Virtual work, 70, 75, 76, 78, 163

Viscous friction, 68, 95, 135, 136, 177

Wedge product, 57

Work, 43, 44
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Colophon

Typesetting was done using Donald E. Knuth’s TEX formatting engine and Leslie

Lamport’s LATEX2 ÷ system. AMS-LATEX font and macro packages were used ex-

tensively for typesetting the math. The layout was done using the scrbook

document class from KOMA-Script package. The ten points version of the Con-

crete Roman font of Donald E. Knuth was used with the Euler math font from

the American Mathematical Society. This is available in the LATEX2 ÷ package

ccfonts.

In addition, over 36 more LATEX2 ÷ packages were used, notably including the

glossary package by Nicola Talbot, and several utilities from David Carlisle.

The makeindex program was used to compile the glossary, the notation index,

and the main index. The glossary package provided automatic acronym ex-

pansion as well. The final printable file was produced by first converting the

dvi-file to PostScript with dvips, and then using ps2pdf, which is based on

GNU-ghostscript, to produce the PDF that was printed.

GNU-emacs with vipermode was used to edit everything. In conjunction with

the AUC-TeX and RefTeX packages, this was extremely effective for writing the

TEX source. Do not write a TEX document without this type of tools, and study

them carefully! Spell-checking was done with aspell and various other checks

were made using the lacheck, chtex, and style-check utilities. Indexing was

done using the facilities provided by RefTeX.

The bibliography database was created with BIBTEX and entries were taken

from the MathSciNet database of the AMS (those entries have MR codes in

them) when possible. In other cases, they were collected from the Association for

Computing Machinery (ACM) portal, or from various electronic journals. Only

in last resort they entered manually, and this hopefully minimized the number of

errors. In all cases, the bibtools utilities were used to convert records to BIBTEX

format and then cleaned up using Nelson Beebe’s collection of utilities and emacs

editing modes. When possible, the entries for the books were collected using

Beebe’s cattobib tool using the Z39.50 protocol to query national libraries across

the world over the Internet. The bibliography was typeset using the Society

for Industrial and Applied Mathematics (SIAM) bibliography style. All this

automation made the handling and processing of my

ü 
T
 V records manageable—

though Bosse still found errors when proof reading.

All simple simulations were performed with Octave and plots were handled by

gnuplot. Legacy simulation data was stored in custom designed hdf5 formats,

allowing for easy loading in Octave for post-processing.
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Pictures were generated using xfig and this was then processed by trans-

fig to generate suitable combinations of encapsulated PostScript files and LATEX

eepic macros for inclusion in the main document, so the fonts of the pictures

would match that of the main text. Inkscape is superior to xfig and was con-

sidered to make nicer looking diagrams but a problem with handling of text

elements made that impossible. Now that the thesis is complete, there is time

to work on the Inkscape code to make it work like xfig and transfig so the

figures in the next project will look nicer still.

Countless global edits and adjustments to the gnuplot output were performed

using combinations of Perl and bash shell scripts, relying in turn on countless

POSIX utilities and filters. Every erg spent in learning about regular expres-

sions and the various tools paid back thousandfolds. All plots and simulations

were generated from driver scripts, and these were driven by the make utility to

guarantee systematic updating of the final results whenever a script had been

changed (and this happened often). This means that all the data provided in

the figures is 100% reproducible. In addition, every piece of text, software, and

raw data, was under revision control using svn.

Small changes had to be made to several of the software utilities listed above

to make them do what was needed, and patches were gladly submitted when

useful to others. This was possible because the source code and the authors were

responsive to questions, suggestions, and bug reports. If you did not guess it yet,

the operating system was a patched up Ubuntu distribution of the GNU/Linux

system.
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