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Abstract

A time-discrete formulation of the variational principle of mechanics is used to
provide a consistent theoretical framework for the construction and analysis of
low order integration methods. These are applied to mechanical systems subject
to mixed constraints and dry frictional contacts and impacts—machines. The
framework includes physics motivated constraint regularization and stabilization
schemes. This is done by adding potential energy and Rayleigh dissipation terms
in the Lagrangian formulation used throughout. These terms explicitly depend
on the value of the Lagrange multipliers enforcing constraints. Having finite
energy, the multipliers are thus massless ghost particles. The main numerical
stepping method produced with the framework is called SPOOK.

Variational integrators preserve physical invariants globally, exactly in some
cases, approximately but within fixed global bounds for others. This allows to
product realistic physical trajectories even with the low order methods. These are
needed in the solution of nonsmooth problems such as dry frictional contacts and
in addition, they are computationally inexpensive. The combination of strong
stability, low order, and the global preservation of invariants allows for large
integration time steps, but without loosing accuracy on the important and visible
physical quantities. SPOOK is thus well-suited for interactive simulations, such
as those commonly used in virtual environment applications, because it is fast,
stable, and faithful to the physics.

New results include a stable discretization of highly oscillatory terms of con-
straint regularization; a linearly stable constraint stabilization scheme based on
ghost potential and Rayleigh dissipation terms; a single-step, strictly dissipa-
tive, approximate impact model; a quasi-linear complementarity formulation of
dry friction that is isotropic and solvable for any nonnegative value of friction
coefficients; an analysis of a splitting scheme to solve frictional contact com-
plementarity problems; a stable, quaternion-based rigid body stepping scheme
and a stable linear approximation thereof. SPOOK includes all these elements.
It is linearly implicit and linearly stable, it requires the solution of either one
linear system of equations of one mixed linear complementarity problem per
regular time step, and two of the same when an impact condition is detected.
The changes in energy caused by constraints, impacts, and dry friction, are all
shown to be strictly dissipative in comparison with the free system. Since all
regularization and stabilization parameters are introduced in the physics, they
map directly onto physical properties and thus allow modeling of a variety of
phenomena, such as constraint compliance, for instance.

Tutorial material is included for continuous and discrete-time analytic me-
chanics, quaternion algebra, complementarity problems, rigid body dynamics,



Abstract

constraint kinematics, and special topics in numerical linear algebra needed in
the solution of the stepping equations of SPOOK.

The qualitative and quantitative aspects of SPOOK are demonstrated by com-
parison with a variety of standard techniques on well known test cases which are
analyzed in details. SPOOK compares favorably for all these examples. In partic-
ular, it handles ill-posed and degenerate problems seamlessly and systematically.
An implementation suitable for large scale performance and accuracy testing is
left for future work.
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Preface

Some years ago while working at a physics simulation company based in Mont-
réal, I visited Prof. Michael M. Kostreva in Clemson where he explained an
algorithm [82] for solving linear complementarity problems. This was needed to
compute frictional contact forces in a real-time physics engine I was developing.
The method processed a difficult problem, Py, say, by solving a sequence easier
problems, P, _, differing from the original one by a small perturbation 0 < €, €
R,émt1 < €m,m = 1,2,.... The solution produced at stage m — 1 was then
used to warm start the solver for stage m and this saved considerable work. One
would then check whether the solution at stage m differed only by a small amount
from that of stage m — 1. This often happened after two or three stages and one
could then construct the solution of Py without worrying about degeneracy or
singularity.

My implementation of this numerical method yielded nice results but was too
slow. A colleague of mine who had a knack for economy of means decided that it
was not worth going through the sequence and fixed a value of € > 0 in his own
implementation. Using the solution of P, instead of Py removed all degeneracy—
which was well understood—but also introduced contact compliance, i.e., small
amplitude, low frequency damped oscillations in the contact physics. It turned
out that this was a desirable feature since these oscillations were stable. Indeed,
we could now tune € to model tires of wheeled vehicles or the ground compliance
in our simulations. It was quickly realized that this perturbation corresponded
to replacing hard contacts with springs of stiffness k &~ O(1/¢€) though we could
not quite understand the exact relationship yet. But the curiosity was that
the oscillations were stable, despite the potentially high frequencies. We could
often manage to use a very small value for €, about 1078 or less, while using
large time steps for integration, approximately h ~ 1/60 s. By contrast, other
techniques based on strong penalty forces which we had tried before were always
numerically unstable for this set of parameters. Not only did this perturbation
allow to approximately solve the original problem, it provided a useful physical
model. This was a free lunch with beer included!

This curious result got me to think long and hard about the physical signifi-
cance of this € parameter and the connection to the integration methods. Would
it be possible that given a physical system X that is hard to solve, a perturbed
physical system of the form X, = Xy + €Y would be solvable quickly, efficiently,
and reliably? If so, then, the first question is how to solve X, numerically and
then, how to reconstruct the solution to Xy if necessary. The second set of ques-

ix
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tions to address concern the nature of the perturbation problem Y. What form
is sufficient to guarantee easy solution of the perturbed problem? What range
of physical phenomena can be modeled with X + €Y7

Alternately, it is common in numerical analysis to consider the finite precision
solution Z to problem P as computed by algorithm A to be the exact solution
of a nearby problem P.. It is well known that the Cholesky algorithm (see
Ref. [107], chapter 4 for instance) to compute the lower triangular factors G of
a symmetric, positive definite matrix A = GGT, produces the factors G of a
nearby symmetric and positive definite matrix A + E where matrix E is small,
as long as A is positive definite enough(see [126] Chapter 10 for instance). By
contrast, Gaussian elimination applied to matrix B which is not positive definite
does not enjoy such stability as the Cholesky algorithm, which is also faster and
simpler to code. With this in mind, given a physics problem Xj, it might be a
good idea to look for a perturbation of the form X, = Xg+ €Y so that X, can be
attacked with stable methods, such as the Cholesky algorithm, since it is better
to make small errors on the perturbed problems than potentially large errors on
the exact problem. Not only that but if the method is well chosen, the perturbed
numerical solution is the exact solution of a slightly different physical problem.
If efficiency and speed are also gained in the process, this is marvelous!

This points to a cunning paradigm. Since it is not possible to solve any problem
exactly, given the finite precision of the MACHINE, one might as well introduce
perturbations in the physical model itself if they allow the use of stable numerical
methods which are both accurate and efficient. Thus we get better performance
and better stability by simulating more physics, as long as we keep away from the
singular cases. Instead of formulating the idealized physical problem, Xg, say,
and passively expecting a numerical method to produce accurate results, an ex-
plicitly physical, small perturbation is added first making it possible to compute
solutions of the nearby problem, Xg + €Y', say, quickly, reliably, and with known
error bounds. As will be shown in the various examples presented throughout the
thesis, mathematical idealizations of physical problems often present numerical
difficulties, and these are removed by relaxing the idealizations. For instance, the
simple pendulum is a difficult problem when it is assumed that the rod holding
it is perfectly rigid. But making it only as rigid as diamond makes the numerical
difficulties go away! Since there is nothing that is much harder than diamond,
solving the ezract problem is pointless.

Prior to this, working at the same company and trying to construct numerical
methods to simulate Coulomb friction [232, 34], T was struck by the difficulty of
the problem. I could not get around the fact that Coulomb friction was essentially
a min max principle, namely, that it maximized dissipation when bodies were
sliding, and that it corresponded to the standard minimum constraint principle
otherwise. Being fresh out of graduate school at McGill University where I
had studied physics, I was convinced that some discretized Lagrangian could be
constructed on which one could apply Hamilton’s principle of least action, the
theory I'loved best. My reflection then went as follows. Some classical integration
formulae are constructed starting from the assumption that the function being



sought, z(t), satisfying the differential equation z = f(z), say, is approximated
locally polynomial in ¢, say Z(t) = >.»_, ant™. Using this fact, one identifies
the best fit for (¢) by expanding f(z(t + hk,)) as a Taylor polynomial for some
coefficients k, and matching the result with the presumed form Z(t) so as to
minimize the error (see Ref. [113] for a more precise definition of this statement).
I figured that one could perform the same trick to approximately evaluate the
action integral S = foh dsL(q(s),q(s)), where L is the Lagrangian of the physical
system and gq(t), ¢(¢) are generalized coordinates and velocities, respectively, and
then, choose the coefficients a, so that S is minimized, satisfying Hamilton’s
principle. I thought then that the discrete trajectory computed this way was
bound to reproduce the physics as closely as the approximation allowed and since
the method would consist of solving minimization problems, it would certainly
be stable and efficient.

But I did not know how to formulate dissipative terms properly then and, due
to commercial obligations and lack of resources, it was not possible to investigate
this further. Little did I know that Moser and Veselov [208], Gillian and Wil-
son [100] as well as Wendlandt and Marsden [277] had developed this idea just
a few years before it had crossed my mind. It was with some trepidation that
I read the extensive literature by Marsden and colleagues [196, 225], with some
of the papers even covering Coulomb friction applications. This was the missing
piece of the puzzle.

The present work is a synthesis of these two ideas. All told, it took almost ten
years split between commercial work at the company and studies at the university
to build satisfactory answers to these questions. In a sense, the form of the new
numerical methods I constructed are anticlimactic since it was clear from the
start that a discrete variational principle coupled with physically regularized
numerical methods would simply work. All that was wanting was my ability to
stitch the argument together properly to build the desired techniques. On the
other hand though, the results are better than I ever dreamed. Indeed, I have
implemented and tested a large number of numerical methods over the years
hoping that I would finally resolve one long standing issue or another, only to
be profoundly disappointed in realizing that in most cases, a given method only
performs well for the specific test problems discussed in the paper in which it
was presented, i.e., not on those of relevance to my work. Watching the new
methods pass one test after another was tremendously exciting. The voice of
sweet reason had been heard and there she was, in person. I hope now that I
made the presentation clear enough for others to reap the benefits of these new
techniques in their work.
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Notation

The main elements of the notation used throughout the thesis are described be-
low. Though attempt was made at being systematic, there are clashes between
different meanings of the same symbol in a few places. However, the text sur-
rounding a given equation does contain brief description of each symbol used and
its current meaning to avoid confusion.

Sets, groups, and

algebras

AB,C,... Point sets.

dim(.A) The dimensionality of set A.

R The real numbers.

Ry The non-negative reals, z € R,z > 0.

Ryt The positive reals, z € R4,z > 0.

R The extended reals, R U {£o0}.

C The complex numbers.

H Hamilton’s quaternion algebra.

Q The configuration space of a mechanical systems,
with dimension n = dim(Q).

TQ The tangent bundle of @.

N The natural integers 1,2,.. ..

Z The integers ...,—2,—1,0,1,2,....

Zy The nonzero integers, Zy = Z \ {0}.

SO(n) The special orthogonal group in n dimensions, i.e.,
the set of orthonormal n x n matrices R with RTR =
I, det(R) = +1.

G A Lie group. See also the use of G(g) as the Jacobian
of the function g : R™ — R™.

g A Lie algebra. Given a Lie group G, the Lie algebra
of the infinitesimal generators is written g, and has
elements §;,7 = 1,2,...,n, where n = dim(g).

& The basis of the Lie algebra g of a Lie group G, for
1=1,2,...,dim(G). The Lie algebra g is defined by
the structure constraints, [&;,&;] = > Cijrék, where
[a, b] is the anticommuting Lie bracket for g.

co(A) The convex hull of elements in set A.

A The closure of set A.

0 The empty set.
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D

BA

cn

M
GLn(R)

NA(.’E)
TA(:L‘)
a, B

Vectors

T

zT

H

i

2@

Tr

o)
Ty
q="(gs,q)*

qt

h,1,j,k

xviil

An integration domain.

The boundary of set A.

The class of n-fold differentiable functions.

A smooth, differentiable manifold.

The general linear group over R”| the set of all n x n
real matrices.

The normal cone to the set A at the point z € A.
The tangent cone to the set A at the point z € A.
Index sets, a, 5 C{1,2,...,n}.

General n-dimensional real column vector.

General n-dimensional real row vector.

The n-dimensional real row vector whose entries are
the complex conjugates of those in z, i.e., (z¥); = :1:;r
The zth elements of vector . As an exception to this
rule, see the definition for z; below.

The zth block component of an n-dimensional vec-
tor partitioned into m blocks of dimensions n; with
Yroni=mn. Ifn; =1 fori=12,...,n, this is
equivalent to z;.

For a time dependent n-dimensional vector z(t), zx
is the value of the vector at discrete time k, z; =
z(tx) = z(hk), for fixed time step h. Index k is used
specifically and systematically for discrete time.

For a time dependent n-dimensional vector z : R
R™, the value of the ith block :1:5:) = zO(t) =
z @ (kh), for fixed time step h > 0.

A subvector of an n-dimensional vector & correspond-
ing to the index set & C {1, 2,...,n} with entries z;,,
1; € o for 3 =1,2,...,dim(a).

The partitioning of the vector representation of a qua-
ternion ¢ € H into the scalar part ¢; € R, and a vector
part g, € R3.

For a quaternion ¢ € H, ¢! is the complex conjugate
quaternion, g7 = (g; — ¢7)T.

The four basic elements of the quaternion algebra H.



Special vectors

a’ﬁ’CiA’yipio-
w,w
Matrices
A = (as5)
AT = (ajl)
[A]ij = ai;
A,j

Aio

'AC(Q

Aup

A= (Ayj)
det(A)

Notation

n-dimensional column vector coordinates for ghost
variables, i.e., the Lagrange multipliers for corre-
sponding constraints.

The angular velocity vector of a time dependent ro-
tation matrix R(t) in the inertial or body frame, re-
spectively, R(t) = @R = R@'. See definition below
for @.

General m x n real matrix with elements

G11 Q12 Q1n

Q21 a22 Q2n
A=

am1 am2 .. Amn

The transpose of a general m x n real matrix with
elements [AT];; = aj;.

The element a;; corresponding to the entry at row
and column 7 in matrix A.

The 7th column of m x n matrix 4, i.e., the column
vector with entries a;;,72 =1,2,...,m.

The zth row of m x n matrix A, i.e., the row vector
with entries a;;,7 = 1,2,...,n.

Principal submatrix of the n x n matrix A for index
set @ C {1,2,...,n}, so that Ayq is the dim(a) x
dim(a) square matrix with elements a;, j,, %, 51 € @,
and k,l =1,2,...,dim(a).

Submatrix of the n x n matrix A for index sets , 8 C
{1,2,...,n}, so that Asg is the dim(a) x dim(S)
matrix with elements a;,j;, where i € «, for k =
1,2...,dim(a), and j; € B, for L = 1,2...,dim(B).
General block matrix A with matrix elements

.A]_]_ A12 P .A.]_N
A21 A22 e .AQN

A = . . ) where the A;; are
Ami Ay ... Aunwn

sub-blocks or matrix entries.
For a square n X n matrix A, the determinant of A,

a1 Gi12 ... Qin
. as1 (25D . QAon

also written as det(A) =
Gn1 Gn2 ... Gnn
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Notation

Special matrices

0 An arbitrary size matrix with all zero elements, as-
sumed to conform in size with respect to its context.

I, The n x n identity matrix.

a For any vector a € R3, with elements a =
(a1,az,a3)T, the 3 x 3 antisymmetric matrix @ is

0 —as Ao
defined as @ = | as 0 —a;|. For a vector
—as a; 0

b € R3, the result c =ab = —ba is the cross product,

also written asc=a x b= —b X a.
E(q) For a quaternion g, £(q) is the 3 x 4 matrix
€(q) = [_Qv gsIs + c_Tv]-
G(9) For a quaternion g, G(g) is the 3 x 4 matrix
G(q) = [_Qv gsl5 — av]
9(q9) For a quaternion ¢ € H, Q(q) is the 4 x 4 matrix
-QS _qT ]
Q(g) = P
@) _‘I'u qs13 + QU_
P(q) For a quaternion ¢ € H, P(q) is the 4 x 4 matrix
PR
Plg)=|" v_ .
(@) _Qv gs13 — q
R(q) For a quaternion ¢ € H, R(q) is the 3 x 3 special

orthogonal matrix, R(g) € SO(3), with

R(q) = £(9)G7 () = I5 + 2053y + 2G0T0-

7,1, The 3 x 3 inertia tensor of a body in the inertial and
body frames, respectively, with Z = R(q)ZoR7(q),
where R(q) is the rotation matrix transforming from
the body fixed frame to the inertial frame for a given
orientation quaternion g € H.

To The extended 4 x 4 inertia tensor of a body in body
0
frame 10 = 0 .0’ where the zeros are block ma-
0

trices of appropriate sizes.

Functions,
derivatives,
and operators

XX



p: A— B

1-1
¢ 1:B A

Yoo

D8z ™M), . .. z(m)

DFo(zM), ..., z(m)

Notation

A general map between sets A and B. Given an ele-
ment a € A, ¢(a) is the (unique) element of B asso-
ciated to a by ¢@.

A bijective mapping ¢ : A — B.

For a 1-1 map ¢ : A — B, ¢! is the inverse map
¢! : B+ Asuch that ¢7(¢(a)) = a.

Given sets A, B,C and the maps ¢ : A — B and
¥ : B~ C, the map 9 o ¢ : A — C associates
¢ = ¢(¢(a)) to each element a € A.

A general multivariate function, g : R® +— R™ which
is the column vector with elements g;(z), g; : R™ —
R.

The standard derivative operator.

The external derivative.

The variation operator.

The total time derivative of the mapping z : R — A,
where A is any set. The form z is preferred. Chain
rule always applies. See below for the special defini-
tion of ¢’.

The gradient of the scalar function 8 : R™ — R, evalu-
ated at . This is a row vector with entries 86(z)/dz;
so that df(z) = (86(z)/0z)dz is a scalar as well for
any given differential column vector dz € R", fol-
lowing the standard matrix multiplication rule. It
is more convenient to reserve V8(z) to represent the
column vector equivalent. See V8(z) below.

For the scalar function of scalar argument, 8 : R — R,
8'(7) is the derivative evaluated at 7. For this specific
notation, the chain rule never applies. Note that (-)’
has other meanings defined below.

For a scalar function 6 : R® — R, the transpose
of the gradient, i.e., the column vector with entries
39(.’13) /Bm,-.

For the multivariate function, g : R® — R™ and the
argument column vector z € R™, the Jacobian matrix
G has the entries [G];; = 8g;/0z;.

For a function of m n;-dimensional argu-
ments, 6 [Tr, xR™ +— R, the gradient
with respect to the th argument, namely,

the row vector D;8(z(M,z® . z(m) =
09(z M, 2@ . z(m) /52 (),

The transpose of the oW vector
D8z, 2@ . z0(™) which is a column vector.

poel
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86(z)

g*p

Special functions
cond(A)

,-'y

T(q,9)q or T(q)q

V(g)q

L
L(g,4)q

L(g,q,q)t

S[H]

R(q,4,t)

p(A)

xxii

For a non-smooth function 8 : R® — R, the general-
ized gradient at the point z € R™.
The quaternion product of two quaternions p,q € H.

The condition of n n matrix A, the ratio of largest to
smallest singular values.

A continuous path in configuration space @ over the
finite time interval [to,t1], so 4 € [to,t1] X TQ.

The kinetic energy function T : TQ +— R, for a
given configuration space . The standard form is
T(g,49)qg = (1/2)¢F M(q)g for a configuration depen-
dent mass matrix. The simpler case of a configura-
tion independent mass matrix, the standard form is
written as T'(q)g = (1/2)¢T Mgq.

Generic potential energy function V : @ — R. Veloc-
ity dependent potentials are not considered.

Generic Lagrangian of unspecified arguments.
Generic time independent Lagrangian for variable q :
R +— @, and (g,q) € TQ.

Specifically time-dependent Lagrangian for variable
g:R—Q,(¢,d) €ETQ,and t € R.

The action functional is the integral S[y] =
Ji dsL(g(s),d(s)) for the path 4 = {(q(t),d(t)) | ¢ €
[to, 1]} for given configuration space @, smooth tra-
jectory function g so that (g, 4q) : [to,t1] — TQ.

A dissipation function, S8 : TQ x R — R producing
the generalized force f = —0%9(q, d,t)/04%.

The flow map Fi : TQ — TQ associates the
initial conditions (q(o),4(¢0)) € TQ to the point
(q(t),4(¢)) € TQ which is the result of integrating the
Euler-Lagrange equations of the Lagrangian £(q, ¢)q
from g up to time t.

The spectral radius of » x n matrix A (real or com-
plex), p(A) = max; |A;| = limy_,o [ 4*]"*
the scalars A\; € C,7 = 1,2,...,n, are the eigenval-

, where

ues of matrix A.

The ramp function, 8, (z) = 0 when z < 0, and
6,(z) = z when z > 0.

The generalized derivative of the ramp function,
00.(z) = 0 when £ < 0, 864 (z) = 1 when z > 0,
and 86 (0) = [0, 1].

The signum function, sgn(z) = +1 for z > 0,
sgn(z) = —1 for z < 0, and sgn(0) € [-1, 1].



Special discrete

functions
ud(q01 q1, S, h)

H—‘d(qO) qi1, h)
La(g0, g1, h1)

Sd(qO)'--an)h)

f,gi) (qu q1, h)
®1,(90,91)

Scalars, constants
=)

t

s

h
hy
k
tx

Differential Forms
w

Notation

The function ug : @ X @ X [0,h] — @ is the inter-
polation g(s) = ua(qo,q1,s,h) for s € [0,h], with
do = ud(Qo, q1, 0) h), and q1 = ud(qo: qi1, h) h)
The discrete Lagrangian

h ;
Ld(qu q1, h) = fo ds‘C(QJ q, S)
for a fixed time step h.
The discrete Lagrangian

h .

ILd(qO) q1, hl) = fo ! dSL(q, q, S)
for a variable time step hj.
The discrete action
Sd(qO)"')qNah) =
time step A > 0.
this is written as Sg4(qo,---,qn5,h1,---,hn) =
ZkNgol La(qr,qrr1, Pry1), with time steps hx >
0,k=1,2,...,N.
Discrete external forces not derived from a potential.
The discrete flow map ., : @ X @ — @ X Q is the
correspondence (q1,¢2) = ®1,(g0,¢1) under the ac-
tion of the discrete Lagrangian L 4(go, g1, #). The kth
power @]'ﬁd(qo, g1) denotes self composition k-times so
that

o La(Lk, L1, h), for fixed
For wvariable time step,

(qk, qkt+1) = q’]’ﬁd(%, 91)(90,91)

k times

= ;DLd odp,0---0®L,(q0,q1).

The nth power of —1.

Global time.

Natural or scaled time, or dummy time integration
variable.

Fixed time step.

Variable time step.

Time step index.

Discrete global time, t; = kh for fixed step, or tx =
Zj<k h; for variable time step.

A general differential form.
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wp
wAn

¢*
O,

Qf
+ -
@]Ed)’ @l(Ld)

Qr

d

Norm, modulus

[l

]

0<zly>0

O(h™)

Oo(n™)

(z(2)

z (&E)

+aFb

+ad'b
tr(A)
z>yandz >y

:EyT
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A differential form of degree p.

The antisymmetric or wedge product of two differen-
tial forms w,7n.

The pullback of a map ¢ : M — N.

The momentum one-form associated with a given La-
grangian, O, = % dg.

The canonical two-form of a given Lagrangian Q, =
dO,.

The discrete momentum one-forms of a given discrete
Lagrangian.

The discrete canonical two-form of a given La-
grangian, Qr,, = d@ﬁi) = d@]&).

The Euclidean norm of vector z € R* z € R, ||z|| =

A/ mf Norms of matrices are not used.

The modulus of a complex number, z € C, and the
absolute value for a real number z € R.

Component-wise complementarity between vectors
z,y € R™ so that z;,y; > 0 and z;y; = 0 for
1=1,2,...,n.

An infinitesimal remainder of order A™ as h — 0, so
that if z(h) = O(h™), then limy_,o A~"z(h) is a finite
constant.

The polynomial complexity order of an algorithm
when applied to a problem of size n.

The time average of a variable z(t).

Two alternatives of an expression, containing + and
— signs, respectively.

Two alternatives of an expression in which a + sign
choice on the first term implies a — sign choice on the
second, and wvice vesa.

Four alternatives of an expression, containing two in-
dependent choices of + and — signs.

The trace of an nxn matrix A, the sum of its diagonal
elements, tr(A4) = ), ai;.

Component-wise ordering between vectors z,y € R"
so that z; > y; (vesp. ; > y;) fort =1,2,...,n.
The outer product of an m-dimensional column vec-
tor  and n-real column vectors y, which is an m xn
matrix of rank 1 with entries z;y;.
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z>xyandz <y
F(¢ | sin2(a))
F(¢\a)

zlyorz-y

(z,9)

mid(a, 8, 6)

SOL(M,q)

Notation

Component-wise, mixed relations, each of which
holds either as an inequality, z; > y;, or as an equal-
ity z; = vi, for each 2 =1,2,...,n.

Lexicographic ordering of real vectors.

See F(¢\ ).

The incomplete elliptic integral of the first kind in
parametric or modular form, respectively, so

F(¢\a) = F(¢ | sin’(a))
¢ 1
- / dé - :
0 1 — (sinfsina)?

The inner product of two n-dimensional real column
vectors. Also known as “dot” or “scalar” product.
The inner product of two elements z,y € H of a
Hilbert space H. This reduces to 27y when H is R™.
The mid function for three scalars a, 3,0 € R. The
same notation is used to denote the component-wise
operation on vectors of compatible dimensions.

The solution set of a given linear complementarity
problem (LCP).

Component-wise perpendicularity between vectors
z,y € R”® so that z;y; = 0 for all 2 = 1,2,...,n,
implying that zTy = 0.

The vector or cross product of two 3D vectors, z,y €
R3. See the definition of @ also.
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1 Introduction

1.1 Context

Interactive physics is the combination of a numerical simulation with multimodal
input devices driving multisensory output devices with short response time. This
allows to see, hear, touch and steer a numerical simulation as it executes. In-
teractive applications parallel the development of off-line computational physics
applications in harnessing the monumental increase in computer hardware and
software capabilities over the last four decades but with different goals, and usu-
ally at different scales. Whereas off-line computations solve increasingly large and
complex problems at the very limit of available hardware, interactive physics ap-
plications address the needs of users, helping make sense of complex data, gaining
deeper intuitive understanding of physical phenomena, or providing for hands-on
experiences, be they virtual. In doing this, the requirements on hardware sys-
tems are balanced between computational, sensor, sensory, and communication
resources.

The range of applications covers virtual classroom experiments [124], virtual
prototyping of novel engineering designs [164], steering of large scale computa-
tions [279] to locate interesting parameter sets or identify problem cases, inter-
active experimentation on computational physics models, as well as the poster
child in this field, namely, virtual environment (VE) training systems which
have proved effective for both airline and military pilots [239], laparoscopic sur-
geons [257], heavy machinery operators [131] and car drivers [164]. Spectacular
applications are produced in entertainment industries as well, particularly in
computer graphics movies and computer games, though much artistic license
with regards to physical motion is the norm here.

Numerical time integration of the equations of motion of a given physical sys-
tem is the heart of interactive physics. Due to psychological factors, this task
must execute at high speed and fixed rates, and is subject to different accu-
racy and efficiency requirements than in the off-line counterpart. The software
implementing physics models and the time integrator is called a “physics engine”.

An interactive physics application is typically a distributed, soft real-time sys-
tem. Multimodal inputs from a user or a script are polled at various frequencies
and communicated to the physics engine. The physics engine integrates the sim-
ulated system forward in time by a fixed amount and the new state is then used
to generate output signals through a multisensory system. Soft real-time means
that the flow of time in the simulation is nearly identical to the flow of wall
clock time, and that response to inputs is quick and even, though not subject to
hard guaranteed bounds as in the case of hard real-time systems used in control
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engineering. Input devices can include tracking systems, microphones, switches,
pedals and joysticks, pointing devices, keyboards and other such. Output de-
vices generally include 3D graphics rendering hardware driving screens or head
mounted displays, sound generation modules driving speakers, as well as hap-
tic devices, motion platforms, and more. The soft real-time requirement stems
from the fact that humans are intolerant of dynamic response lags, especially
variations thereof. In particular, screen refresh rates above 20 Hz do provide
the impression of continuous motion and visual comfort is achieved near 60 Hz
which is the standard for game consoles in particular. Overall lags up to 100
ms or so in visual or motile response can be acceptable if constant, but smaller
lags of the order of 10-20 ms make an application easier to use. The prevalent
use of 3D computer graphics rendering to control all visual signals also means
that 3D graphics models must be used to define the geometry of the physical
objects simulated. The usual 3D graphics models are generally nonsmooth and
nonconvex, being defined as arbitrary collections of triangles and thus having
sharp edges and corners.

The demand for interactive physics engines is increasing in multiple domains.
In surgery applications, it is necessary to model soft tissue, fluids, and tools,
interactions including contacts, cutting, puncturing and stitching, as well as flows
within soft enclosing membranes or with open boundaries. Flight simulators work
well with lookup tables listing the drag force given attitude and speed for free
flight though landing and takeoff does require models of contacting multibodies—
collections of geometrically constrained physical bodies—as well as tires, power
plant, and even full fledged hydrodynamics in some cases where one is interested
in turbulence or precise drag and lift computations. In heavy machinery operator
training, the need is for modeling of rigid multibody systems with contacts and
friction, cables and flexible beams, power plants, drive train, tracks and tires, as
well as soil, mud, dust and water. Simulation of cranes, forest machines, lifters
and stackers of various kinds, as well as earth movers and other construction
machines are quickly being pushed on the market and are met with high demand.
Virtual prototyping requires the simulation of various types of robots and ground
vehicles and their control systems, which is another application of contacting
multibody systems. For all application domains mentioned above, there is a
need for wvalidation of the models used to avoid false training of either operators
and intelligent control systems, which presents interesting challenges.

Given the variety of physical problems which could be useful in any given inter-
active physics application, it first seems difficult to decide where to start. What
is common between the simulation of water and a complicated forest machine?
Fortunately, reductionism, Occam’s razor, and serendipity come to help.

Reductionism suggests starting with the simplest case of systems of particles
interacting via central forces, following the deep footsteps of Newton. But 3D
computer graphics is specialized to render rigid models so this is the place to
start. By considering such graphics models as rigid bodies, connecting those
with mechanical joints, introducing joint drivers to control these, and imposing
nonpenetration constraints on the geometries, one is lead to the dynamics of
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generic rigid multibody systems. To add more realism, one must then introduce
constraint compliance, namely, the allowance of small amounts of constraint vi-
olations, which is a form of regularization easing the numerical solution process,
as well as joint limits, limits on driver forces, nonpenetration contact constraints,
and dry friction. The result is then a versatile and expressive physical model.
The present thesis considers each of these elements in isolation first, and then
conjointly and simultaneously in a unified framework.

The present thesis is a partial response to the demand for increasingly versatile
interactive physics engines, providing the theoretical ground work for and the
construction of original numerical methods which hopefully, suitably balance the
various requirements which are described in details in Section 1.2. The reference
problem is that of reqularized, stabilized, contacting rigid multibodies subject to
dry friction in descriptor form, terms which are described shortly. The discrete
time-stepping schemes developed for this problem follow the principle of discrete
mechanical variational principle, or discrete mechanics for short [196], which is
described at greater length in Section 1.3 and Chapter 3.

Time integrating the equations of motion in descriptor form requires simul-
taneous solution of both velocity changes as well as the constraint forces—the
Lagrange multipliers enforcing the constraints—which, given suitable optimized
sparse matrix libraries, is generally not more expensive than the solution of the
reduced problem, though much more versatile. The saddle point problems aris-
ing in constrained multibody dynamics have been well-studied and good direct
codes are available for them [78, 71], as well as good sparse algorithms [74].
Indeed, direct computation of constraint forces allows to introduce constitutive
laws to restrict their magnitudes, damp high oscillations, or to model physical
phenomena such as dry friction.

In the analytic formulation of mechanics, the components of constraint force
vectors can be interpreted as the coordinates of ghost particles, namely, mass-
less, classical point particles. Ghost particles appear prominently in the chosen
formulation since constitutive laws applied to the constraint forces thus appear
as potential energy and dissipative forcing terms acting on the ghosts, and these
then enforce constraints through linear couplings with the real physical bodies.
Ghost fields are well established in quantum field theory where they play the
equivalent role as constraint enforcing fields, justifying the terminology, though
the term is rarely used in the classical mechanical context.

Regularization is the process of adding small perturbations to numerical prob-
lems to make them better behaved (well-posed) and easier to solve, though with-
out altering the solution significantly. Numerical regularization allows for much
savings in computational efforts as well as the robust construction of good ap-
proximate solutions to ill-posed or degenerate problems. In the present con-
text, such perturbations are added directly to the physical models in the form
of constraint compliance (or constraint relazation), allowing small violations of
geometric constraints imposed on the system.

Because regularization terms are added directly in the physical model, where
they take the form of ghost potential energy, they correspond to physical phe-



1 Introduction

nomena and thus augment the modeling expressiveness of the framework. In
addition, the mechanical energy corresponding to regularization terms is fully
accounted for and the dynamics of the corresponding constraint violations follow
the laws of physics. Physics based regularization of constraints is similar to the
use of penalty forces, a well-known bad idea. However, as shown in Chapter 3 and
Chapter 4, discrete mechanics allows the construction of stable, linearly implicit,
discrete stepping schemes by considering only the average constraint enforcing
force over the time step, suppressing all high frequency components inherent of
penalty forces.

Oscillations of constraint violations, arising either from the explicit introduc-
tion of regularization or from other sources of numerical errors, are further sta-
bilized with the introduction of ghost dissipative forces. Yes, forces acting on
forces. Again, discrete mechanics allows the construction of a stable discretiza-
tion of such forces. When regularization is combined with stabilization, the
resulting stepping schemes are linearly implicit and strongly stable at least in
the case of linear constraints.

Various types of ghost dissipative forces can then be constructed to impose
constraints on constraint forces, to model stiff joint actuators with finite force
for instance, as well as dry friction.

Now, the descriptor form of the equations of motion of the generic multibody
system just described contains the essential ingredients of a very large class of
physical problems, differing only in details of the sparsity patterns of various
block matrices entering the definitions. Occam’s razor is the statement that “en-
tities should not be multiplied beyond necessity”. According to this principle,
one should first attempt to co-opt an established entity into a new role, and
given the similarity of the discretized form of various physical problems to that
of the rigid multibody problem, at least some generalizations are possible. In-
deed, the physical models and numerical methods described in this thesis have
been reused to simulate rigid multibodies describing heavy ground based vehicles
and machinery, virtual humans and robots, as well as cables, cloth, and flexible
beams. An application of the techniques described in this thesis to the simula-
tion of hydrodynamics using smoothed particles is also in development and looks
promising.

Thus, the careful analysis of suitable numerical methods for contacting rigid
multibodies subject to dry friction is the cornerstone of interactive physics.
Whatever methods can be developed for this case can apply mutatis mutandis to
contacting multiparticles, N-body problems subject to strong forces (treated as
compliant constraints), and several instances of deformable multibodies or even
fluids subject to incompressibility and boundary conditions. The one significant
difference when treating new application domains is the design of an optimized
equation solver which must be tailored carefully for each specific instance. Such
changes however do not affect the basic stability and other qualitative properties
of the integration model developed henceforth.

The following Section 1.2 describes the requirements imposed on an interac-
tive physics simulation engine. Section 1.3 describes some of the feature of the
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techniques described at length in the rest of thesis. Section 1.5 presents a broad
overview of previous work in this field and Section 1.4 provides the thesis outline.
Finally, Section 1.7 provides a synthesis of the ideas presented in this chapter
and some general remarks.

1.2 Requirements for interactive physics simulation

The numerical integration of the differential equations of motion of classical
physics is far from new. Indeed, Issac Newton himself described a simple but re-
markably well-behaved numerical method in Book I, Theorem I, of Principia [215],
published first in 1687, as observed in Hairer [112]. Of course, the numerical so-
lution of systems of ordinary differential equations (ODE) enjoys an enormous
literature and a sound theoretical backbone, brilliantly presented in the mono-
graphs of Hairer, Wanner, and Ngrsett [113, 114]. There are efficient methods
which can solve practically any special form of ODE to any desired level of ac-
curacy. However, the equations of motion of constrained mechanical systems are
differential algebraic equations (DAE) of index 3 (this is explained further in
Section 3.14 and described extensively in [114]). Numerical solution methods for
DAEs do not have the same maturity status as ODEs, as discussed later in this
chapter, and are still subject to much inquiry, reformulations, and elementary
experimentation [95]. Collisions, contacts and dry friction, are discontinuous
or nonsmooth phenomena, involving step discontinuities in velocities or in the
derivatives of forces at the length and time scales of interest in interactive physics.
Despite the existence of some sound numerical integration methods [258, 225] for
such nonsmooth problems, the literature is practically in its infancy and there is
also much elementary experimenting still going on. Yes, almost every individual
aspect of the numerical simulation of physical systems has been addressed pre-
viously, with varying degree of success, and with a few blind spots. One might
conclude that building an interactive physics engine is the simple process of se-
lecting the best among well-known methods and implementing them efficiently
in software, devising simple special techniques for the tricky parts.

However, this is not the case since the requirements for interactive physics
differ radically from those of standard numerical integration methods. Interactive
physics is a soft real-time, dynamic, nonsmooth, hybrid problem, which is often
ill-posed and degenerate as well. In this context also, overall stability and speed
have priority over local accuracy and even, paradoxically perhaps, efficiency. It
is thus necessary to build numerical integration methods fitting these specific
requirements, which are now described with illustrative examples and generic
observations on how to meet them. Similar arguments could presumably be
provided for any specific dynamical system, be it in molecular dynamics, chemical
kinetics, structural dynamics or other fields, where some overall symmetries take
precedence over the order of local accuracy guaranteed by generic integration
methods.

Real-time Because of the interactive context, given psychological factors, time
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must flow uniformly and updates must be predictable and fast. Typical
refresh rates for 3D graphics animations are 60 Hz and above and this
means that 5-10 ms is the available time for integrating the simulated
system by 16.667 ms. To be predictable, the integrator should only require
the solution of a few linear systems per step but not require solutions of
nonlinear systems to prescribed accuracy, or use adaptive time stepping
methods, except perhaps for small systems.

Speed The real-time context of 3D graphics imposes an update frequency of at
least 60 Hz for fresh data, leaving at most 10 ms of wall clock time for
computation, irrespective of what is going on in the simulation. Haptics
rendering imposes 1000 Hz update frequency, though interpolation can be
used here to some degree. The numerical analysis benchmark for integra-
tors is efficiency, the amount of computational work needed to achieve a
given accuracy. In turn, accuracy is a quantitative measure the reliability
of the data produced. Efficiency is not a good measure of performance
here since a method might be efficient but still too slow, and, conversely, a
method might be fast but inefficient with regards to achieving prescribed
accuracy goals. The exact amount of time taken in the worst case is what
matters here. Raw speed does come at the cost of decreased accuracy in
general. Since the scale is strongly tilted towards low order methods, raw
speed also comes at the cost of decreased overall efficiency. The final choice
then depends on a balanced error analysis so as to meet both speed and
validation requirements. Maximum speed is reached for fully explicit first
order integration but this being hopelessly unstable, best practical speed is
achieved for linearly implicit, strongly stable integrators of first and second
order which require only one linear system solve per step.

Stability The total integration time interval is usually undetermined and can be
of several hours, implying more than 200,000 integration steps per hour.
An unstable integrator will usually force premature termination of the ap-
plication, after sending objects flying to the Moon and beyond, and this is
not acceptable. Stability is therefore fundamental to interactive physics.
Since dealing with physical system, total energy is the natural measure of
stability. Integrators should be biased so that numerical energy is monoton-
ically non-increasing, or oscillatory within global bounds when the system
is conservative. When dissipative and nonsmooth forces are added to a
conservative system, the net change in numerical energy computed by the
integrator should be nonpositive, at least in comparison to the same system
not subjected to the additional forces.

Dynamic reconfiguration User inputs are neither known in advance nor boun-
ded in variations in any way, and can include arbitrary changes to the
physical problem under consideration at any time.

For instance, a forest machine simulation might include a command to
saw a virtual log in two parts. This discrete event deletes one body and
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creates two new ones while the simulation is running. Likewise, a bad
driver can crash a simulated vehicle into another one at any point in time,
thus dynamically adding several nonpenetration conditions to the simulated
system.

The engine must thus be nearly stateless and designed to handle addition
and deletion of bodies, constraints, and forces, or arbitrary changes in
physical parameters, at any point in the simulation, without requiring too
much computational effort. Some persistence and state information can be
useful in reducing average computational costs but this information should
be easy to reconstruct when it must be deleted, and not be essential for
the computation of the next configuration. This means in particular that
high order multistep integration methods such as the Adams family is not
suitable.

Nonsmooth geometry and nonpenetration conditions To match the observa-
tions of the real world, solids must not be allowed to interpenetrate and
this restriction must be imposed at the geometric level, on the visible 3D
models.

But the geometric models of 3D graphics are made of arbitrary collec-
tions of triangles, edges and vertices, and these are generally not convex.
Also because of the resulting sharp edges, kinks, and corners, the surface
normals of these models are not continuous functions. Thus, nonsmooth
analysis [66] is required to correctly determine contact regions and normals.

Impacts, contacts, friction Nonpenetration conditions lead to impacts—very
large and rapid changes in the velocities. These are instantaneous at time
and spatial resolutions used in interactive applications. The physics engine
must correctly process localized step discontinuities in velocities.

For instance, the collision between two billiard balls is an instantaneous
event at the time scales considered. During the actual impact, which might
last just a few microseconds, the velocities change abruptly but the posi-
tions of the balls are not altered significantly. Likewise, objects in contact
subject to dry friction are subject to discontinuous transitions between
static and kinetic friction. These two cases exemplify the fundamentally
nonsmooth nature of real-life physics. Indeed, dry friction and impacts are
ubiquitous and fundamental to every day life. It would be impossible to
walk or even sit without dry friction.

Such nonsmooth phenomena must necessarily be reproduced in interactive
physics and therefore, discontinuous velocities are expected and must be
processed correctly. A corollary to this is that accelerations are not well-
defined everywhere, since a finite instantaneous change in velocities implies
an infinite acceleration and thus, infinite forces as well. The physics engine
should therefore be based on discrete time-stepping involving positions,
velocities and impulses—time integrals of forces—but not directly on the
differential equations relating accelerations and forces.
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lll-posedness and degeneracy Given the limited computational budget and the
real-time requirement, errors can be relatively large leading to slightly in-
consistent or ill-posed problems. For instance, numerical errors in comput-
ing contact forces between two solids can lead to penetration, and when
this happens, the determination of contact normals is an ill-posed prob-
lem, and contact forces computations become degenerate. Exact arith-
metic and large computational budgets could remove penetration but the
contact configuration could still be ill-poised and degenerate, though con-
sistent, as described for the case of a simple cube resting on a plane in the
next paragraph.

The connection between visible geometry and physics also produces ill-
posedness in itself. Consider for instance the determination of the contact
geometry between a simple cubic box initially at rest on an ideal flat plane.
Requiring the contacting face of the cube to be strictly coplanar with the
flat plane, it becomes impossible to raise the cube on one of its edges.
Enforcing nonpenetration conditions on each of the four corners of the
contacting face instead, the configuration is degenerate since mathemati-
cally, it is sufficient to require that (any) three of the corners be nonpene-
trating. When an external force not collinear with the plane normal acts
on the cube, the physics engine either selects which three nonpenetrating
conditions to activate, or computes reasonable contact forces at all four
(redundant) contact points to impose the desired constraint.

The physics engine must process ill-posed and degenerate problems rou-
tinely, applying systematic numerical regularization if necessary.

Accuracy Humans do not usually go around bearing stopwatches and meter
sticks to judge whether a given stone fell to the ground like any other
previously witnessed stone falling to the ground. No. Yet something fun-
damental and easily appreciated qualitatively in the motion allows humans
to perceive whether a stone fell as expected, or whether its natural motion
was altered in some way, irrespective of the exact millimetric detail of the
trajectory. Not granting license for deceit or disregard toward validation,
these observations imply that efforts toward accuracy should be concen-
trated on that which makes a visible difference. Of course, exactly which
quantitative validation criteria must be met to produce natural looking
motion is for the psychologists to determine [220] but an educated guess
that physical invariants should be preserved as much as possible, and that
geometric constraints should exhibit minimal violation is a good place to
start.

Modularity The simulation of a mobile crane, for instance, involves simulta-
neously solving for the dynamics of various subsystems, including power
plant, drive train, flexible booms and hoisting cables, as well arbitrary sets
of frictional contacts and collisions generated dynamically by a geometric
computation module. The physics engine should be designed to allow cou-
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pling between all different modules implementing each and every aspect of
the physical problem considered.

No tuning As much as possible, correct simulation should not depend on a user
or modeler spending hours finding suitable parameters such as masses, time
step, force strength, and so on. This either implies a detailed automated
local stability analysis, or a robust and strongly stable integrator capable
of solving badly scaled problems. This is especially in the case where the
physics engine is packaged as a software library to be used by modelers
who do not know about the details of the numerical methods, and may not
even know much about physics either.

Good tuning and reasonable scaling always improve performance and care
should be taken in the definition of the physical models of a given applica-
tion. Still, the engine should handle badly configured cases, perhaps with
decreased performance and accuracy.

Better numerics are needed to meet these requirements, especially to cover
more complex physical models. Several possible solutions have been proposed
described in the review in Section 1.5. However, based on the findings described
in the rest of the thesis, my personal view is that discrete variational physics, pre-
cisely defined in Chapter 3 and explained in broad terms in the next Section 1.3,
fits the bill of requirements to a T.

1.3 Discrete variational physics

A narrow view of classical mechanics starts and ends with Newton’s three laws
of motion of point particles which are second order nonlinear ODEs. It is true
that every single mechanical system can be first reduced to a system of point
masses and then summed up appropriately to yield the correct equations of
motion, as is done in textbooks for rigid or elastic bodies, fluids, gases, and so
on. The equations of motion of a variety of mechanical systems have been derived
long time ago and are well established starting point for computational physics.
Since numerical analysts have been busy constructing integration methods for
practically all types of differential equations occuring in physics, this is a good
place to start.

But there is an alternative view. Notwithstanding the theological motivations
at the origin of this quest, irrespective of the fact that it took more than 200
years and more than a dozen talented physicists and mathematicians to arrive
at the correct formulation, the laws of mechanical motion can be derived from a
variational principle, stating that a certain time integral defined over the physical
trajectories—the action—is stationary with respect to infinitesimal variations of
the trajectories respecting all imposed constraints. In short, physical motion
satisfies the least action principle. The notion that Nature was parsimonious
struck the imagination of a long series of physicists and mathematicians who
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had to conclude in the end that the suitably defined “action” was not necessarily
minimized on the physical trajectory but merely stationary.

There are several reasons to regard the variational principle as more funda-
mental than Newton’s three laws of motion. First, the variational formulation
leads to canonical equations of motions, the form of which is invariant under any
continuous change of coordinates. Second, the variational principle not only re-
produces the correct equations, but also gives a prescription to produce functions
of the coordinates which are constant along the physical trajectory, correspond-
ing one-to-one with symmetries of the system—the content of Emmy Noether’s
famous theorem. For instance, Galilean relativity states that the laws of physics
are invariant under a change of origin, or a fixed global rotation. Noether’s
theorem correctly identifies the linear and angular momentum vectors as the
corresponding constants of the motion. In Newtonian physics, conservation of
linear momentum must be added explicitly as the third law of motion stating that
action equals reaction. One must also define angular momentum in a slightly ad-
hoc way and then prove that it is conserved when only central forces are present.
For free, Noether’s theorem also provides the fact that central forces only are
compatible with Galilean relativity, which may not be so easy to deduce from
Newton’s laws. Likewise, it is in fact possible to construct the correct equations
of motion of simple constrained systems using Newton’s three laws but the varia-
tional principle produces the correct equations of motion for arbitrary geometric
constraints, in arbitrary coordinate systems, using a systematic procedure. In
addition, the variational formulation allows the clear identification of redundant
degrees of freedom and a detailed prescription for how to remove them from the
problem, correctly preserving the dynamics of the surviving, relevant variables,
the content of reduction theory.

The variational formulation also allows the analysis of nonconservative systems
and though much less can be said about these in general, their geometric and
symmetry properties can be well understood within the variational framework.
This is especially true of the Lagrangian formulation and the Hamiltonian form of
d’Alembert’s principle of vanishing virtual work, the variational principle which
is used throughout this thesis.

True, the mathematical apparatus required to use the variational formulation
is more complicated than the simple vector analysis needed in analyzing Newton’s
three laws. The prevalence of differential geometry, differential forms, Lie groups,
Lie algebras, Lie derivatives, and other tools of global analysis can be daunting,
especially when several results can be derived with more pedestrian mathematical
techniques, though with devilish cleverness (see the first few chapters of [22] for
example). But there is a unity to the variational method which is not apparent in
the Newtonian formulation, and several results which would presumably be out of
reach without the benefit of global analysis. Of course, working backward from
the answers provided by variational methods and comparing with previously
known methods can provide considerable enlightenment and understanding as
to what went wrong, and perhaps ideas of how to fix things without necessarily
using all the results.

10
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Of course, at the numerical level, this can appear to be akin to armchair
philosophy, or worse, the use of a sledgehammer to kill a fly. Recent developments
however have proved this view wrong, very wrong.

It is a common textbook example to demonstrate that in certain cases, the
evaluation of limits is a non-commuting process. A sum of limits is not necessar-
ily equal to the limit of the sum. For the case at hand, one can first apply the
variational principle to an analytic formulation, obtain the differential equations
of motions and time-discretize these to compute discrete trajectories. Conversely,
one can first time-discretize the trajectories, use these approximations to evaluate
the discrete action, and only then apply the variational principle, imposing sta-
tionary conditions to recover discrete time-stepping equations of motion. These
discrete stepping equations of motion are called variational mechanical integra-
tors.

Now, Noether’s theorem, the canonical form of the equations of motion under
changes of coordinates, and variable reduction, are all direct consequences of
the stationary conditions on the action. It follows that the same theorems and
techniques apply mutatis mutandis to discrete trajectories if one requires that
they make a discrete action stationary. By contrast, the direct discretization of
the equations of motion may or may not preserve any of the symmetries of a
given system. Though it is possible to explicitly impose symmetries when con-
structing a given integrator, as is done in the energy-momentum preserving and
symplectic Runge-Kutta methods, or in the geometric integrators for instance,
the construction of a mechanical integrator achieves this same result in a far sim-
pler way, without any a priori knowledge of the symmetries of the problem. One
merely has to construct approximations of time integrals over the trajectories as
functions of the yet to be computed discrete points. The stationary conditions of
discrete mechanics then prescribe a stepping scheme to compute these discrete
points, guaranteeing the preservation of all motion invariants, exactly for some,
approximately but within global bounds for others, as described in Chapter 3.
In addition, extensions of a basic integration formula to include constraints and
exotic forces is straight forward, requiring only the approximations of other time
integrals.

Because the action is a time integral of a scalar function of the trajectory, the
discrete action is well defined even in the case where the trajectories are discon-
tinuous, and though some care is needed in constructing the stepping equations,
this extension is also straight forward.

Assuming that invariants are the quantities corresponding to qualitative prop-
erties of physical motion on which human intuition is based, numerical methods
which conserve the invariants, exactly or on average, are the ones needed for in-
teractive physics. It is therefore possible to achieve raw speed using a low order
method without giving up entirely on accuracy. In addition, the preservation of
invariants often provides global stability, at least for the case where the level sets
of the invariants are closed and bounded, which is usually the case for energy
at least. For fixed step integrators, as shown in Chapter 3 and in the examples
of Chapter 2, the energy oscillates around the correct analytic value between

11
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bounds of second order in the time step. This is not quite as good as strict
energy conservation but still leads to a closed and bounded collection of level
sets and thus, global stability, though not entirely unconditional.

The Sun has been shining in the sky for a while and many of the variational in-
tegration methods have been in fact well known for some time, derived via other
means, and appreciated for their qualities. For instance, the famous methods of
Verlet for molecular dynamics [271] and Newmark for structural dynamics [214],
among many others, have been proved to be variational [196, 112]. Marsden and
West in [196] further demonstrate that symplectic Runge-Kutta methods [112]
are indeed variational. But far from being limited to providing moot post ra-
tionalizations, the discrete variational formulation allows the tailoring of an in-
tegrator to handle various special types of dissipative forces, regularization, and
stabilization terms. This is the feature exploited in the rest of the thesis to
construct physical models of numerical regularization and their corresponding
variational time-stepping equations.

Only the simplest possible discrete time-stepping equations of motion are de-
rived for any given case, and this can appear to be a limitation of the method.
But the objective was to construct stable physics based constraint regulariza-
tion and stabilization schemes, and to develop a sound model of impacts and
Coulomb dry friction as well. The fact that these goals are achieved with low
order methods is actually a demonstration of the strength of the techniques. In
addition, a stable, one step, low order method is very useful in a variety of con-
texts where raw speed is needed. The popularity of the Verlet method [271] in
molecular dynamics (see [178] for more context about this) is a case in point.
But even for these low order methods, one can achieve reasonable accuracy by
solving the nonlinear problems with more precision and decreasing the time step.
Brutal and inefficient perhaps, but a sound strategy nevertheless. This allows
the use of these new methods in scientific application domains demanding high
accuracy but otherwise sharing several of the requirements stated in Section 1.2,
or the modeling flexibility and numerical robustness of physical regularization
and stabilization techniques developed herein.

This said, higher order methods can indeed be constructed within the same
framework. In cases where there is enough computational time available, as is
true in off-line applications, and when there are not too many discontinuities,
this would be more efficient. Higher order methods will be addressed in future
work.

1.4 Thesis outline

The present thesis provides novel numerical methods to compute trajectories of
classical mechanical systems of constrained multibodies subject to contacts, dry
friction, and a variety of constraints, kinematic or otherwise. The text of what fol-
lows is divided into large chapters with theoretical contents and original results,
as well as a sequence of Bagatelles, which are smaller and illustrative chapters,

12
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either self-contained or based on the theoretical results of preceding chapters.
Examples in the Bagatelles are very small and are typically restricted to one or
two dimensions but this was done for clarity of exposition and to demonstrate
how the new methods perform on known difficult problems in low dimension.
This is not a limitation of the theoretical results though. An implementation of
the new methods as a generic library designed specifically for 3D applications,
as well as performance analysis on large and more difficult problems is part of
future work.

Each chapter starts with a short abstracts explaining the main argument, the
logical organization, and the content listing of each section. All chapters also
end with an “End notes” section collecting additional references to the literature,
general remarks and comments based on personal experience, and indications
of future work. A glossary with definitions of most of the technical terms used
in the thesis is also provided at the end, and a notational index—perhaps less
thorough—is found in the front matter. With these, the book is nearly self-
contained.

A first simple example of numerical discretization of a physical system is pro-
vided in Chapter 2 where the simple harmonic oscillator is discretized in four
different ways and stability is analyzed.

In Chapter 3, the fundamental principles of both classical and discrete classi-
cal mechanics are exposed in Lagrangian form. This provides some explanations
for the results demonstrated in Chapter 2 but goes much further in constructing
good integration methods for mechanical systems subject to conservative and
non-conservative forces, as well as a variety of constraints. Methods of discrete
classical mechanics are used to construct low order fixed step integration formu-
lae for all the systems considered. The same chapter exposes the theory behind
the conservation laws of classical mechanics and demonstrates the discrete me-
chanical counterparts. The only new element introduced here is an analytic
representation of nonholonomic constraints using a special form of Rayleigh dis-
sipation which is not found in the literature.

The content of Chapter 4 is entirely novel in providing stable numerical in-
tegration schemes for regularized constrained systems, or in other words, stable
discretization of strong penalty forces implementing constraints. This is the first
physics based constraint regularization and stabilization scheme that is provably
linearly stable.

Following Chapter 4, five Bagatelles illustrate several aspects of the theory.
First in Chapter 5, the stability properties of explicit Runge-Kutta methods up
to order four applied to the simple harmonic oscillator are investigated using
standard techniques. For this specific case, the explicit Runge-Kutta methods
are not performing as well as they do on arbitrary systems including dissipation.
In fact, only methods of order 4 and above are stable for the harmonic oscil-
lator, the second simplest physical system. This strengthens the case that for
simulating physical systems at least, a low order physically motivated method is
much better than a high order general purpose one. The next Bagatelle in Chap-
ter 6 investigates the motion of the simple pendulum to illustrate the differences
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between various strategies to integrate constrained mechanical systems. Once
again, it is found that the stepping methods derived in Chapter 3 are performing
very well, and are very efficient when including the modifications presented in
Chapter 4.

The Bagatelle of Chapter 7 contains investigations of the motion of a planar
slider crank mechanism. This simple system exhibits an isolated kinematic sin-
gularity, a point in configuration space where the constraint Jacobians do not
have full row rank. Simulations are performed using a variety of methods and
the point is made that using the regularized methods of Chapter 4 removes this
singularity at no extra computational cost. Continuing with Chapter 8, the
main stability result of Chapter 4 is illustrated in the simplest possible context,
namely, a planar point particle constrained to move along a line but subjected to
a force acting to veer it off course. This example illustrates how typical penalty
methods normally introduce highly oscillatory forces. This is contrasted with
the regularized method of Chapter 4 which, when stabilized in a simple fashion,
damps these oscillations.

The following Bagatelle in Chapter 9, a simple spring and damper model of
one-dimensional contacts is analyzed to illustrate that a suitably damped high
frequency oscillator can be used to model instantaneous impacts. Though this
is well known, the example serves to illustrate that impact dynamics can be
decoupled from the rest of the smooth motion by separating time scales, which
is then analyzed in depth in the next chapter.

In Chapter 10, a number of nonsmooth problems are investigated including
collisions between nonpenetrating solids, and dry frictional contacts. After pre-
senting an exact discrete collision model which preserves energy due to Fete-
cau and Marsden [87], a novel two-step approximation is constructed which is
strictly dissipative but mildly so. This can be implemented at very little cost in
the general framework built in Chapter 4 by requiring one additional solution
of the linear problem with different data but the same matrix. Proceeding from
there, a novel physical model based on non-smooth Rayleigh dissipation func-
tions is developed to construct nonideal constraints imposing hard bounds on
the velocities as well as on the constraint forces themselves. This is then used
as a building block to construct a regularized model of Coulomb friction. In
turn, after discretization, this model produces a novel, solvable, isotropic nonlin-
ear complementarity problem formulation of dry friction with a genuine stiction
mode, in sharp contrast to several previously published smoothed models such
as [33] and [108]. In addition, though this is not pursued here, the new dry
friction model is extensible to higher order stepping schemes via the variational
framework.

Next Bagatelle in Chapter 11 expands further on the famous Painlevé paradox
which illustrates a fundamental problem in the analytic formulation of Coulomb
dry friction: there are configurations where the contact forces are infinite and
others where they are not uniquely defined. It is shown by numerical example
that the discretization strategy of Chapter 4 and the discrete dry friction model
of Chapter 10, resolve the paradox satisfactorily. Multiple solutions are still
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possible in zero regularization, but that less important than the existence of a
true stiction mode and the absence of infinite forces.

The following four chapters cover various aspects of rigid body dynamics.
Starting in Chapter 12, the rigid body is defined and its motion is resolved
into translational and rotational components, as is well known. The connection
between rigid body motion and the group of rigid rotations in three dimensions,
SO(3), is established and this serves as motivation for the next chapter. A short
section providing an analysis of two-dimensional rigid bodies is also provided for
reference for Bagatelle V in Chapter 7 and Bagatelle VIII in Chapter 11.

Before continuing with rigid body mechanics per se, Chapter 13 develops a
concrete representation of the quaternion algebra H in terms of 4 x 4 real ma-
trices and four dimensional real vectors. A large number of theorems, lemmata,
corollaries and identities related to the various special matrices which appear in
the representation are provided, some of which might very well be new though
without great consequence, except for their usefulness in what follows. The ma-
terial of this chapter is seldom found collected in one place, or with the details
necessary for applications to rigid body kinematics.

Armed with the results of Chapter 13, Chapter 14 proceeds to define a number
of kinematic rotational constraints between pairs of rigid bodies using quater-
nion algebra. This strategy removes global degeneracies encountered in vector
algebra based definitions of hinge and prismatic joints for instance, in which
anti and collinear conditions are indistinguishable. The quaternion definition
disambiguates anti and collinear conditions. Of the constraints considered, the
definition of the Hooke joint in terms of quaternion algebra is novel. For the
others, the representation provided is more general than what was published
previously [263].

The results of Chapter 13 and Chapter 14 are then combined in Chapter 15 to
investigate the dynamics of rigid bodies, and especially the numerical discretiza-
tion thereof. A Lagrangian formulation in terms of the quaternion algebra is con-
structed and the quaternionic equations of motion are derived. This derivation
was not found in the literature. After observing that the discretized, nonlinear,
quaternionic equations of motion do not have the correct form to be processed
together with the equations of motion for the center of mass, a novel approxima-
tion method is constructed. This approximation captures much of the nonlinear
dynamics of rigid body rotations and yet, it allows the processing of all the rigid
body variables in a unified way in the framework developed in Chapter 4. This
is similar in spirit to the solution of Anitescu [18], but the new approximation
preserves energy better and correctly integrates the free rigid body case with very
small errors. The approximation fails on gyroscopes though, because of the high
rotational velocities involved. For this case, a specialized method such as [51]
should be considered.

Since the approximation of the friction model of Chapter 10 requires the solu-
tion of linear complementarity problems (LCP), an introduction to this topic is
presented in Chapter 16, including solution methods for these, straight forward
extensions to cover mixed linear complementarity problems (MLCP), as well
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as simple performance comparisons between the best known methods on ran-
dom problems. This histogram-based performance analysis is novel. It greatly
helps making a rational decision in choosing a LCP solver. The presentation of
the LCP algorithms uses block matrices instead of the traditional pivotal alge-
bra and basis representation common in the linear and quadratic programming
literature. This allows the use of the high performance basic linear algebra sub-
routines (BLAS) level-3 set of operations [107] and the general matrix matrix
multiplication (GEMM)-based approach [149, 148], instead of the lower perfor-
mance BLAS level-2 set to which pivotal operations are restricted. In particular,
the block form allows the use of sparse linear algebra packaged supplemented
with factorization update and down-date routines.

In Chapter 17, a well-known form of splitting which can be applied to the dry
friction model of Chapter 10 to make the problem easier to solve is analyzed in
detail. An original proof is constructed to characterize the geometric and conver-
gence properties of the sequence of the iterates. A novel form of splitting, which
also simplifies the computation and makes it parallelizable, is also presented but
in this case, only numerical results are provided.

Finally, in Chapter 18, the various numerical linear algebra problems encoun-
tered in building a software library implementing the stepping scheme of Chap-
ter 4, including the nonlinear complementarity conditions arising from the im-
pact, contact and dry friction models of Chapter 10, are discussed. A number
of data layout issues are first discussed and detailed solutions, known to work in
practice, are provided. This is followed with a presentation of a known sparse
factorization algorithm for saddle point matrices that is then used as a precon-
ditioner for a modification of a conjugate gradient algorithm which can process
the special types of saddle point matrices appearing in the regularized stepping
equations of Chapter 4. Gauss-Seidel type iterative methods are then analyzed
with respect to their data movement requirements. Some “poor man” computa-
tional techniques are also presented to allow the implementation of factorization
updates and down-dates discussed in Chapter 16, using third party matrix factor-
ization libraries, to provide for the case where such operations are not provided
natively.

A synthesis is then provided in Chapter 19 to collect the various sub-problems
analyzed through the thesis, to provide an overall view of a physics engine, and
collect closing remarks as well as description of future work.

1.5 Survey of related work

Interactive physics draws on several independent branches of investigations. The
first strictly concerns the coupling of interactive 3D graphics with some sort
of physics simulation, best illustrated with the development of the commercial
flight simulators, in which all aspects of interactivity come first and foremost.
Then comes a development in computational physics and engineering addressing
the dynamics of constrained multibodies, considering first the simple constraints
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found in robot design, and eventually the more complicated dry frictional contact
constraints. Also of interest is the development in numerical analysis of methods
for handling DAEs, which include methods applicable to robots and machines,
and similarly in molecular dynamics, a set of special, fast methods with various
symmetry properties suitable for multibody systems. Each of these branches
contributes something of significance to interactive physics though none provide
a satisfactory answer meeting all the requirements described in Section 1.2. The
review provided below is not exhaustive, mostly concentrating on articles and
books related to contacting multibodies subject to dry friction, but it serves to
illustrate the range of techniques which have been developed so far.

Indisputably, the early developments of flight simulator technology not only
set the course for interactive 3D computer graphics [92] but that of physics
driven VEs. The simulation of a single rigid body subject to drag and lift forces,
computed by interpolating from experimental tables given the difficulty of a full
fledged hydrodynamic flow simulation of a complex body moving at high speed,
might not appear terribly difficult or exciting today. However, the realization of
flight simulators established the possibility of creating immersive virtual worlds
using computer systems. In creating the link between computational physics
and computer graphics, flight simulator development must be credited with the
invention of interactive physics, as well as providing inspiration for all that came
after.

Following the pioneering efforts in flight simulation, 3D computer graphics
became a field of research in its own right but it did not take so long for the
proceedings of the yearly meetings of the Association for Computing Machinery
(ACM) special interest group on computer graphics and interactive techniques
(SIGGRAPH) to start including computational physics papers describing tech-
niques for adding realism via physics simulations. The trend generalized in all
the 3D computer graphics journals.

Perhaps the first few instances including both physics simulation and graphics
are credited to Terzopoulos [264] who started right away with deformable bod-
ies, with impressive effect but with forgettable techniques, and then Barzel and
Barr [45] who introduced the important concept of kinematic constraints for con-
trolling virtual objects, and as a necessary modeling element of a physics engine.
The treatment of constraints was through index 1 reduction and Baumgarte sta-
bilization [47], a technique described in Chapter 4 which, unfortunately, is both
in widespread use and unstable or, at least, notoriously difficult to tune properly.
Barzel proceeded later to publish a “howto” book to add simple physics models
in simulations [44], and then introduced the notion of “plausible animations” [46],
arguing that many details of a given physical phenomenon are beyond observation
or fundamentally noisy, and that instead of unachievable goals towards accuracy,
a balanced view should be adopted, even including some provisions for artistic
license. The basis of the Barzel’s argument [46] is that variability is inherent
in nature and he reflected carefully about how and where to include this vari-
ability explicitly to save on useless computations and thus produce simulations
which were closer to common experience without requiring so much accuracy. In
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simulating a pool (billiard) break for instance, explicitly adding randomness can
produce realistic results, whilst an exact contact formulation might not. This
argument is not followed here as, strictly speaking, it is orthogonal to the con-
struction of good time stepping schemes. This said, Barzel’s careful and sound
argument is unfortunately often grossly misquoted to grant license for blatant
disregard for accuracy, without any checks on whether the simulated motion
matches observations, at least in some average sense.

The case of dry friction between contacting rigid bodies in two dimensions
was pioneered by Lotstedt [189, 190, 191] during this PhD thesis work concerned
with the collapse of buildings in two dimensions. His techniques are discussed
further below. This work found its way in the SIGGRAPH proceedings in a
series of papers by Baraff who built on Lotstedt ideas and presented techniques
for two-dimensional rigid bodies subject to dry friction based on the Lemke al-
gorithm [179] in [31, 33, 34] and on the Cottle-Dantzig algorithm in [35], also
providing some analysis of smooth contacting geometries in [32], and address-
ing flexible bodies with frictional contacts in [38]. Finally, he generalized this to
three dimensions in [36] and suggested a sparse factorization technique to speedup
some of the computations in [37]. The integration method used throughout this
work is the common Runge-Kutta method of fourth order, RK4a [113], which
requires four stages, i.e., four derivative evaluation per step. Constraints are
treated by reducing the problem to an index 1 DAE and stabilized using Baum-
garte’s method [47]. The impact of these papers on the graphics and computer
game development communities was tremendous. I started my own work by
implementing these methods, and so was everyone else I was meeting who was
working on these problems. However, the shortcomings of the dry friction model
and its suggested solution scheme [35], as well as the integration and constraint
stabilization scheme made these techniques frustrating to use. The resolution of
these problems came later from the engineering and mathematics literature as
described further below.

In parallel to this, Mirtich chose to treat all collisions and contacts using
strictly pairwise interactions, computed via a simple binary impulse model [204,
205, 203]. This involves conservative prediction of time impact between each
pairs, sorting these in a hierarchical table, integrating the system to the next
predicted impact, resolving it, updating the estimates, and continuing. This
is quite easy to implement but suffers from non-uniform time flow and Zeno
points where the time step cannot be advanced significantly because of dense
clusters of nearly simultaneous impacts. This is especially true when approaching
resting contact and in this case, the method amounts essentially to a Gauss-
Seidel process since time no longer moves forward, until some thresholds are
met. To some extent, this problem can be addressed via parallelism as in [203],
or using clever sorting strategies. Such techniques become quickly intractable
when many simultaneously contacting bodies are considered. At that point, one
must relax the conservative impact estimates and allow some interpenetration to
recover performance. A method allowing multiple simultaneous resting contacts
is generally more efficient in that regime.
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More papers appeared in the graphics literature after Baraff and Mirtich,
chiefly concerned with large unstructured piles of rigid bodies which became
a benchmark. First with Milenkovic [202] who used a standard quadratic pro-
gram solver to approximate dry friction in two steps, then with Guendelman,
Bridson, and Fedkiw [109], and similarly in the work of Kaufman, Edmunds and
Pai [155], an iterative process based on pairwise interactions—akin to the Mir-
tich strategy described above—was used to resolve pairwise collisions, which was
then extended to process more general constraints as well in [275]. Tt is impres-
sive to see that an iterative solver can quickly approximate the contact forces of
thousands of stacked bodies but the size of the errors and the slow convergence
of such methods make them of little use when validation is required. Iterative
techniques are not fundamentally bad and even Gauss-Seidel is routinely used in
high accuracy scientific applications. However, I strongly believe that the choice
of using an iterative method should be taken after a sound overall time-stepping
technique has been selected, and the problem to solve is clearly identified, but
not be built into a procedural description of the integrator, leaving no room for
mathematical analysis. Such procedural methods are usually presented with the
claim that they are “plausible” but one is left to wonder whether this implies the
overall credibility and variability described by Barzel [46] when he introduced the
term, or intentional deceit, as implied by the dictionary definition of “plausibil-
ity”, motivated by an aversion for quantitative evaluation of statistics, stability,
and accuracy. Because of the fundamentally procedural nature of the recent rigid
multibody papers presented in the graphics literature, impervious to any form of
mathematical analysis, and given the current trend of not providing any form of
quantitative information about the size of errors or the time evolution of energy,
such methods are not considered any further.

The engineering literature contains several threads addressing the simulation
of robots and machines. On the robotic front, much work was done to construct
methods for simulating tree structured mechanisms with ideal joints in linear
time, which culminated in the work of Featherstone [86]. This type of topological
or recursive technique, as it is called in robotics because it is based on traversing
the connectivity graph of the multibody, allows the reduction of the dynamics
of a multibody system to ODEs, but only in the case where there are no closed
kinematic loops. This problem can be addressed to some extent as in [127, 128],
and more recently, using a technique called natural orthogonal complements [12,
13, 243, 233]. Topological methods are just one form of coordinate reduction
technique, others being based on analytic reduction, or numerical state space
reductions based on orthogonal factorization (QR) of constraint Jacobians.

All topological methods of robotics eliminate the constrained degrees of free-
dom and though they might be more efficient in some cases, the descriptor
method which I favor allows the introduction of joint compliance which is useful
in modeling, allowing the simulation of elastic bodies, for instance. It is part of
some future work however to consider hybrid formulations based on the recursive
formulations within the variational framework, in order to improve performance
and for the ability to provide compliance free joints, since this can be useful in
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some cases.

A large and broad research effort covering all aspects of computer simulations
of multibody systems was sponsored by the German Research council (DFG)
from 1987 to 1993 and the papers describing several results are collected in [246],
and generated such off springs as the Mobile library of Kecskeméthy [156] which
is a recursive model allowing loop closure, and the MBSSIM library of von Schw-
erin [272] which is a hybrid between a descriptor form and a recursive method
using integrators from the Adam Bashforth family [113], both software packages
reducing the DAEs of motion to ODEs using differentiation. Interesting aspects
of the DFG multibody dynamics research effort are the overall software envi-
ronments which were built to produce complete work flow pipelines from system
design to interactive simulations, described in [221, 130]. It is part of future
work to adapt such design ideas to produce a complete work flow around the
numerical methods developed herein.

Perhaps an illustration of the difficulty of multibody simulation is the fact that
the collection of papers in [246] contains several incompatible numerical models,
each with its own set of restrictions. These divisions remain to this day and no
one formulation of the problem or numerical integration strategy dominates.

Also in the engineering literature, but with a closer relation to interactive
physics, is the work of Haug and his group which led to both the development
of the now apparently defunct DADS software package for Design Analysis for
Dynamic Systems, an early version of which is described to some extent in [118],
and the development of the Iowa Driving Simulator [93], eventually superseded
by the National Advanced Driving Simulator [119]. Haug and his group inves-
tigated both descriptor and reduced coordinate formulations, with a particular
emphasis on hybrids and state space projection methods. The early develop-
ment is recorded in [282, 283, 230] and more recently in [251], with some ef-
forts to solve dry friction problems with explicit addition and deletion of con-
straints [123, 280, 281]. The development of real-time techniques is documented
in [267, 268, 65], and the development of stiff integration methods based on local
state space reduction in [122, 252, 212, 121, 120, 211, 213, 244, 274]. There is
also much work from this group on covering several other aspects of modeling
and validation which is outside of the scope of the present thesis. Any form of
state-space reduction technique is of course independent of the integrator and
it is possible they will be used in the future in trying to optimize performance
when addressing larger problems. Nevertheless, state-space reduction and coor-
dinate partitioning is generally slower. There are cases when a global reduction
or or a complete set of realizable reductions can be precomputed, leaving only
small problems to be solved at run-time. This hardly applies to frictional contact
problems, however. Such strategies are not covered further.

In numerical analysis, the problem of integrating the DAEs of motion of con-
strained mechanical systems attracted some attention. Brenan, Campbell and
Petzold [54] produced the DASSL library based on backward difference formula
(BDF) methods, which does work well on index 1 and some index 2 problems
but not on index 3 problems. The limitations of DASSL can be addressed to
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some extent by index reduction techniques of Gear Gupta and Leimkuhler [96].
For certain forms of linear time dependent coefficient DAEs, BDF methods can
be applied successfully for arbitrarily high index [43], and one can also add the
first k time derivatives of constraints to the system, for a DAE of index k, and
solving everything as a least squares problem as in [41, 94]. The least squares
strategy of Barrlund [41] can help preserving physical invariants by adding them
as constraints, though this introduces dense Jacobian blocks since the invariants
typically depend on all the coordinates of the system. The GELDA package
by Kunkel, Mehrmann, Rath, and Weickert [165], improves vastly on DASSL,
using robust linear algebra methods to compute the local invariants, again, at
the cost of performing singular value decomposition (SVD) or QR at each (sub)
step. A number of strategies for solving the DAEs of motion using least squares
strategies and projection methods are discussed by Fiihrer and Leimkuhler [94].
In addition, Arévalo Fiihrer and Séderlind [20] have developed multistep meth-
ods [113] for the specific case of the DAEs of motion of mechanical system with
some success.

However, in general, the BDF methods are strongly dissipative and destroy
physical symmetries. Given the typical computational cost of these methods,
especially when invariant subspaces have to be computed, they are not appealing
for interactive physics.

Hairer and Brasey [53] developed Runge-Kutta methods for mechanical sys-
tems subject to holonomic constraints which they called PHEMS5, and Hairer
observed in [114] that the RADAUS5 code can process DAEs of index 3, though
at the cost of having to use SVD extensively, and augmenting the formulation
to include positions, velocities, and accelerations in the same nonlinear system
along with constraints and their derivatives. Also related is the extrapolation
method of Lubich, Engstler and Nowak [192], which led to the MEXAX code,
which would be interesting to use as benchmark, as it offers very high local ac-
curacy and good stability. This said, the PHEMS5 method is probably the most
interesting to consider as a starting point for future work on higher order integra-
tion, at least for smooth systems not subject to friction, because of the connection
between higher order variational integrators and symplectic Runge-Kutta meth-
ods as described by Marsden and West in [196]. It would be interesting to see
the difference between PHEMS5 and a variational formulation of the same order.

Ascher and his colleagues investigated index reduction methods in which a
DAE is replaced formally by an ODE with an invariant [24], as did Barrlund [42]
as well. The problem is then to stabilize the invariant for all times and this
can be done reliably as shown in Chin’s PhD Thesis [61]. A subsequent original
idea from this group is the sequential regularization of Ascher and Lin [25, 26,
27], which was also applied by Lin [185] to the problem of incompressible fluid
flow, in which constraints are replaced by stiff penalties which are decoupled
from the integrator. This works by repeatedly reintegrating the system subject
to a penalty force evaluated on the previous trajectory estimate, making the
strong force independent of the currently integrated variables. A higher order
integration method is required to integrate the resulting ODE though, and the
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regularization process is not based on physics. One could presumably integrate
similar ideas in the variational formulation to construct a multirate integrator
though this avenue is not pursued for now.

However, in all high order numerical methods for solving DAEs of index 3, it is
far from clear how to introduce impacts, contacts and dry friction. Since a high
order integrator must be restarted at each discontinuity, processing a problem
with dry friction would often result in no better than first order accuracy. Of
course, the first order BDF method is nothing else than first order implicit Euler
and is strongly stable but also strongly dissipative, which is bad for physics
problems. It is thus not clear that any of the other strategies just mentioned
would work satisfactorily on nonsmooth problems. This is the main reason why
they have not been considered. Ideally, it should be possible to achieve the
precision and stability of PHEMS for certain problems when there are no impacts
or other discontinuities due to dry friction and a need for accuracy and this will
be addressed in future work.

As mentioned previously, Lotstedt [191, 190, 189] performed simulations of col-
lapsing 2D rigid body structures subject to Coulomb friction and it appears that
this is the start of the LCP formulation of the Coulomb problem, which was con-
tinued by Pfeiffer and Glocker [232]. However, this formulation involves a second
order DAE and therefore, as explained in Chapter 11, there are configurations
which are not solvable, a fact known as the Painlevé paradox [223]. Several
issues related to the problem formulation where investigated by Pang, Trinkle,
Sudarsky, and Lo [229, 228, 266], for rigid body contacts, and existence condi-
tions were clarified also [227]. In engineering, problem formulation and solvability
was addressed for deformable bodies in quasistatic contacts in several articles by
Klarbring, Andersson, Pang, Christensen, and Strémberg [8, 64, 63, 62, 160, 161].

Much of this work is collected and reviewed in an imposing monograph with
over 1000 references by Brogliato [56], which also includes the first few solv-
able dry friction formulations discussed shortly. More recently, Tzitzouris [269]
applied a variant of the friction formulation of Trinkle, Pang, Sudarsky, and
Loalcitetrinkle:1997:0dm, and a modification of Newton’s method to solve the
resulting complementarity problems due to Pang [226] to construct a high order
integration method for contacting rigid bodies. However, this requires locating
each impact discontinuity, including the time location of any transition between
static and kinetic friction, and restarting the integrator at each such event. This
is not a strategy that can process large collections of contacting bodies efficiently.

A recent development of friction modeling is due to Glowinski and his col-
leagues [101, 102, 255, 103], which bears some interest and provides a number
of simple examples suitable for benchmarking. However, the formulation is not
a standard complementarity problem and the question of whether it is solvable
in general is open. In addition, the graphs included in these papers illustrate
the presence of undesirable high frequency noise, and the time steps needed to
remove this are much smaller than required in interactive physics.

As for existence and uniqueness of solutions of dry friction problems, Pang
and Stewart did obtain an existence proof given a number of general assump-
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tions [227], providing some indications of what fails in the case of a rigid rod con-
tacting a plane—the example that leads to the Painlevé paradox. Klarbring and
Andersson [7, 8] provide results for the static and quasistatic deformable body
case but the conclusions are limited to small friction coefficients. In connection
to this work, Hassani [117] provides sufficient conditions for non-uniqueness, and
Wilodarczyk [278] characterized the multiple solutions, which always appear in
odd numbers.

However, most formulations of dry friction mentioned in the previous para-
graphs are based directly on Newton’s second law and involve the acceleration of
physical bodies. As observed previously, the accelerations are not well defined at
discontinuous points, which include transitions between static and kinetic fric-
tion. According to the existence theorem of Pang and Stewart [227], this implies
that the friction problem may not always be solvable in the acceleration form as
they all exhibit the Painlevé paradox. But there are solvable formulations, and
the first few of these are also included in Brogliato’s monograph [56], and these
are in fact the methods of interest which we now turn to.

Stewart observed that Coulomb friction was a non-smooth phenomena, even
when restricted to one dimension, and that one should regard the equations of
motion as differential inclusions (DI). He then constructed high accuracy numer-
ical methods for these [258]. Later, in a series of papers by Stewart, Trinkle,
Anitescu and Potra [261, 259, 17, 19], a solvable LCP model of Coulomb fric-
tion was developed part of a first order time-stepping scheme. Resolution of
velocity discontinuities is achieved by formally integrating the equations of mo-
tion over one time step, yielding a finite difference scheme, which can either
be implicit or explicit, bearing similarities to the variational discretization de-
scribed herein. The resulting stepping scheme is essentially the first consistent
mathematical representation of Coulomb friction which satisfactorily resolves the
Painlevé paradox [259]. Adding to this, Anitescu looked at stabilization of the
DAEs of motion [15], addition of stiff forces using linearly implicit stepping, and
stabilization of the gyroscopic terms [18]. This set of papers has been influential
in the graphics literature as well but it has turned out that solutions of the fric-
tion model take too long to compute when considering 3D applications. More
details of this model and its limitations are provided in Chapter 10. Though
the literature just mentioned was a great source of inspiration for the present
work, limitations of the allowed time integration methods, which are strongly
connected to the solvability of the friction model, became frustrating and this
ultimately led to choosing the variational approach of the present effort. The
final form of the Coulomb friction model developed in Chapter 10 is rooted more
in the variational formulation though it reduces to the solvable model of Stewart,
Trinkle, Anitescu, and Potra mentioned above in the appropriate limit, mean-
ing that it is both a derivation from fundamental physical principles, and an
augmentation of previously known solvable models.

In collaboration with Kane and Marsden, whose work in connection with
variational methods is described further below, Pandolfi, Kane, Marsten, and
Ortiz [225], present a variational method for frictional contact problems of de-
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formable bodies which is consistent but relies on solving nonsmooth, non-convex,
nonlinear programs. There is no indication how fast this is or whether solutions
always exist, and it appears that the framework cannot be applied to rigid bodies
because the rotational physics cannot be formulated as a minimization problem,
as shown in Chapter 15. This approach has nevertheless been inspiring for the de-
velopment of the regularized Coulomb friction model presented in Section 10.11,
especially with regards to the definition of nonsmooth Rayleigh dissipation func-
tions.

In all previously mentioned contact and dry friction formulations, one must
solve special types of complementarity problems in which the coupling between
normal contact and tangential friction forces is asymmetric. This means in par-
ticular that the resulting LCP or nonlinear complementarity problem (NCP)
cannot be reduced to a quadratic programming (QP) problem. Several numeri-
cal solution methods for the LCPs of friction have been proposed to address this,
based either on sequential QPs, solving alternatively for normal and tangential
forces as in [191, 273, 234, 235, 236, 237, 238, 143, 76, 77, 2, 143, 142] or directly
using smoothed Newton methods [62, 183, 226], succeeding to various degree.
However, the proposed solution methods do not always converge as shown in
Chapter 17 and the construction of a robust solver for dry frictional contact
problems, even for the provably solvable ones, is in fact an open issue which will
be addressed in future work.

The problem of finding integrators which preserve geometric properties of given
physical systems has stimulated much work in the field molecular dynamics where
the motion of molecules is simulated for long periods of time [178]. The low order
method of Verlet [271] has been a long time favorite due to sheer speed and good
physical properties. Symplectic and energy-momentum preserving Runge-Kutta
methods were actively developed in the 1990s [112], and these are definitely
good choices for conservative systems as reviewed briefly in [247]. They are
also connected to the variational formulation in an interesting way [196]. An-
other similar effort is the development of geometric integrators, and, particularly,
splitting schemes for these [199]. Here, a complicated dynamics problem is de-
composed into simpler components which are then integrated individually using
exact propagation formula within an interleaved scheme. There is no indication
in the literature whether such splitting techniques can be extended to multibody
problems or dissipative systems, let alone dry friction.

Finally, we come to review some of the literature on discrete mechanics, the
theoretical basis for the present thesis. The idea to discretize trajectories before
applying the principle of least action in Lagrangian mechanics appeared almost
simultaneously by Moser and Veselov [208] who first studied the motion of a
free rigid body with the intent to construct a discrete equivalent of an inte-
grable system—a dynamical system which had as many invariants of motion as
variables—and by Gillilan and Wilson [100] in the molecular dynamics literature,
concentrating on computation of closed orbits. Whereas Gillilan and Wilson sim-
ply recovered the known Verlet algorithm for point particles [271], the stepping
method constructed by Moser and Veselov for the free rigid body was new. These
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ideas were pursued in depth by Marsden and his colleagues and graduate stu-
dents, first with Master’s theses extending the basic idea [194, 277, 276], then
constructing an extensive theory of discrete mechanics [196]. Cortés, de Diego,
and Martinez [68, 67], generalized to the case of nonholonomic constraints, whilst
Kane and colleagues, in collaboration with Marsden, covered nonsmooth con-
tacts [152], as well as Coulomb friction for contacting elastic bodies [225], and
clarified the well-known good properties of certain Newmark integrators [151],
revealing these to be variation methods in fact. Application to nonsmooth prob-
lems including impacts was done by Fetecau [87]. There are also developments
to continuum systems [180, 181], as well as application of classical reduction
theory [51]. But these and other current developments of discrete variational
integrators fall outside the scope of the present thesis.

One aspect that is missing in the aforementioned literature on discrete mechan-
ics is the development of concrete numerical algorithms which can reliably and
efficiently process the stepping equations. This is the topic specifically addressed
in the present thesis with the prominent treatment of constraint regularization
and stabilization, as well as several approximation techniques.

1.6 Previous contributions

Most of the new results presented in this monograph were not published previ-
ously. The monograph format allows for the inclusion of tutorial material and
provides enough space for detailed explanations. This was deemed necessary
because variational stepping methods are radically different from existing tech-
niques and relatively new.

Nevertheless, some aspect of this work was presented at conferences and pub-
lished in peer-reviewed proceedings. Quantitative analysis of the performance
of LCP solver on frictional contact problems using various models and splitting
strategies [167] was presented at the Swedish chapter of SIGGRAPH, SIGRAD,
at the annual conference on November 20-21 2003, Umea, Sweden.

A time stepping technique for multibody systems with constraint regulariza-
tion and stabilization, not based on the variational principle [168], was then
presented at the International Workshop on PDE Methods in Computer Graph-
ics March 31-April 1, 2005 University of Copenhagen, Denmark, along with an
approximation scheme for stabilizing the gyroscopic forces of rigid bodies [169].
Both of these papers are to appear in a special issue of Electronic Letters on
Computer Vision and Image Analysis. However, the publication of the special
issue has been delayed twice which is why both papers [168, 169] appear as
departmental scientific reports at the time of writing.

A parallel splitting method for solving frictional contact problems on multicore
CPUs[170] was presented at the Workshop on State-of-the-art in Scientific and
Parallel Computing, Umea, Sweden, June 18-21, 2006. This article has been
reviewed and accepted for publication in the Springer Verlag series “Lecture
Notes in Computer Science” (LNCS). The LNCS volume is to be printed in
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2007.

Mats Dalgard did Master’s thesis work [70] applying the regularized step-
per [168] to a rigid multibody model for the real-time simulation of cloth and de-
fended his work successfully in September 2005. The model of cloth for this con-
sists of spherical rigid bodies connected by regularized fixed distance constraints.
This allows for arbitrary interconnection topology. The constraint forces can be
computed quickly using the preconditioned conjugate gradient method presented
in Section 18.6, using the sparse factorization of Section 18.4 as preconditioner.
Dalgard performed the software implementation based strictly on my theoretical
work.

Dalgard’s work built on Tobias Hellman’s Master’s thesis project which used
a point particle model for cloth with the regularized stepper. Regrettably, Hell-
man did not defend his thesis for personal reasons, even though the report was
complete and the results were good. Both Dalgard’s and Hellman’s simulations,
based on my work, delivered far superior performance, better stability and better
modeling that the commonly used technique of Baraff and Witkin [39], based on
a linearized implicit Euler integration, which is good for damping everything as
shown in Chapter 6 for instance. A scientific paper reporting on that work is in
preparation.

An application of the regularized method of [168] to elastic bodies subject to
dry frictional contacts was developed in the Master’s thesis of Niklas Melin [201]
which was successfully defended in January 2006, and a paper was then published
at the SIGRAD’06—Computer Games, conference in Skévde, Sweden, November
22-23, 2006.

In collaboration with Martin Servin, the same regularized stepping scheme
was used to model massless cables [253] using relaxed kinematic constraints of
special type, allowing to model cable torsion and bending resistance. This paper
has been accepted for publication in Computer Graphics Forum and will appear
in 2007. Also in collaboration with Servin, a rigid body model for cables with
non-zero mass is in preparation and to be submitted for publication in June 2007.

These applications of the regularized stepping scheme [168] helped isolate some
issues related to energy fluctuations. The resolution of these came with the appli-
cation of the variational techniques discussed herein, and the same also produced
sound strategies to handle impacts, dry friction, as well as the gyroscopic forces
of rigid bodies.

The new results of the thesis will soon be submitted for publication in scientific
journals.

1.7 End notes

Interactive physics provides for both interesting applications of standard com-
putational physics techniques as well as for challenging problems due to special
requirements.

Despite ample literature on numerical integration of general differential equa-
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tions as well as the specific differential equations of mechanical problems, existing
methods are not entirely satisfactory, warranting new developments to fully meet
the requirements of interactive physics demands, both in terms of better models
for nonsmooth, constrained mechanical systems, and in terms of overall balance
between stability, speed and accuracy.

Recent advances in discrete variational mechanics are very promising. In-
deed, discrete mechanics offers a systematic framework to discretizing all forms
of physical phenomena, starting directly from the Lagrangian formulation. The
resulting stepping methods automatically enjoy a number of invariance proper-
ties which closely approximate the natural equivalents observable in both the
continuous formulation of mechanics, and in the real world as well.

The present thesis covers the basics of discrete mechanics techniques with a
particular emphasis on general constrained systems, and special attention to the
numerical implementation. This justifies the development of special force mod-
els, physics based constraint regularization and stabilization methods, a solvable
isotropic model of dry friction, and approximation techniques to handle nons-
mooth problems, dry friction, and the gyroscopic forces of rigid bodies. Also
because of the emphasis on numerical methods, some chapters are devoted to
the presentation of algorithms for LCPs and numerical linear algebra, as well
as an explicit representation of the quaternion algebra in terms of matrices.
For concreteness, some chapters contain the description of standard mechanical
constraints and robust implementation thereof, and others are devoted to the
analysis of self-contained numerical examples used to test the new methods and
illustrate differences with previously known ones.

The main theme is the analysis of the interplays between ideal physical models,
discretizations thereof, and numerical implementations. The result is the con-
struction of a fast, stable, regularized, single fixed time-step method, requiring
only one linear system or LCP solve operation per step. Being based on discrete
mechanics, this method exhibits the symmetries of the original physical problem
at the numerical level and thus achieves a reasonable degree of accuracy for the
given computational effort, and offers good potential for eventual validation.
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2 Bagatelle I:
The Discrete Simple Harmonic
Oscillator

2.1 Background

Much of the present thesis is aimed at the construction of low order, fixed step,
time integration methods, suitable for the equations of motion of classical me-
chanical systems. The present chapter offers a brief and self-contained illustration
of the range of behavior of such methods by analytically computing the discrete
trajectories they produce for the simplest possible physical problem, the simple
harmonic oscillator. The results illustrate the point that local accuracy is far
from telling the complete story of the qualitative behavior. A systematic frame-
work for constructing such well behaved methods is the content of Chapter 3
and 4.1.

The problem is defined in Section 2.2 and discretized to first order in para-
metric form in Section 2.3. Discrete trajectories are then computed analytically
for the entire family in Section 2.4 and stability is investigated for four specific
choices of parameters corresponding to standard, low order integration tech-
niques. The results of numerical experiments are presented in Section 2.5 and a
summary follows in Section 2.6.

2.2 Problem definition

Consider a unit mass point particle in one dimension with time-dependent coor-
dinate ¢ : R — R, attached with an ideal spring to the origin so the force on it
is f = —w?q. The equation of motion for this system is known to be the second
order linear ordinary differential equation (ODE)

§=—w’g, (2.1)

and the solution is the trigonometric expression

q(t) = q(0) cos(wt) + @ sin(wt), (2.2)

where g(0), ¢(0) are the initial position and velocity, respectively. The energy for
the system is known to be

1., w?

E=—q¢+—

2 2.3
5 54 (2.3)
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and is a constant of the motion, as is readily verified by substituting the expres-
sion for the trajectory (2.2). The definition (2.3) is recognized as an ellipse and
this means that the phase plot—the graph (z(t),z(¢))—has finite area, which
also means that trajectories are bounded and periodic: they move around the
constant energy curve. The expression for the energy also tells us that this sys-
tem is bounded in time and, in particular, |g| < w+/E/2, |¢| < v/E/2. Finally,
because an ellipse is a closed curve, the system is periodic.

Introduce the natural time variable s = wt and the natural coordinate z(s) =
q(t) = g(s/w). In addition, set the time reference so that the initial conditions
are z(0) = 1, and z(0) = 0. The equation of motion now reads  + =z = 0, after
writing dz/ ds = &, and this second order ODE is now expanded to two coupled
first order ODEs and written as the following system

(2.4)

With these definition, the geometry of the trajectory (z,z) is easily recognized
to be the circle £? + 22 = 2E, where E is the constant energy of the system.
Given the simplified initial conditions, the solution of (2.4) is

z(s) = coss. (2.5)

2.3 Discretization

Introduce the parametrization zx = z(kh),0 < h € R,k € N and the parametri-
zed discretization

M = auy + (1 — a)vk+1
oo (2.6)
% = — [Bar + (1 — B)zrt1],

with a,8 € [0,1]. The method is fully explicit when a = f = 1, and fully
implicit when @ = f = 0. The stepping equations (2.6) correspond to the
stationary recurrence

1 —h(l—a)| |zx+1| _ | 1 ho| |z 2.7)

h(1 - ) 1 ver1|  |[=hB 1| |wk '
Define the two-dimensional vector z = (z,v)7, so the recurrence (2.7) can now
be written as Bzgy1 = Czr where B and C are the 2 x 2 matrices appearing on

the left and right hand side of (2.7), respectively. Equivalently, we have
2k41 = Azy, where A= B71C. (2.8)
Now, matrix B has the explicit inverse

1 h(l —a)

Bl=q" “h(1-p) 1

, where y =14+ h% (1 —a)(1-5), (2.9)
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2.4 Discrete trajectories and stability

and this is well defined for the given range a, 8 € [0,1]. From this, we get an
explicit form for matrix A = B~1C:

_ 1 |1-hB(1-0) h .
A_ry [ —h 1—h2a(1—,8) _7 D) (210)
and matrix D has the form
u h
D=1_, U] , (2.11)

with u = 1 — h28(1 — a), and v = 1 — h2a(1 — B). Given the simple form of
matrix D in (2.11), it is easy to compute everything there is to know about this
family of steppers, and that is done next.

2.4 Discrete trajectories and stability

With this notation, the trajectory of the system is given by 25 = Azx_1 = ... =
AFzy. An analytic expression for zi is constructed below. First note that the
iterates zx are bounded as k — oo if and only if the spectral radius of matrix A
is unity or less:

p(A) = max [\,] = lim [ 4%/, (2.12)

7 k— o0
where A; are the eigenvalues of matrix A, | - | is the modulus operator over the
complex numbers, C, and || - || is any compatible matrix norm (see [107], section

2.3 for definitions).

To compute the spectral radius p(A), let AL and pi be the eigenvalues of
matrices A and D, respectively, so that Ay = 9 4. Concentrating first on
matrix D, the characteristic polynomial is

det(D — pl) = u_—h,u vi_z# =p?—(u+v)p+h*+uv=0, (2.13)
and the eigenvalues are
— )2
#i:“;”’i (u 4”) _ B2, (2.14)

We can now reconstruct the eigenvalues of the original problem with straightfor-
ward algebraic substitutions to get

h? . h?
Ap =971 <1—2(a+ﬁ—2aﬁ)izh 1—4(a—,6)2> , (2.15)
where v = 1 4+ h2?(1 — a)(1 — ) as before in (2.9), and 7 = /=1 is the imaginary
unit. It is interesting to note already that for all cases with o = @, the two roots
have the imaginary components +zh for any value of h. This imaginary part is
what produces oscillatory behavior as we show shortly.
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2 Bagatelle I: Discrete Simple Harmonic Oscillator

But we can do better than just finding the stability range for the different
methods. Recall from the Cayley-Hamilton theorem that any square matrix H
satisfies its own characteristic polynomial. Given a 2 X 2 real matrix H with
characteristic polynomial m(v) = v? 4+ av + b = 0, having roots v+, we have

H* = ppH + qi I, (2.16)

where pg and gx are polynomials of degree k in the coefficients a and b, and I,
is the 2 x 2 identity matrix. Using induction to get the recurrence, and noting
that it holds for £ = 0,1, and 2, by inspection, and observing that

H*' = pp H? + g1 H = pr(—aH — bI) + g H = (qx — apr)H — bppI.  (2.17)
This defines the polynomials:
Pk+1 = —apx — bpg—1, and gx = —bpx_1, (2.18)

and so gx can be recovered easily from pg and is therefore not considered further.
The polynomials pr now satisfy a two-term linear recurrence relation and the
general solution for this is easily found to be

pe = Pk + vk, (2.19)
where 94 are scalar coefficients. These are computed by taking account of the
initial values pg = 0,p1 = 1,p2 = —a, yielding the formula

k k
vE —v¥

pp = F——. (2.20)
Vy —V_

The trajectory of zx = H*zg is thus explicitly given by
k k k—1 k—1
V¥ —v vy ~—v
2k =+ —Hzg— b+t ——— 2, (2.21)
Vy —V_ Vy —V_
When the eigenvalues of H are complex, they can be written as vy = reti®
where r,¢ € R,r > 0 leading to the trigonometric expression
sin(k sin([k — 1
2k = ,’,k—l ( ¢) HZO _ b,rk—Z ([ ]¢)

sin ¢ sin ¢ %o (222)

The sinusoidal nature of the dynamics is now clearly visible. As a matter of
curiosity, one can recognize the trigonometric form of the Chebyschev polyno-
mials of the second kind as found in [21] for instance, defining z = cos¢ and
Uk (cos ¢) = sin([k + 1]¢)/ sin ¢.

Applying this result to the iteration matrix A defined in (2.12), we have:

2
A v Ry — P v~ hpy 593
B —y~hpy yipgw — B, 0 (2:23)
dwp,

where v is defined as in (2.9), u, v defined as in (2.11), px defined as in (2.20) as a
function of the eigenvalues of matrix A defined in (2.10). We can then construct
the following four cases.
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2.4 Discrete trajectories and stability

2.4.1 Explicit Euler integration: a =g =1

Setting @ = B = 1 in the definition of the recurrence matrix A = y~1D of (2.10)
and (2.11), we have u = v =y = 1, (h? + uv)/9? = k%, and Ay = 1 £ ih. Define
r=+1+h%2>1 and Ay = ret*® sothat cos¢ = (A, +A_)/(2r) = 1/v/1+ A2,
and sing = (Ay —A_)/(2¢r) = h/+/1+ k2. Approximating these, we have

2
cosp=1— % + O(h*), and sing = h + O(h®). (2.24)

Notice that the exact solution coss given in (2.5) implies the discretized tra-
jectory zp = cos(kh). We thus expect that ¢ ~ h. Now, as is well known,
cos ¢ = 1—¢?/2+0(¢*) for small ¢. Comparing with (2.24) yields ¢ = h+0O(h?),
as required.

We can then explicitly compute pg = r¥ ! sin(k@)/sin ¢ = (r*/h)sin ¢. Using
the trigonometric angle addition formula to evaluate pg_1, we find

AF = (14 B2 l_c‘s’ig’(“]f;) :2%:‘;))] : (2.25)

which implies that zfzx = (1 + h?)*2fzy — o0 as k — oo. This scheme is

fundamentally unstable for this system, even though it can process systems of
the form £ = —pz in a stable way when hp < 1 (see [114] for definitions of
stability and analysis of the Dahlquist test equation z = —pz).

Explicit Euler is never advertised as a particularly stable scheme but the fact
that it is unconditionally unstable for the simple harmonic oscillator is seldom
reported. In the game physics literature and community, this problem is avoided
by introducing a damping force of the form —oz, for a positive scalar ¢ > 0.
Further analysis shows that this only works for a relatively small range of o. In
other words, by increasing the damping coefficient enough, the solution becomes
unstable again! Explicit Euler is of no use whatsoever in the context of physics
simulation since it cannot even process the simplest possible problem.

2.4.2 Implicit Euler integration: a =38 =0

Setting @ = B = 0 in the definition of the recurrence matrix A = y~1D of (2.10)
and (2.11), we have: u = v = v = 1 + h?, (h? + wv)/y? = 1/(1 + h?), and
AL =77 1(1+:h). Definer = 1/4/1+ h2, and Ay = ret'® so that cos¢ = (A +
A)/(2r)=1/v/1+h?=r andsingg = (A — A_)/(2ir) = h//1+ h? = hr.

We therefore recover the same dynamics as defined in (2.25) but with the
definition r = 1/4/1+ h2 < 1. This implies that zZzy = (1 + h2)"*2T2, — 0
as k — oo. This scheme is unconditionally stable but it damps oscillations
artificially, destroying the physical properties of the system.

Interestingly, the observed oscillation frequency, @ = ¢/h, is identical to that
found in the fully explicit case above, namely, @ — 1 as h — 0. However, as h
increases, we reach the limit @ — 0. Put differently, the limit ¢ = tan~!(h) —
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2 Bagatelle I: Discrete Simple Harmonic Oscillator

m/2 as h — oo means that the solution oscillates with a period of four steps for
large step size, which has nothing to do with the statement of the problem!.

Therefore, not only does the solution decay to zero amplitude exponentially
fast, the observed frequency quickly becomes very wrong.

The dead fast stability of the implicit Euler method is old news, both in the
numerical analysis and the game physics communities. However, the anomalies
just observed are far from well known or widely reported. Strong stability, as
desirable as it is, should not come at the cost of destroying the qualitative physical
behavior and thus, the implicit Euler method, just like its explicit older brother,
is persona mon grata in physics simulation.

2.4.3 Implicit midpoint rule: a =g =1/2

Setting @ = B = 1/2 in the definition of the recurrence matrix A = y~1D
of (2.10) and (2.11), we have: u = v = 1—h%/4, v = 1+h% /4, and (h?+uv)/y? =
1. The eigenvalues become

1 R
Ai 1+ h2/4 (1 2 ’lh) , |A:|:| 1 (2 26)

Define cos ¢ = (A4 +A_)/2 = 1o/t andsing = (A —2_)/(2i) = h/(1+h?/4).

After some trigonometric manipulations, we find

AF =

cos(kg)  sin(kg)
—sin(k¢) cos(k¢)‘| ' (2.27)

This is easily recognized as a planar orthonormal rotation by the angle k¢, so
that 2742, =1,k = 1,2,.... Therefore, the trajectory is bounded and moreover,
the energy of the discrete system is constant and equal to that of the continuous
system.

For the simple harmonic oscillator which is a linear system, the cost of the
implicit midpoint is identical to that of the fully implicit Euler. But for the
same money, we get to hear the music as it was intended.

In general, the cost of using the implicit midpoint rule is nearly identical to
that of using the implicit Euler methods and the benefits just observed persist.
For physical systems, the implicit midpoint rule, which is known at least since
Gauss [112], is a godsend and it is indeed very popular in molecular dynamics.
Curiously though, the midpoint rule is practically never used in the game physics
community despite being equally easy (or hard) to implement as the implicit
Euler method. The striking improvements gained form using implicit midpoint
instead of implicit Euler was reported in the context of a cloth simulator in [218],
though it was not credited with any of its given names. One can only hope that
the good example will be followed by the practitioners.
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2.5 Numerical experiments

2.4.4 Symplectic Euler: a =1,8=0

Finally, setting @ = 1 and § = 0 in the definition of the recurrence matrix
A = 47D of (2.10) and (2.11), we have: u = 1, v = 1 — h? 4 = 1, and
(h? + uv)/y? = 1. The eigenvalues are now

1-" +ih /11— |AL|=1, when h<2.
Ay = 2 £ Pl = (2.28)

1— 2+ hy /B 1, when h > 2.

Therefore, when h > 2, |[Ay| > 1+ h?/2 > 1 so the spectral radius p(A4) > 1 and
the iterates diverge. For the case where h < 2, define cos¢p = (AL +A_)/2 =
1—h2?/2 and sing = (A; — X_)/(22) = hy/1 — h2/4. After some trigonometric
manipulations the iteration matrix is found to be

e L lcos(k¢+¢) sin(k®) ] (2.29)

costp | —sin(kp) cos(kp — )

where cos® = /1 —h2/4, and sin(¢)) = h/2. Obviously, matrix A¥ is not a
rotation matrix so the norm of zx is not preserved. However, introducing the
rotation matrix

cos(kg) sin(k¢)
—sin(k@) cos(ke)

and defining Fy, = tan(v)sin(k@) diag(—1,1), we have A*¥ = Coid, R(k¢)+ Fy and

R(k¢) = [ , (2.30)

therefore,

1
cos Y

This defines a quadratic invariant on the trajectory that is preserved by the

1
llz — Fizoll = [I(A* — Fi)zo|| = llmR(k@zOII = |zl = const. (2.31)

iteration which is close to the energy of the system. In fact, the difference is of
the order of tan(¢) = O(h?).

This is where one should breath deeply and take a step back. For a general
system, this symplectic Euler method (there are two actually, the second one
having @« = 0 and § = 1) is no more expensive computationally than explicit
FEuler, and much cheaper than implicit Euler or midpoint, and yet it captures
some essential features of the physical problem. Besides, as long as the forces on
the system are velocity independent, it has second order accuracy like its cousin
the midpoint rule of the previous section.

2.5 Numerical experiments

The most instructive way to look at the output signal for the simple harmonic
oscillator is to plot the phase portrait, i.e., build a graph of velocity versus
position. Recall that in natural coordinates,

v + 2% = 2E, (2.32)
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Figure 2.1: Phase portraits of the four different methods for small time step hw =
1/20. Both symplectic Euler and implicit midpoint methods produce
closed ellipsoids but explicit Euler spirals outward and implicit Euler
spirals inward, slowly though.

where v is the natural velocity, z is the position, and E is the energy. This is the
equation of a circle when natural time is used but is an ellipsoid otherwise. The
stationary recurrence zx41 = A(c, B)zx of (2.8) was implemented and started
with zg = (10,0)7, i.e., an initial position of z(0) = 10 and an initial natural
velocity of £(0) = 0. The results are plotted in Figure 2.1 for small time step
hw = 1/20, in Figure 2.2 for the moderate time step hw = 1/5, and in Figure 2.3
for the large time step hw = 1/2. Note the outward spiral profile of the explicit
method with @ = 8 = 1 and the inward spiral profile of the implicit method
a = 8 = 0. Both the midpoint method with @ = 8 = 1/2 and the symplectic
method with a = 1,8 = 0, produce the correct phase portrait as easily seen from
the graphs.

Note that for large time step hw = 0.5, the explicit method quickly escapes
the range [—15,15] allowed on the plot of Figure 2.3. Given that the cost of
this method is identical to that of the symplectic method, even for nonlinear
problems, this clearly shows that explicit Euler should never be let near any
second order differential equation describing a physical problem. For implicit
Euler, the problem is not stability but total destruction of the qualitative aspects
of the system—a numerical realization of the great deceiver himself!

2.6 End notes

A detailed analysis of the four schemes considered is found in Ref. [112], Chapter
1, for instance. It is easy to demonstrate that the implicit midpoint method
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Midpoint a = 0.5,8 = 0.5
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Figure 2.2: Phase portraits of the four different methods for moderate time step:
hw = 0.2. The symplectic Euler and implicit midpoint methods keep
producing closed ellipsoids but explicit Euler spirals outward and

implicit Euler spirals inward at sizable speed.
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Figure 2.3: Phase portraits of the four different methods for large time step:
hw = 0.2. Whilst the implicit midpoint method keeps computing the
correct energy surface, the symplectic Euler method is now producing
a skewed ellipsoid, but ellipsoid nevertheless. The other two methods

cannot survive 10 steps.
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2 Bagatelle I: Discrete Simple Harmonic Oscillator

is of second order but that the other three schemes are first order only in gen-
eral, though symplectic Euler has second order accuracy for velocity independent
forces. Nevertheless, only the symplectic and implicit midpoint methods are of
any use since only these two schemes reproduce any of the basic physics. In
addition, the symplectic scheme approximates the energy of the system within
O(h?) for all times and exactly preserves a quadratic invariant which is close to
the energy of the system! This is precisely the sort of integration scheme that is
needed to meet the requirements described in Section 1.2.

There is a fundamental reason why both the symplectic Euler method and the
midpoint rule perform well on physical problems which is investigated in depth
in Chapter 3. As will be shown, these methods are good because they can be
constructed using the principle of least action applied directly on the discrete
trajectory. Also to be shown in Chapter 3, the variational principle is the culprit
enforcing preservation of symmetries of both continuous and discrete mechanical
systems, and is precisely the daemon needed if one wants good physical trajecto-
ries. It is because of these exact invariants of the discrete motion that low order
methods are usable at all. By contrast, the implicit and explicit Euler meth-
ods cannot be constructed from the variational principle. Though they appear
equally valid discretizations of the equations of motion, they do not preserve any
qualitative aspect of the physical trajectory over sizable time intervals.

The striking difference between the qualitative behavior of explicit or implicit
first order Euler integration versus the implicit midpoint or first order symplectic
method is a traceable to the non-commutation of two limits. One could first
construct the equations of motion from the principle of least action and then
discretize these to achieve consistency at a given order. Conversely, one could
start with discretizing the trajectories and then apply the least action principle
on the discrete samples to construct stepping formulae. The latter sequence
is best for constructing integrators of mechanical systems because it preserves
all the natural symmetries of the motion, as even hardened numerical analysts
agree [112].
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3 Analytic and Discrete Mechanics

This chapter introduces the necessary concepts of classical mechanics—the study
of how and why physical bodies move—along with time discretization techniques
based on the principle of least action, the cornerstone of analytic mechanics. The
presentation unifies the well known results of continuous analytic mechanics with
the more recent developments in discrete mechanics. The latter allow the con-
struction of discrete time-stepping methods, the discrete mechanical integrators.
The emphasis weighs on the global conservation properties of discrete mechanical
integrators on the one hand, and the discretization of non-conservative forces and
constraints on the other. The latter two are essential elements for the construc-
tion of physics motivated regularization and constraint stabilization techniques
presented in Chapter 4, as well as the dry friction model presented in Chapter 10.

After defining the scope of application, elementary notions of mechanics, and
the contrast between Newtonian and analytic mechanics in Section 3.1, especially
with regards to their respective time discretizations, Newton laws of motion are
detailed in Section 3.3, followed by definitions of the fundamental of work and
energy in Section 3.4, and the introduction of both continuous and discrete forms
of the variational principle of mechanics in Section 3.5. After illustrative exam-
ples of the time discretization strategy are presented in Section 3.7, continuous
and discrete spatial symmetries and conservation laws of physical systems are
investigated in Section 3.8, followed by the analysis of symmetries of time and
connections to energy in Section 3.10. A summary of geometric concepts and an
analysis of the symplectic nature of the flow of both continuous and discrete tra-
jectories are presented in Section 3.11, accompanied with illustrative examples.
The basic model of Section 3.5 is extended to include non-conservative forces and
their variational discretization in Section 3.12, and a wide array of constraints
in Section 3.14, in which the notion of constraint regularization is introduced,
as well as a novel analytic representation of nonholonomic constraints using a
special type of Rayleigh dissipation function. The minimization structure of the
stepping equations is analyzed in Section 3.16 which is followed by a survey of
other work and a short summary in Section 3.17.

The present chapter is self-contained and tutorial in nature.

3.1 Introduction

Classical mechanics is the study of motion of physical bodies, tangible objects with
finite extent and mass. It provides answers both to how and why these objects
move. The “how” is answered by kinematics: the study of motion without regards
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to what caused it. The “why” is answered by dynamics: the study of the causes
of motion, namely, the description of forces. It is limited in scope to bodies
which are not so small as to be subject to the laws of quantum mechanics, too
big as to be the subject the laws of general relativity, or moving at speeds close
to the speed of light so as to be subject to the laws of special relativity. Classical
mechanics also neglects all phenomena related to heat and thermodynamics as
well as chemical reactions. Specifically, the description of motion produced by
classical mechanics applies to physical bodies ranging from molecules up to the
smaller and slower celestial bodies.

The application context of the present thesis fits comfortably within the range
of validity of classical mechanics. Given the focus on real-time interactive simu-
lation of typical everyday situations, the time scales range from milliseconds to
days, and the length scales range from millimeters to kilometers, and the masses
range from milligrams to tonnes. The archetype multibody systems to keep in
mind range from robots to ground vehicles, including virtual humans and so on.

In addition to the restrictions just stated, the analysis is focused on systems
with finite degrees of freedom. Fluids, gases and deformable solids are explicitly
excluded in what follows in order to concentrate on systems of point particles for
the most part, and including rigid bodies in some sections. Extensions to certain
types of spatially discretized continuous systems are straight forward and have
been successfully realized. These will only be mentioned in the literature notes
to limit the scope. Likewise, some of the methods developed below could also
be extended beyond the range restrictions mentioned above to cover celestial
mechanics and perhaps molecular dynamics as well but these avenues will not be
pursued further.

Within the stated range of mass, length and time scales, the only fundamental
physical interactions of any relevance are the electromagnetic and gravitational
forces. At the length and mass scales of interest for interactive physics, only
uniform gravitational fields are relevant. Also, since most macroscopic objects
are electrically neutral, electromagnetic forces are restricted to contact physics
and drivers and these are usually modeled using macroscopic constitutive laws
instead of molecular models. This justifies the extensive use of constraints in
what follows.

The purpose of the present analysis is the construction of numerical methods
which can produce discrete time approximations of the motion of certain types
of physical bodies, point particles and rigid bodies, as well as aggregates thereof,
in particular. Specifically, the focus is the development of fast computational
methods which meet the requirements stated in Section 1.2. The strategy cho-
sen relies on discrete mechanics instead of pure numerical analysis. This allows
establishing a direct correspondence between physical models and the numer-
ically computed motion, which is important for understanding the numerical
results. The presentation thus begins at the heart of classical mechanics and
moves quickly to discrete mechanical integrators.

Dynamics establishes the relation between the time rate of change of the kine-
matics variable and the interactions between the different parts, which are called
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the forces. To do this, one first needs to introduce the notion of momentum or
quantity of motion. For a point particle with Cartesian coordinates z (), the mo-
mentum is p(?) = ma () where the mass m is a positive scalar. For generalized
coordinates, the momentum is a more complicated expression which is derived
later in this chapter. The fundamental principle of dynamics, which was estab-
lished by experimentation, is that the rate of change of momentum is directly
proportional to the applied force, the content of Newton’s second law which is
explained in more details in Section 3.3.

3.2 Essential kinematics

The kinematics analysis of classical mechanics starts with point particles labeled
with indices 2 = 1,2,..., N, with time-dependent positions described as Carte-
sian coordinate vectors z ()(t) € R”, and velocity vector () (¢) € R”, in either
one, two or three dimensions. This can be extended to rigid bodies as described
later in Chapter 12. Coordinates z ()(t) are agglomerated into a configuration
vector, z(t) by concatenation

z(M(¢)
z (¢
z(t) = :( ) , (3.1)

2 (z)

and similarly for the velocities.

One may impose restrictions on this motion via constraints such as a suffi-
ciently smooth function g : R* — R™, with g(z) = 0, say. When m = n,
this amounts to a general change of coordinates. Defining the smooth manifold
@ = g~ 1(0), the configuration of the system is then given by the generalized
coordinates q(t) € @ where the manifold @ is the configuration space. Since
the generalized coordinates g(t) are restricted to the configuration space @, the
corresponding generalized velocities ¢(¢) must be tangent to @ at the point g(t).
The full kinematic description is then provided by the time history of general-
ized coordinates and their corresponding generalized velocities which is written
as (q(t),q(t)) € TQ, where TQ is the tangent bundle of the configuration mani-
fold @, i.e., the disjoint unions of tangent spaces T4@Q for each point ¢ € @. The
tangent bundle T'Q is often called phase space as well, especially in the physics
literature. Though we shall not delve in the depths of differential geometry,
this abstract notation is used throughout for the sake of consistency and preci-
sion. It is a fundamental result of classical mechanics—which we explain further
below—that kinematics analysis stops with the description of phase space, since
the equations of motion prescribe the relation of the generalized acceleration.
Thus, the kinematic variables consist solely of the phase space vector (g(t), 4(t)).

A computer simulation necessarily implies a discretization of kinematics, and in
particular, a discretization of time. In other words, a simulation should produce
trajectories at discrete times t; < tp < ... < tg, consisting of discrete generalized
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coordinates gx = q(tx) and velocities ¢x = g(tx). The computation of gx and gx
for a given set of forces and constraints is the heart of a physics engine. Since
the changes in kinematics are governed by the laws of dynamics, this is what we
now turn to.

3.3 Newton’s laws of motion

The starting point in classical mechanics is Newton’s three laws of motion which
summarize experimental observations made by Newton himself but also by his
predecessors, notably including Galileo.

The starting point is Galileo’s principle of relativity which states, (as quoted
in [22]): “There exist coordinate systems (called inertial) possessing the following
two properties:

1. All the laws of nature at all moments of time are the same in all inertial
coordinate systems.

2. All coordinate systems in uniform rectilinear motion with respect to an
inertial one are themselves inertial.”

In addition to this, time is assumed to be universally defined, having the same
rate of flow in any reference frame, a definition which was modified eventually in
Einstein’s theory of special relativity [188].

Newton defines the concept of a “physical body” which is a point particle with
time dependent position z : R — R3, with scalar mass m > 0, defined as the
product of volume and density. A physical body has a “quantity of motion”—
called momentum today—which is the product of mass and velocity: p(t) =
mz(t), where z(t) is the total time derivative of the position. Newton then
describes forces as “that which causes changes in momentum?”; and this leads to
the three laws which we quote directly from [215]:

> An object at rest will remain at rest unless acted upon by an external and
unbalanced force. An object in motion will remain in motion unless acted
upon by an external and unbalanced force;

> The rate of change of momentum of a body is proportional to the resultant
force acting on the body and is in the same direction;

> All forces occur in pairs, and these two forces are equal in magnitude and
opposite in direction.

From this, we get the mathematical description:
Momentum p(t) = mz(t);

Newton's first and second laws: time rate of change of motion, p(¢) is propor-
tional to net force f(%):

p(t) = f(t); (3.2)
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3.4 Work and energy

Newton’s third law: action equals reaction so that if f(*7 € R3 is the force
acting on body 7 due to body 7, and conversely f % e R3 is the force
acting on body j due to body 4, then, f(#7) = —f (%) e, the action and
reaction forces are equal and opposite.

This formulation is very general. It can be extended to cover continuous bodies
with finite extents as well as fluids and gasses by dividing these objects into
collection of N point particles, z®(t),p®(t) = m @Dz (¢), i =1,2,...,N, and
estimating the forces f(*7) these particles exert on each other. Aggregating the
system vectors of positions z(¢) and momentum p(t) = Mz(t), as done in (3.1),
and introducing the block diagonal mass matrix

M = diag(m V1, m@1,, ... m®M1,), (3.3)

where n is the dimension of the kinematic space considered, as well as the ag-
gregated net force, with f(®) = ij(i'j), maintains the form of (3.2). Thus,
Newton’s second law can be seen as a formulation of the dynamics of systems of
point particles. Using elementary calculus, it is also possible to change coordi-
nates and define aggregate entities as is done in Chapter 12 for the case of the
rigid body.

When considering systems of point particles, several symmetries of the problem
can be discovered directly from this formulation as is done in [22], chapters 1
and 2. However, as we shall see below, the Lagrangian formulation offers a
more systematic way to discover symmetries and to correlate these to integrals
of motion, i.e., scalar constants which can be used to reduce the number of
variables in the problem.

Also, since the equation of motion in (3.2) is a second order ODE, it can
be integrated using standard methods. This is good enough in several cases in
fact. But when it comes to numerical preservation of the underlying symmetries
lurking in the three laws and the Galilean principle of relativity, standard in-
tegration methods are found wanting and much effort has been invested in the
last decade to construct numerical integration formulae preserving well known
physical invariants, such as energy and momentum.

For these reasons, Newton’s formulation of dynamics is abandoned here in
favor of the more satisfactory analytic formulation.

3.4 Work and energy

Before introducing the principle of least action central to analytic mechanics, we
need to introduce the concepts of work and energy. When a force f : R — R3 acts
on a point particle with mass m and coordinates z : R — R3, it eventually alters
its kinematic state. To measure this, consider the correlation between the force
and the change in position along a physical trajectory C' = {z(t) | t € [to, 1]}
and thus define mechanical work done by a force as the following line integral

= T xT. .
W_/Cf d (3.4)

43



3 Analytic and Discrete Mechanics

The first observation is that given Newton’s second law (3.2), and assuming
constant mass m, this integral reduces to

W = m/céda: =m t:l dsz” (s)z(s) = m% /t:l dsd—i (.’L’T(S)IL‘(S)) 5

1 .2
Sl

to

This introduces an important quantity, namely, the kinetic energy of a point
particle as

T(2) = Sl (3.6)

The action of a force f over a given trajectory thus yields a change in kinetic
energy in proportion of the work done.

Next, consider the line integral (3.4) defining work again. For an arbitrary
force f(t), the work done depends on the details of the path C. However, the
line integral (3.4) is notably independent of the path C' for the case where

—agm(jf) = _VV(2), (3.7)

where V : R® — R is called the potential energy or the potential function, and the

f:

negative sign convention will become clear presently. For this important special
case, we have

W = =V (z(t1)) + V(z(t2)) = T(2(t1)) — T(2(t2)). (3.8)

Therefore, the sum of kinetic and potential energy is conserved so that we can
define the total energy as
E=T(z)+ V(). (3.9)

These observations generalize to the n-dimensional case where z : R — R”
by replacing the scalar mass m with a constant, n x n, symmetric and positive
definite mass matrix M, and introducing the n-dimensional force vector f =
—VV(z). Clearly, the function V(z) can also be replaced by a sum Y,V ()(z),
each producing a force f® = —vV )

We thus define conservative mechanical systems as those for which all forces
can be derived from potential functions. In [173], among other references, the
forces which can be derived from potential functions are called monogenic to dis-
tinguish them from polygenic forces, the latter being generally non-conservative.
Some special types of dissipative forces can be represented with pseudo-potentials—
the Rayleigh functions introduced in Section 3.12.

Note that under a curvilinear coordinate transformation, the kinetic energy
generally becomes dependent on both ¢ and q. Indeed, for a two-dimensional
case with z : R — R? and m > 0, switching to polar coordinates (r,8) with
z1 = rcosf, and x5 = rsinf, the velocity becomes

_ [ﬁcosﬁ—érsin@] ’ (3.10)

7sinf + 6r cos§
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3.5 Basic variational principle

and thus T = (1/2)m||z||* = (1/2)m(7% + 6r) clearly depends on r as well as
on 7 and 6.

It is also possible to define potential functions which depend on z as well,
and this is the case for the magnetic vector potential in electrodynamics [136].
However, magnetic phenomena are not considered in the present thesis and we
thus concentrate on potential functions of the restricted form V(gq). Potential
energy cannot depend on time since then, the line integral (3.4) would be path
dependent again.

3.5 Basic variational principle

The most general statement of the variational principle is due to d’Alembert
who postulated that, given a physical trajectory and infinitesimal displacements
thereof at each point in time, and compatible with all imposed constraints,
the work done by the virtual displacements along the physical trajectory van-
ishes when the motion is not bounded, and is non-positive otherwise (as quoted
in [173]). This last statement being known as the Fourier inequality and which
will be useful in the study of contacts. This statement is stated mathematically
for both the continuous and discrete cases.

To give flesh to this principle, consider a mechanical system with generalized
coordinates ¢ € @, where @ is the configuration space. In general, @ is a manifold
but for what follows, it is sufficient to think of a coordinate chart on @) so that, at
least locally, g € R™ (see [248, 104] for essential notions of differential geometry).
The velocity of this point is denoted by ¢ and the configuration space is the
tangent bundle TQ@. The structure of T'Q is the set of all pairs, (g, ¢), such that
q is locally tangent to the manifold @ at the point gq.

A Lagrangian is a scalar function £ : TQ — R. A case of special interest is

L(g,4) =T(g,49) — V(q), (3.11)

where T': TQ — R is the kinetic energy and V : @ — R, is the potential energy
as defined in Section 3.4.

Systems with Lagrange function of the form 3.11 are conservative as described
in Section 3.4, a fact which will be proven with more mathematical rigor in
Section 3.9 below.

The kinetic energy term T'(g,q) is a quadratic form. It is either defined as
T(g,9) = 3qMq, where the n x n matrix M is symmetric, positive definite,
and constant, or, for the rigid body case in particular, as explained in details in
Chapter 12, T'(q,q) = %q'TM(q)q, and the square n X n matrix function M(q) is
block diagonal, symmetric, positive definite, smooth matrix function M : @ —
R™*™. To simplify both notation and the exposition, the rigid body case will
be analyzed in separate sections. Therefore, in what follows, the mass matrix
is assumed constant except when explicitly stated otherwise. Constant mass
matrices cover the cases of systems of point particles in three dimensions, rigid
bodies in two dimensions, and dynamically homogeneous rigid bodies (those
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3 Analytic and Discrete Mechanics

which have identical principal inertiae) in three dimensions, among others, as
long as they are expressed in Cartesian coordinates.
Collecting these observations, our basic model Lagrangian has the explicit form

£(g,4) = 54" M- V(a), (312)

where the constant n x n real matrix M is symmetric and positive definite, and
the rigid body Lagrangian has the explicit form

£(g,4) = ;¢ M(@)d - V() (313)

where the n x n real matrix M(q) is a symmetric and positive definite smooth
function of the coordinates ¢. In addition to this explicit form, the potential
function V(gq) is assumed to contain uniform gravitational potential terms which
have the form

Vy(q) = agu” Mg (3.14)

where a4 is a positive constant—the acceleration due to uniform gravity—and

uT is a 1 x n projection matrix. For a single point particle with mass m and

Tz, where z is a normal vector

Cartesian coordinates z, this term is just a;mz
pointing upward.

One of the main theme of the present thesis is to extend simple Lagrangian as
defined above to include terms which are necessary for stabilizing and regular-
izing the numerical methods in a systematic, physical way. These terms will be
carefully chosen so as not to strictly preserve the overall variational formulation
exposed henceforth.

Introduce the action integral as the following functional

t1

Slgl =46 [ dsL(q(s),4(s)), (3.15)

to

where ¢ : [to,t1] — @ is a smooth, known function of time. For the general
case, g(t) must be of class C2 but this can be relaxed at the cost of a more
complicated analysis to include nonsmooth phenomena [87]. Now, Hamilton’s
principle of least action states that the physical trajectory of this system is the
path which minimizes the value of the functional S over all smooth paths which
go through given endpoints. This is not only an interesting postulate but an
experimentally verified fact. In fact, as we show below, Hamilton’s principle of
least action does reproduce Newton’s laws of motion.

Concretely, assume that (g(¢),d(¢)) is the trajectory of the physical system.
Following the original notation of Lagrange and using § to denote the varia-
tional operator, let §g(t) be an infinitesimal, time dependent perturbation of the
trajectory so that g+ dq € @ be a small perturbation of the motion. Then, using
calculus of variation [284, 173], the resulting variation § S of the action functional
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3.6 Discrete variational principle

is computed to

t1

6Slgl =06 [ dsL(q(s),4(s))

to
b d (0L(q,d 8L(g, 8L(a,4) . 1™
:/ as -4 ( (q,q)) KGR [ (q,q)gq] ‘
to ds 0q Oq 0q to
Assuming that S is an extremal or, at least, stationary on the physical trajectory,
the variation 6.5 should vanish at least to first order in §g. The boundary term
can be neglected if we restrict the variations to satisfy: 8g(tg) = dg(t1) =0. A

necessary and sufficient condition for 6.5 to vanish is that the trajectory satisfies
the Euler-Lagrange equations

(3.16)

d oL oL
— = —=0. 3.17
dt 8¢gT  HqT (3:17)
This is a set of non-linear, second order ODEs in semi-implicit form. For the
case of the constant mass matrix simple Lagrangian of (3.12), we have

9 myy=mi=-2Y = vv(g = (o), (3.18)

dt - 84T
which is Newton’s second law (3.2), writing f(q) = —VV for the vector of forces
acting on the system. Assuming the mass matrix M is invertible, the equa-
tions are explicit, non-linear and second order ODEs which can be integrated
with standard methods. But we can do much better by reversing the order of
discretization.

The process of evaluating the Lagrange function L(g,q) for a given system
and computing the resulting Euler-Lagrange equations of motion for it is called
the variational method. The method extends to cases where the system is non-
conservative by using d’Alembert’s principle as described in Section 3.12 but
in that case, the equations of motion are no longer strictly the Euler-Lagrange
equations.

3.6 Discrete variational principle

Introduce the discretized Lagrangian as the action integral over a short interval
of time, h > 0

h
Eﬂ%%m=4d¢M%ﬂm, (3.19)

where go = g(0) and ¢; = g(h). The integral can be approximated in a number
of ways. For instance, if h is small enough, we have ¢(s) ~ h~1(g1 — go), and
q(s) ~ (1/2)(q1 + go). We describe some alternative choices in Section 3.7.
Define the discretized action as follows
N—1

Sa(go,---,qwn, k) = Z La(gr, gr+1,h)- (3.20)
k=0
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3 Analytic and Discrete Mechanics

Now, the condition that S4(qo,---,qn, ) should be optimal over the trajectory
is that all partial derivatives should vanish namely

0S4(90,---,qn,h)  OLa(gk,qky1,h) | OLa(qr—1,4x,h)
= +
Bqx Oaqx Ogx

=0. (3.21)

These stationarity conditions yield the fundamental equations of discrete me-
chanics, namely, the discretized Euler-Lagrange equations

DTL4(qk, qkt1, R) + D3 La(gk—1, 9%, k) = 0, (3.22)

which are the transpose of (3.21), and where Dy, Dy are the partial derivatives
operators with respect to the first or second argument, respectively. To enunciate
further, given a scalar function of two vector arguments, f(z,y), we write

leZM’ D2f:M, and also,
bz by (3.23)
pfp= 9 prye La(;%y)-

The discrete Euler-Lagrange equations (3.22) is a set of simultaneous nonlin-
ear equations which can be solved for gxy1 given gx and gx_1. This defines the
map: ® 1 Q x Q — @ x @ with ®(gk, gk—1) = (¢k+1,9x), which is the discrete
time integrator. Solutions to the nonlinear equations (3.22) exist in general at
least for the case where the matrix Dy DT 4(qk, gky1,h) is invertible. For the
simple case considered here, this matrix is precisely the mass matrix M which
is assumed symmetric and positive definite, hence invertible. Extensions cover-
ing applications where the matrix Dy DTL 4(qx, gx11, h) is singular are discussed
in [240]. We will return to this later on when discussing the discretization of
ghost variables, since these have no mass.

The process of computing the discrete Lagrangian and evaluating the discrete
Euler-Lagrange equations for a given system is the discrete variational method
or variational method for short, when the context is clear.

It might appear that this discretization strategy can only yield first or second
order methods. However, section 2.6 of [196] contains constructions of higher
order methods which include higher order symplectic partitioned Runge-Kutta
as well as Galerkin methods. It is also possible to generate higher order methods
using composition rules, also presented in [196], though this is not necessarily
the most efficient strategy. Other constructions include some of the Newmark
integration methods as well [151]. For the purpose of this thesis however, the
emphasis is on low order methods and we do not pursue this topic further.

3.7 Examples of discrete mechanical integrators

To construct approximations of (3.19), we start with:

. a1 —q
i(s) = = 5 2 a(s) = go. (3.24)
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Substituting these choices in the reference case (3.12) produces

La(g0,91,h) = %(41 —90)"M(q1 — 90) — AV (%), (3.25)

and applying the discrete Euler-Lagrange equations (3.22) to this yields

1
_EM (gk+1 — 2qx + qx—1) — hVV(gx) = 0. (3.26)
After rearrangement, this becomes
Qkt1 =20k — qe 1 — PP MTIVV (qr), (3.27)

which is recognized as the Verlet [271] formula, and also known as Leapfrog or
Stormer-Verlet [112].

Despite its simple appearance, this formula is in fact widely used in molecular
dynamics simulation [178] for instance. For the simple harmonic oscillator, it
corresponds to the Symplectic Euler method analyzed in Chapter 2.

It is interesting to note that any approximation of the form

L (g0, 01, ) = 5 (01— 20)" Mg — g0) — BRV (g0) — (1 ~ F)AV (1), (329
leads to the same discrete stepping equations (3.27). This symmetry is analyzed
in [196] to demonstrate that the innocuous looking stepping scheme (3.27) is in
fact second order accurate.

Using q(s) &~ 1(go+¢1) and 4(s) & h~'(g1—qo), we get the discrete Lagrangian

+
LS (g0,01, k) = (ql—qo)TM(ql—qo)—hV(u), (3.29)

1
2h 2
and applying the discrete Euler-Lagrange equations (3.22) to that yields

vV <Qk +2Qk—1> LYV <<1k+1 + Qk>

; , (3.30)

h2 1
Qr+1 = 2k — Qr—1 — ?M_

which is the implicit mid-point rule. This was also studied in Chapter 2 and was
one of the two good methods, in fact.

Conspicuously absent from the set of first and second order stepping formu-
lae one can find using the variational formulation are the implicit and explicit
first order Euler methods described in Chapter 2. As shown in Section 3.11,
all methods derived from the discrete variational principle are symplectic and
this means that their stepping matrix-matrix A of (2.8) for the simple harmonic
oscillator—should have unit determinant. Neither explicit nor implicit first or-
der Euler have that property as shown in Section 2.4. At the very least, the
variational principle can guide the selection amongst known methods, restricting
candidates to those which can be constructed from the discrete Euler-Lagrange
equations (3.22). Indeed, as demonstrated in the next few sections, where the
differential equations of motion of mechanical systems are concerned, variational
integrators are provably superior to general methods in every aspect, quantitative
as well as qualitative.

Further numerical investigations of the methods described above are provided
in Section 3.11 below.
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3.8 Symmetries and conservation laws

We now investigate some conservation laws which are implied by the variational
formulation of classical mechanics in Lagrangian form. To fix the ideas, consider
a system made of two unit point masses with coordinates q (M (¢),q®(t) € R3,
which are subject to a central force potential, i.e., V(q) = V(|lg™ — ¢®@|]), so
the Lagrangian for this system is simply

o1 1.
£(g,9) = S1dDI+ S1d @1 =V (llg® = g (3.31)

It is clear that shifting the origin of the coordinate system by a constant vector
leaves the Lagrangian unchanged since neither the velocities nor the relative
distance are affected by such a shift. Consider then the infinitesimal variation:
8q = €qp where go € R® is constant. Since this leaves the Lagrangian unchanged,
we have L(gq + 8g,4) = L(g,qg) and this means in turn that 6L(g,q) = L(g +
8q,9) — L(g,4) = 0. The variation of the action thus vanishes identically over
any given time interval and so we find

(2 (caa). oaa) o0,

(3.32)
Since the integrand vanishes identically along the physical trajectory by virtue of
the Euler-Lagrange equations (3.17), we are left with the boundary term which

ty
0:55’[q]:e/ ds

to

reveals the symmetry

0L(g,4)

99

0L(g,9)

) -
to 0q

, (3.33)
t1

which means that the six components of the one-form p = 8£/8q are constant,
since there are 6 independent choices for gg, all of which yielding the same sym-
metry.

As a second illustrative example of the same phenomenon, consider the in-
finitesimal generators of orthogonal transformations in R3. By this we mean
3 x 3 matrices & such that for a vector z € R3, the transformation

y = (I3 + €&z, (3.34)

is orthonormal up to order O(e?). Simple algebra reveals that the generators &;
must be antisymmetric, yielding the basis

0 0 0 00 -1 0 10
&=10 0 1|, &L=|0 0 0|, &=|-1 0 0 (3.35)
0 -1 0 10 0 0 00

For those versed in Lie groups (introductions can be found in any of [193, 248,
104]), we are now dealing with the special orthogonal group SO(3) which is the
group of orthonormal transformations on R®, which can be represented by the
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group of 3 x 3 orthonormal matrices with unit determinants. This is an example
of a continuous group of symmetries as the elements of SO(3) actually form a
differentiable manifold of dimension 3. As is well known [137], the infinitesimal
transformations of a given Lie group can be finitely generated by linearly inde-
pendent elements &;,t = 1,2,..., which form a Lie algebra g. We need not be
concerned here with the exact details, but only that to each generator §; there
corresponds a conserved scalar.

Now, the simple Lagrangian £(g,4) = (1/2)||4]|— V' (||g|]) is invariant under the
action of SO(3) since these define isometries and thus preserve the norm of any
vector. Thus, computing the variations due to an infinitesimal rotation Iz + €&;
for each of the generators £ and performing the same computation as in (3.32)
yields the symmetry

0L(g,49) _ 0L(g,4),
Tj&(q(t)) _Tj&(

a®)| (3.36)

to 1

and after evaluating this for each index z = 1,2,3, we recover the conserved
vector

J1 4293 — 43q2
Jo| = |—q193 + 9301 | (3.37)
J3 q192 — ¢2q1

which is the angular momentum about the origin: [ = ¢ x g, where the operator
X is the cross product in three dimensions.

These two cases cover the essential content of Noether’s theorem which we now
enunciate. This is stated in an inordinately complicated field theoretic framework
in [105], but with great lucidity in [22], and rigorous precision in [196]. The
presentation here follows that found in the latter.

Consider a Lie group G acting on the configuration manifold @, with associated
Lie algebra g and generators & € g, so that & : @ — @. Assuming that
the action of the group on the elements of @ leave a given Lagrange function,
L : TQ — R, strictly invariant, then, to each generator §; there will come a
scalar which is called the conserved current, by following the procedure of (3.32)
yielding boundary terms of the form (3.33) or (3.36) in general. We now state
this fact formally.

Theorem 3.1. [Noether’s theorem] Given a configuration manifold @, a La-
grangian function L : TQ — R, a Lie group G and its Lie algebra g with gener-
ators & € g, where & : Q — Q. If the Lagrangian L(q,q) is invariant under the
(left or right) action of the elements of the group G, then, along any the trajec-
tory (q(t),4(¢)) satisfying the Euler-Lagrange equations of motion, the following
differential forms are constant

oL
Ji = 6_q-§i(Q)- (3.38)

The forms J; are called the conserved currents.
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Proof. Tt suffices to put dg = €£;(q) in (3.16). Since the &;(g) are the generators
of G, § = g + dq is a transformation which belongs to G and which leaves L
invariant to O(e) and therefore, §S = O(e?) for this choice of §g. Thus, when
computing the variation of the action, the integrand vanishes identically on the
interval [to,t;] which leaves only the boundary terms. Since these must also
vanish given that the total variation is indeed null, equation (3.38) is recovered
after canceling out the scalar € and the result is proven. O

The discrete case follows similar logic. Consider first a Lie group G with
action ® : G — @, parametrized as @, for each g € G. The associated Lie
algebra is g and this has generators &,7 = 1,2,.... If our discrete Lagrangian
is invariant under the action of G so that Lq(®4(g0), ®4(q1),h) = La(g0, 91, k)
for all elements g € G, then, considering an infinitesimal element of the form
ge = id + €£;, where id denotes the identity map, the change in the coordinates
is then: dgx = €£; and the change in the discrete action vanishes to first order in
€ SO

N-1

0= de(qu-- 'an)h’) = dz Ld(Qk)Qk+1)h) =
k=0

=

-2

(]

[D1L4(gk, qr+1, ) + D2La(qe—1, qx, h)] dax
k

+

bl—ﬂ

aLa(gn—1,9n,h) dgn + D1l 4(go, 91, h) dgo

=€ [DsLa(gn-1,9n,h) + €D1La(go,91,h)] & =0, (3.39)
where the summand on the second line vanishes by virtue of the discrete Euler-
Lagrange equations (3.22). This identity is not as simple to interpret as the

conserved currents J; of Theorem 3.1. However, following [196] and introducing
the definitions

Ji (20, 01) = D2La(qo, a1, R)éi(q1),
Ji,(90,91) = — D1l 4(90, 91, h)&i(90), (3.40)
de(Qanl) = J]I—fd(Qanl) - de(QO,(h)a

the following evolution laws are readily deduced from (3.39)

I (@, Gkv1) = I (qk—1,q),
I (@ @rer1) = Ji (Ge-1, @) — I, (ak-1, 2k, (3.41)
I (@, qe+1) = I, (qe-1,9%) + IE,(qk-1, qk)-
Therefore, given an invariant Lagrangian, we have de = 0 and thus, the two
currents J; ,»JL, are conserved and are equal. This result is formally summarized

in the following theorem which is also found in [196] up to some changes in
notation.

Theorem 3.2 (The discrete Noether Theorem). Given a configuration
manifold @ and a Lie group G acting on @ with (left or right) action ® : GXQ —
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3.9 Extended variational principle

Q so that g — ®4(q) for g € G. Let the associated Lie algebra g have generators
& with infinitesimal action & : ¢ — q + €€;(q), € € R. If the discrete Lagrangian
L4(q0,4q1, k) is invariant under the action of ®, then, the following currents are
preserved along the flow qx, k = 0,1,..., satisfying the discrete Euler-Lagrange
equation (3.22)

It (ks @et1) = DoLa(qr, Qet1, h)&i(qrr1),

- (3.42)
Jr, (@, gk+1) = —D1La(gx, qe+1, R)Ei(ar),

and in addition
It (e, ger1) = I, (e, Grar)- (3.43)

To get a better understanding of this, consider a two body problem so that the
configuration is ¢ = (g, ¢(), where ¢ € R3. Define a central force potential
and discrete Lagrangian as

V() =U(r)=U(g™ —¢®)

1 T (3.44)
La(go0,q1,h) = oh (g1 —90)” M (g1 — q0) — hV(qo),

with constant 6 x 6 diagonal mass matrix M and time step h > 0. This is
invariant under translations ¢ — qU) 4+ €£;,7 = 1,2 and 1 = 1,2, 3, where the
generator of translation are defined as

(3.45)

(2]
/o
Il
oo+~ oo r
o
Il
o~ oo+~ o
o
Il
— OO0+~ OO

From the definition of the separation vector r and the fact that Or/aq(l) =
—0r/8q(, we have
V. U(r)

qu(q) - —V.,.U('I")

: (3.46)

so that V4V (g) -& = 0,7 = 1,2,3. Concatenating the three currents in a vector,
we find

Jr=0" =MD (" - o) + h M O (g — oY), (3.47)

which is the standard definition of linear momentum.

3.9 Extended variational principle

The computation of first order variations stated in d’Alembert’s principle and
considered in Section 3.5 above neglected the time re-parametrization. As shown
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in Section 3.10, the variation of the time variable plays an important role in
analyzing the energy of a system. This warrants the present computation of a
more general form of infinitesimal transformations and corresponding first order
variations.

Consider the real variable t € R, the real function f : R — R and the definite
integral Z(tg,t1) = :01 dtf(t). The change of variable theorem states that for a
function ¢ : R — R which is 1-1 on the interval [¢(so), #(s1)] — [¥o, y1], then

t o (t)
Ttot) = [ auf®)= [ dsd)f((s), (3.49

$~1(to)

where ¢~1(¢) is the inverse function and ¢(s) = d@(s)/ ds. Now, if we apply this
to a composition function of the form f(¢) = L£(q(t),q(¢),t), where ¢ : R — @
is C! continuous and where ¢(t) = dq(t)/dt, then, we must first transform the
functions gq, ¢ as follows

r(s) = q(¢(s)) = q(t),
. dq(é(s))ds . 1 (3.49)
i) = Ny T
ds dt ¢(3)
where the implicit function theorem was used to substitute ds/dt = 1/ ¢(s)
Therefore, for the case at hand, the change of variables theorem reads:

(o) ¢(S) to
Define the generalized variation as follows

t=¢(s) =s+e€b(s),

GO 7(s) t :
/¢ dsd(s)LC (r(s),—,¢(s)> = [ atr(g(t), d(t), 1). (3.50)

76 = 86) = 1(5) - nte) = 0+ en(4 ™), 3.5)
i0) = 5155 )+ ei(s)

where we assume that 1 and 8 are uniformly bounded C* functions of time s € R,
that 8(sg) = 8(s1) = 0, and finally that n(sg) = 7(s1) = 0. Assuming that e € R
is small and expanding the integrand to first order yields

£a,8)(#(s), ") 3(s)) = L(g,4)(7(s), #(s), )
a(s)
_9L(a(s),4(5), 9

oL(a(s),d(s),5) ,
94(s)

(5)6(s) + e

(s), (3.52)
and finally
L(7(s), (5),5) =

L(q(s),4(s),5) + €

8L(a(s).d(s).5) | BL((5).d(s),9) .

da(s) 94(s) (3.53)
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Noting now from the first line of (3.51) that ds@(s) = ds(1 + €6(s)), multiplying
this with the terms found in (3.52) and (3.53), discarding all terms of order O(e2)
and higher, and integrating the term containing 8’ and n’ by parts, the following
simplification is found

T ) t1
/ dsd(s)L(7(s), F(5), 5) = / ds£(q(s), d(s), 5)

to to
“ (0L(g,d4,5) d : 8L(g,4,s) .
+€/tg ds (8—5 -4 {E(q,q,S) - TQ} 6(s)
t1
. 0L(q,q,s) .
+€ {ﬁ(q,q,S) - Mq@(S)}
0q N

+ e/: ds {78£(g,qq', 5) _ ;—s (765(2’;" s)> } n(s)

(48]

to

31
- / dtL(q,d,t) + O(e). (3.54)
to

The last line of this equation is just a relabeling of the variable s and therefore,
the integral is stationary if all the terms proportional to € vanish. This reproduces
the previously derived Euler-Lagrange equations of motion (3.17) in addition to
a new equation, namely

8L(g,4,t) d . 0L(g,4,t) .| _
— a5 " aL@dt) - g 4 =0 (3.55)

In the case where 8L£/8t = 0, this last equation contains the definition of the
energy of the system which is time invariant, namely

0L(¢,4,)

E(q,4,t) = e

d—L(g,4,t). (3.56)
But in case 8L/8t = 0, the equation adds nothing new as is easily seen by
expanding the total time derivative in (3.55) and applying the Euler-Lagrange
equations of motion (3.17). Indeed, energy conservation is already implied in
the Euler-Lagrange equations of motion. In the discrete case however, energy
conservation is no longer implied by the basic discrete Euler-Lagrange equations
of motion (3.22). The significance of this is investigated next in Section 3.10.

3.10 Variation of time and energy conservation.

So far, we have seen that spatial translation invariance leads to conservation of
momentum and that rotational invariance leads to angular momentum. Since
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the Lagrangians considered so far do not explicitly depend on time we should
be able to exploit time translation invariance—labeling of the origin of time—to
produce another symmetry, namely, energy.

This symmetry can be discovered by using the extended variations of Sec-
tion 3.9 but a simpler approach is now used as is customary, (see in [173] and
in [150] or [87]) for instance).

Indeed, consider applying an infinitesimal time translation to the general-
ized coordinates g(t) with the variation §g = en(t)q(t), where n(to) = n(t1) =
0,dn/dt > 0, and € > 0 is small. Variations in the function n(t) thus create local
distortion of this small time shift. Using this form of variation § leads to the
following form for the variation of the action

t d [oc\ oL
6,S'=6/ dsp{ —— <—,>+— =0, 3.57
8 n{ & \ g 2 (¢ (3.57)

and the integrand is easily verified to be the negative of the total time derivative
of the energy E = (8L£/09)g — L(q,q), introduced earlier in (3.56). This is
constant along the physically realized trajectory (g, q) as long as the Lagrangian
does not depend explicitly on time, as demonstrated previously in Section 3.9.
For cases where the kinetic energy T'(g, ¢) is a homogeneous function of ¢ with
degree k and the potential energy V(g) is independent of g, then, 8L/8q =
kT(q,q) and so E = (k — 1)T(q,q) + V(g). For the most common case where
T(g,9) = 347 M(q)q, we have k = 2 and in this case, B = T'(g,q) + V(g). This is
not too surprising since we started the presentation by introducing T'(g,q) and
V' (q) as the kinetic and potential energy, respectively. We now find that the total
energy of the system is simple the sum of these two terms. For the discretized
case, we start by generalizing the definition of the discretized Lagrangian to
include time "
La(g0,t0,91,1) = /t dsL(g(s),d(s),s), (3.58)
0
and this now leads to the generalized action which now depends on the choices
of times tg < t1 <tz < ... <ty as

N-1
Sa(go,to,s-- -, qn,tN) = Z La(ge, te, et1, tetr)- (3.59)
k=0

The minimum of the action over the full set of available parameters leads to the
two sets of conditions

0S4(qo,to,---,qn,tN)
Oqx

= D3L4(qk—1,tk—1, %, tx) + D1La(qk, tk, Qr+1,tr+1)

=0

0S4(go,to,---,qn,tN)
Oty

= D4La(qk—1,tk—1, Qk, tx) + D2l a(qk, tk, Qrt1,th+1)

=0,
(3.60)
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where the differential operators D; simply mean “differentiation with respect to
the jth argument,” generalizing the definition provided in (3.23).

Note that the second of these equations—the conservation of energy—is not
a direct consequence of the first as was the case in the continuous case but is
genuinely a new equation. If we write hx = tx — tx_1, we find the definition of
the discrete energy as

0L a(qr—1, gk, h)
Ohy

Ea(gx—1, gk, h) = — . (3.61)

This leads to the observation that an energy conserving discrete integrator
must use an adaptive time step [150, 206]. However, given that energy fluctuates
only within bounds of O(h?) when ignoring the additional equations (3.60), and
given that the main focus in the present thesis is on dissipative systems, this is
not considered further.

3.11 Continuous and discrete symplectic flows.

We have already demonstrated in Section 3.8 how several conservation laws can
be deduced from the invariance of the Lagrange function under the action of
symmetry groups. There is also a fundamental symmetry of the flow, F% :
TQ xR — TQ, which maps the initial conditions (g(0), ¢(0)) to the configuration
at time ¢, (q(¢), 4(¢)). There is in fact a differential form €, associated with the
Lagrange function £(g,¢) which is preserved by the flow map. Without going
deeply into the theory of differential forms or differential geometry, suffice to
say that this implies the invariance of certain scalars—integrals of Q,—along
the trajectory (g(t),4(¢)) = Fz(q(o),q(o))- We first summarize some basic facts
regarding differential forms and proceed to demonstrate that the flow F: defined
by the Lagrange functions £ : TQ — R preserves a differential two-form and that
this is also true for the discrete flow defined by the discrete variational principle.
In fact, as we shall see below, the preservation of this two-form along the flow is
directly connected to the variational structure defining the flow F%.

Following the brief but lucid introductions found in Flanders [90] and in [22],
we define exterior differential forms as the integrands of oriented integrals over
n-dimensional domains. Simple examples in R® include the one-form w! = adz+
bdy + cdz leading to the line integral A = [w?, the two-form w? = pdydz +
gdzdz + rdz dy leading to the oriented surface integral o = [fw?, and the
three-form w® = hdzdydz leading to the volume integral: ¢ = [[[w®. The
scalar functions a,b,c,p,q,r, and h, are all assumed to be smooth integrable
mappings of the form R3 — R.

Because orientation is a fundamental aspect of integral forms, the calculus of
p-forms involves the wedge product ¢ A g0 which is linear, associative, and
antisymmetric. Using this, general differential p—forms are defined in R™,n > p
as:

wP = F Z Qiy iz, dq (i) A dq (t2) ARRRRA dq (1p)1 (362)
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and p = degwP is known as the degree of the p-form. Thus defined w? is a
multilinear mapping: w? : APR™ — R.

The wedge calculus can be used to define p + g-forms by composition w?t9 =
wP A w? given a p-form wP and a g-form w?.

General p-forms can be differentiated using the exterior derivative operator, d,
which is defined via the following axioms (quoted from Flanders [90])

1. linearity: d(w + n) = dw + dn,
2. distributivity: d(w An) = dw An+ (=)%€7w A dn,

3. the Poincaré lemma (closure): for each differential form w, such that the
coefficients a;, 4,,...,1, of definition (3.62) are C? functions, then:

d(dw) = 0, (3.63)

4. For each function f:R"™ — R:

_ of . @)
df = Z 0] dg®. (3.64)

Differential forms are useful chiefly because of two fundamental facts which
distinguish them sharply from general tensors. First, consider a map ¢ : R™ —
R™ (in general, between two manifolds M — N'). Given a p-form w? : R” » R,
the composition of these two mappings is: w? o ¢ : R™ +— R™. This composition
is called the naturally induced p-form and is denoted ¢*wP. The map ¢* is called
the pullback since it maps p-forms w? operating on elements of N' back to p-
forms ¢*w? operating on M, i.e., in the opposite direction of ¢. The situation is
explained in Figure 3.1. For the simple case where manifolds M and N have the
same dimension and the map ¢ is 1-1, the pullback ¢* is the inverse transpose
of the Jacobian matrix of ¢. The Jacobian of the transform corresponds to
the pushforward map ¢4 which, in this case, would map p-forms operating on
M to p-forms operating on N'. A simple way to understand this picture is to
consider the case of a line integral which involves only 1-forms and vectors. This
leads to evaluating integrals of scalar products of the form Y a;(z)dz; where
the a;(z) are the components of a 1-form. For these products to be invariant,
the transformation of the row vector a¥ = (a1, as,...,a,) must cancel out that
of the vector dz. Thus if the differentials transform as dZ = Jdz, the 1-forms
must transform as & = J Ta, locally, and this corresponds to the pushforward
¢, and the pullback ¢y, respectively. In physics, this is known as co-variant and
contra-variant transformation rules in the context of tensor algebra, especially
when dealing with general relativity [249, 248].

When applied to differential forms, mappings ¢ and their naturally induced
differential forms have the following important properties:

1. linearity: ¢*(w +n) = ¢*w + ¢*n,

2. distributivity: ¢*(w An) = (w*@) A (w*n),
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.

Figure 3.1: Illustration of the naturally induced p-form by a mapping ¢, the
pullback ¢*.

3. invariance under differentiation: d(¢*w) = ¢*(dw),
4. composition: if ¢ : R™ — R™ and 1 : R — R*, then,
(¥ o ¢)* = ¢* o ¥* (the dressing undressing principle).

To see the usefulness of this, consider the integral of the differential p-form
wP : R™ = R over the domain D € R™ and the smooth map ¢ : R® — R™, with
preimage ¢~—!. With this notation, the generalization of the change of variables

/D WP = /¢ o & (3.65)

Now armed with this arsenal, we look at the definition of the action in (3.15)
and the functional derivative in (3.16) to rewrite this as

theorem reads

65 = dSéq. (3.66)

Define the mapping F% : TQ — TQ so that (g(0),4(0)) is mapped to the point
(q(t),4(¢)) on the physical trajectory defined by the Lagrangian £(g,q) and the
initial conditions. Therefore, the evaluation of the differential one-form d.S on
the trajectory w(t) = (g(t), 4(t)) is

dSw(t) = (01 o F4)w(0) ~ ©uw(0), = ((FE)*0r) w(0) -~ ©w(0), (3.67)

where the time interval [tg,t1] was relabeled as [0,t], and © is defined as the
differential one-form

O, = —dg. (3.68)
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Indeed, since the Euler-Lagrange equations are identically satisfied along the
physical trajectory FE(w(0)), the integrand in (3.16) does not contribute.

Now, by the Poincaré Lemma (3.63), d>S = 0 and using the previously stated
fact that d(¢*w) = ¢*(dw), we differentiate (3.67) to find

(FL)*dO, = dOy. (3.69)

Therefore, defining the differential two-form Qy = d©, the following two-form
is invariant under the mapping F§

8°L
GG

o*L

5085® dgW Adg®.  (3.70)

Now, if we pick a domain D € T'Q consisting of a set of initial coordinates,
(¢(0),4(0)) € TQ. Assume that each point in D moves in time according to the
same flow map F§. The fact that the two-form Qg is invariant under the action

of Ft means we have the following scalar invariant of the flow

/ Qﬁz/ Q.=AcR. (3.71)
(F£)~(D) D

One needs the theory of symplectic manifolds and Hamiltonian flows to analyze
the meaning of this further. It suffices to say here that symplectic invariance of
the flow implies the invariance of the Hamiltonian function H(p,q) which is a
Legendre transform of the Lagrangian. For conservative systems, the Hamilto-
nian is energy of the system expressed in the Legendre coordinates (p, g), with
p = 0L/8¢T, and the symplecticity of the flow is equivalent to the conservation
of energy.

The discretized version of this result proceeds in the same way. We first define
the mapping

éLd:QXQHQXQ)

(3.72)
@ ,(90,q01) = (91, %),

which is implicitly defined by the discrete Euler-Lagrange equations established
from (3.22). Now, evaluating the one form dSg4(qo,-..,qn,h) on a trajectory
Wy = (qx, Qr+1), We have

de(qu-")qN)h) =

N—2
Z [D1L4(qx, ak+1, h) + DoLia(qk, Qe+1, B)] dak
k=1
oL h oL _ h
n d(QOaQL )dqo+ d(QN 1,4N, )qu
940 Oqn

= (et 0@l ) - wo—©f) wo, (3.73)
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with the definitions
aLd(QO) di, h)

@&) (90,91) = D2La(g0,91,h)dgs = o du @,
af qz " (3.74)
91&)(‘10&1) = —D;1LL4(90,91,h)dgo = % dgo @,

and after observing that the summand in (3.73) vanishes on the trajectory.
Note that the discrete Euler-Lagrange equations imply that @]E—:)(qk,l,qk) =
@E)(‘Ik: gr+1)- Also, since dL 4 = G]E:) — @i_d) and since d?Lg4 = 0, we have

d@]E:l;) (qo’ ql) = d@i;) (qo1 111) = QLd(QO: ql)

80 Dag ) 0 v

Using the Poincaré Lemma (3.63) on (3.73), we find that
(&% )V el =del) = a.,. (3.76)

In other words, the time sequences produced by solving the discrete Euler-
Lagrange equations (3.22) preserve the two-form Qr,,, just as in the continuous
case. And this is true for absolutely any choice of discretization of the Lagrangian,
irrespective of the order of the approximation of Lz. As long as we solve the
stepping equations (3.22) accurately enough, the two-form §,, is preserved by
the flow.

To grasp the meaning of this identity, remember that the initial conditions for
the discrete variational stepper are given by a pair of points, (go, g1). Consider a
domain of initial conditions Dy € @ x Q. Choose Dg to have small area so that all
points in it are somewhat close to each other initially. Then, each point (go,q1) €
D moves according to the map éfd(qo,ql) to the set Dy, and the invariance
theorem says that Dy has the same surface area as Dy, i.e., A(Dg) = A(Do).
Thus, a cluster of initial conditions cannot spread too far from each other, unless
of course there is a collapse along some of the dimensions, allowing escape towards
infinity along the others. Barring this pathological case, this observation means
that small local errors do not accumulate in variational integration methods. In
particular, making a small error at one stage does not lead to an exponential
divergence in the long run, unless similar errors are made at each step.

This can be illustrated in two dimension using the simple harmonic oscillator
introduced in Chapter 2. The domain of initial conditions is chosen as the con-
tour of the face of a stylized cat. The choice of the face of a cat to illustrate
symplecticity goes back to Arnol’d [22]. Points (go,g1) lying on the outline of
the face of the cat at time ¢ = 0 are used as initial conditions for the simple har-
monic oscillator which is simulated using a numerical integration method such
as the four described in Chapter 2 or any other one. Each point on the contour
is then propagated in time and should at least approximately follow the ellipse
E =(1/2)¢* + (1/2)w?¢? in phase space as shown in Figures 2.1 2.2, and 2.3 in
Chapter 2
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The outline at time ¢ = kh consists of points with coordinates (g, A~ (qr41 —
gx)) which are the image under the a given integration method. All told, each
picture involves several hundreds of integrations over a given time interval, each
starting at different initial conditions (g, A (g1 — go)) on the outline.

In Figures 3.2, 3.3, and 3.4, and 3.5, we present data from the Verlet, implicit
midpoint, second order Runge Kutta (explicit midpoint) and implicit first order
Euler, respectively, for low values of frequency, namely, using hw = 0.2, where
h is the time step, and w = /& is the natural frequency, k being the spring
constant. The scales on each sub-figure are identical but varies from figure to
figure. The plot key denotes the time of each snapshot.

These pictures illustrate that the surface area of the cat is preserved for the
variational methods, namely, the Verlet and implicit midpoint methods as seen
from Figure 3.2 and Figure 3.3. However, the surface area of the face of the
cat area obviously increases for the explicit midpoint method in Figure 3.4, and
quickly shrinks for the Euler implicit method in Figure 3.5.

A similar series of figures illustrates what happens when the frequency hw
is higher. Both variational methods still preserve the surface area of the cat
as seen in Figures 3.6 and 3.7. However, the explicit Runge-Kutta method of
second order explodes the area faster in Figure 3.8, whilst the implicit Euler
method shrinks it faster in Figure 3.9.

1 1 =8 ]

0 ot 1

1 0 1

1 b b 25 —
O

0 o /.~ 1

1 0 1 1 0 1

Figure 3.2: Phase portrait of simple harmonic oscillator with frequency hw = 1/5
using Verlet integration.
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1F < — 0 — 1 3
ol == ol =)
-1+ . i -1t . i

-1 0 1 -1 0 1
1t t= 17 — - 1 4—95 -
o - ol — -
-1+ . i -1t IO i

1 0 1 1 0 1

Figure 3.3: Phase portrait of simple harmonic oscillator with frequency hw = 1/5
using implicit midpoint integration.

t—0 — t—8.3 —

Figure 3.4: Phase portrait of simple harmonic oscillator with frequency hw =
1/5 using explicit midpoint method integration (Runge-Kutta second
order).
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0.5 | @) @) 8 0.5 | 8
A
0.0 | 8 0.0 | 8
-1 0 1 -1 0 1
1;:1.3 - It: —
0.5 | 8 0.5 | 8
0.0 | 8 0.0 | A 8
-1 0 1 -1 0 1

Figure 3.5: Phase portrait of implicit first order Euler integration applied to the
simple harmonic oscillator with frequency hw = 1/5.

1 T 1
o _© <~ (0 —

0t § 0t
-1} N -1}
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1 T T 1 T

t=17 — S =25 —

0k, - 0 -
1}le N -1} N
-2 1 1 -2 1 1

-1 0 1 2 -1 0 1 2

Figure 3.6: Phase portrait of Verlet integration applied to the simple harmonic
oscillator with frequency hw = 1.

64



3.11 Continuous and discrete symplectic flows.

1 1 .
s ot=0 — 6=8.3 —
0Ff 1 0t 1
-1t 4 -1 L 4
-2 0 -2 0
1 : 1 ;
t=17 — t=25 —
0t 1 0t §
—2 0 -2 0

Figure 3.7: History of the phase portrait of the Arnol’d cat initial conditions
for the implicit midpoint integrator applied to the simple harmonic
oscillator with frequency hw = 1.

t—0 — £=0.12 —
0t - 0t .
—10 | ] —10 | ]
~10 0 ~10 0
© t=023 —
0t ] i
—10 | i i
~10 0

Figure 3.8: History of the phase portrait of the Arnol’d cat initial conditions for
the explicit midpoint integrator (Runge Kutta second order) applied
to the simple harmonic oscillator with frequency hw = 1.
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0.0 | 1 0.0 | v 1
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Figure 3.9: History of the phase portrait of the Arnol’d cat initial conditions for
the implicit Euler first order integrator applied to the simple har-
monic oscillator with frequency hw = 1.

3.12 Forced and dissipative systems

Mechanical systems in which all forces can be derived from potential energy
function, V(q) : @ — R, are called conservative as they preserve energy on the
trajectory, as shown in Section 3.9 and Section 3.10. We now extend the analysis
to cover forced and dissipative systems as well. These are the systems for which
the forces are not the gradient of potential functions and, thus, they do not
necessarily conserve energy.

Assume that a mechanical system is subjected to forcing functions f(g,q)
which cannot be derived from a potential function V(q) (or even V(gq,q) for the
general case). Such forces are also known as polygenic forces in contrast with
monogenic ones which can be derived from a potential function. D’Alembert’s
principle [173] states that any variation §q of the physical trajectory satisfying
the boundary conditions 6q(tg) = dq(¢;) = 0 should produce zero net variation
of the following functional

t1

§ | dsL(q(s),d(s)) + / " ds fféq=0, (3.77)

to to

where the combination Ty is the ordinary inner or dot product of any two
n-dimensional vectors z, y.

The Euler-Lagrange equations of motion for this system are readily recovered
noting that dq is arbitrary, yielding the following system after transposition

d oL oL

EW - W = f(Q: Q) (3'78)
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To see that this is consistent with the case of conservative forces case in-
troduced in (3.11), consider f(g,d) = —8U(q)8/q¥ and therefore, the second
integrand reads fTéq = —(8U/8q)dq = —06U(q) so terms can be collected as
O[L — U] in the first integral. After updating the definition of the potential
function, V'(q) + U(g), we recover the conservative problem defined previously
n (3.11).

Since dq is arbitrary, the condition above must hold over each segment of
the time integration and in particular, we must have foh dsf(q, q')T(Sq = 0. The
value of ¢(s) in the integrand is approximated by the smooth function g(s) =
u4(go, 91, S, h) on the interval [0, k], and therefore, the relation between dg(s) and
the discretized coordinates qg, g1 is expressed as

Sq(s) = 0u4(qo, g1, s, h) 5q0 + 3ud(qo,q1,s,h)5

. 3.79
340 30, q1 ( )

This leads to two terms to be evaluated, namely

/ dsf(q,q) 5q—/ dsf(g,4) qTa d5qo+/ dsf(g,d )Th g1

:fs )(‘ZO,th) 5q0+fd_ (qO)quh) 5q1)

(3.80)

with definitions

h
_ 0 .
£ a0 W o) = [ st F(and),
o 9 (3.81)

(+) b Bug .
fi (20,91,h) = dsa—Tf(q,Q)-
0 ai
Collecting terms with dgy,, we find the stepping equations

DI La(@k—1, 9k, k) + DT La(k, Ge+1, h)
+ £ (ars k1o ) + £ (g aira, ) = 0. (3.82)

A simple general choice for the function %4(qgo, g1, S, h) is the linear map u4(qo, 91, s, h) =
Tgo + (1 — 7)g1 = q1_r, and the velocity definition v; = (1/h)(q1 — qo), leading
to the evaluations

770,91, k) = TRF(q1 7, 1),
7o, a1, h) = (1 = ThF(q1-r, v1),

and summing the contributions, we have

(3.83)

f;(_) (qk, Qry1, h) + f;(+)(Qk—1, gk, h) =
Thf(k+1—7,Vkt1) + (1 = T)Af(qk—r, Vkt1)- (3.84)

The limiting cases 7 = 0 and 7 = 1 lead to the stepping equations

DILa(qk-1,9%, k) + DT L a(gk, qe+1, h) = —hf(qk, vk), for 7 =0,

2 L (3.85)
D3 La(qr—1,9%, h) + D1 La(qx, dk+1, R) = —hf(k, Vky1), for 7=1.
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Also of interest is the symmetric version of the forces defined as

£ (g0, 1, h) = g [Tf(g1-r,v1) + (1 = 7)f(gr,v1)]
(3.86)

h

2

£

90,4q1,h) = = [(1 = 7)f(qr—+,v1) + 7 (gr,v1)] -

These different discretizations will be used alternately in what follows, depending
on the stability requirements and the form of the function f(g, q).

3.13 Rayleigh dissipation functions

A special type of forcing involves Rayleigh dissipation functions which are scalar
functions of the form 2R(gq, ¢) and which generate forces

fn(g,9) = _as;g;p,q)’ (3.87)
which are reminiscent from the potential forces defined previously in (3.18).

A simple example of this is the function (g, ¢) = (1/2)7(|g|| which generates
a viscous drag fo = —74.

The significance of such a scalar formulation is seen from the computation of
the time rate of change of energy. Indeed, for a Lagrangian without explicit time
dependence, the rate of change of energy due to the introduction of a Rayleigh
dissipation function is

dE _d (oL, [doL 8L). p, ..

E‘E{a_q'q_ﬁ}_ [EW_W]q_f (g,9)q s
ey |
0q

The most common form for a Rayleigh function is homogeneous of degree 2 in
g. This yields dE/dt = —29(q, ¢). Therefore, the value of Rayleigh function is
often associated with the energy dissipation rate.

Since the energy of a system subjected to the force produced by a Rayleigh
function decreases at a rate proportional to fR(g), the dynamics will settle when
MR(gq) = 0. If R(q,q) is bounded below by 0, it is minimized by the dynamics
but it also constrains the system on the surface 2(q,q) = 0. This is in fact
the definition of a kinematic constraint. Since there are is no real restriction to
the definition of a Rayleigh function, there offer the most general definition of a
constraint on the system.

3.14 Constraints

From a reductionist perspective, it should be possible to model everything under
the sun as systems of point particles interacting through pairwise interactions. In
fact, for the range of time, length and mass scales mentioned previously, it should
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be sufficient to use only the forces of classical universal gravitation and classical
electromagnetism. But this argument is deceptive because it does not distinguish
data from noise in both time and space domains. Indeed, a tennis ball can be
viewed as a composite of several thousands of point particles, including millions
of pairwise forces. But in fact, these point particles do not move much relative
to each other and the most important data here is the location and velocity of
the center of mass, the attitude and angular velocity about the center of mass,
followed by the bulk deformations. In fact, these deformations are related to the
velocity of sound in a solid and this typically in the range of 10% to 10%, and
propagation through a solid of size 1m for instance takes 1073 to 10~* seconds,
far, far below the time resolution of interactive physics. The point here is that
at the time resolution scale of 10ms of interactive physics, most bodies are rigid.

If we choose to ignore the microscopic physics, we must allow for geometric
restrictions on the motion of our objects which are in fact the net result of the
underlying microscopic dynamics. For instance, if a spherical marble of radius
r is put on a flat plane described as the surface z = 0, a macroscopic model
of this should impose the restriction that the center of mass of the bead satisfy
the inequality g, — r > 0, instead of computing the magnetic dipole interactions
between the surface molecules of the marble and the ground surface. On the
time scales we are interested in, any impact between the marble and the ground
plane can be considered as instantaneous and we can therefore safely ignore all
the microscopic physics and concentrate on enforcing the macroscopic constraint:
qg.—r>0.

In general, constraints are restrictions on the variables describing the system,
namely, the coordinates g, their velocities g, the forces f(g,q), and time ¢. Any
such restriction can be written as c(g, 4, f (9),%) > 0. Of course, for the restriction
¢ > 0 to have an influence on the system, it must produce some sort of net force
(), which will be deduced from d’Alembert’s principle. This is where the
strength of the variational formulation is truly palpable.

In what follows, we first present different categories of restrictions and then
proceed to derive the constraint forces they generate using the fundamental prin-
ciples we have exposed so far. The connection between constraints and strong
forces with fast dynamics will be explored further below.

3.14.1 Kinematic constraints nomenclature

First consider restrictions which are purely kinematic, i.e., independent of the
forces applied on the system so they can be written as algebraic inequalities
c(q, g,t) > 0. The following categories are distinguished.

scleronomic: without explicit dependence on time, ¢(g,q) > 0;
. - . ; Oc
rheonomic: explicitly time-dependent, ¢(g,g,t) > 0, s # 0;

holonomic: independent of velocity, ¢(g,t) > 0;
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nonholonomic: explicitly dependent on velocity so that ¢(g,q,t) > 0 is a non-
integrable function;

bilateral: the restriction is a strict equality ¢(g, ¢,t) = 0;
unilateral: the restriction is an inequality ¢(g, g,t) > 0;

ideal: the constraint forces are perpendicular to the trajectory so that the con-
straint does zero net virtual work on the system:;

nonideal: the constraint forces produce nonzero net virtual work;

Unfortunately, this taxonomy is not hierarchical. To confuse things further,
the physics literature often uses the term “holonomic constraints” as a shorthand
for bilateral, scleronomic, holonomic, ideal constraints, and “nonholonomic con-
straints” for the rest. In what follows, an attempt is made to be as precise as
possible in referring to different types of constraints.

The motivation for each item in the nomenclature differs. The split between
scleronomic and rheonomic constraints is based on whether or not the is an
explicit time dependence in the constraint definition. Rheonomic constraints,
because they depend on time, can violate energy conservation.

Some constraints can be eliminated by a change of coordinates and this is said
to make them integrable. For instance, if a point particle is constrained to stay at
unit distance from the origin, with a light rigid rod for instance, one can introduce
polar coordinates, set the radius to unity, and delete all time derivatives of the
radius from the equations of motion. This is not possible in general, however, as
discussed in Section 3.14.3. This motivates the distinction between holonomic
constraints and nonholonomic ones, meaning that the former is integrable in
principle, but the latter is generally not, as shown with a counter-example in
Section 3.14.5.

The distinction between ideal and monideal constraints is prone to generate
confusion. Indeed, holonomic constraints are ideal as shown in Section 3.14.3.
However, a rheonomic constraint can perform net work on the mechanical system,
adding or removing energy.

In addition, the engineering literature [177] uses the term effort constraint as
described in Section 3.14.2. The discretization technique of Section 3.12 suffices
for these.

Special techniques are needed to discretize holonomic and non-holonomic con-
straints correctly, as discussed in Section 3.14.3 and Section 3.14.5, respectively.

3.14.2 Effort constraints

In the best of all circumstances, the forces applied on a system can be computed
from the positions and velocities so that we have an explicit function of the
configuration f(g,q). But there are several cases where the best that can be
done is the formulation of a constitutive relation (g, q, f (,t) > 0, contributing
f) to the generalized forces. In this case, the restriction generates additional
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forces which may change the energy of the system according to the value of the
integral [dsfT¢, which is the work done done by a given force f on the system.
The term effort comes from the systems engineering literature [154] [177] where
it stands for generalized forces.

The best example of an effort constraint is the Coulomb friction model which
describes the contact forces between two rigid objects. In this model, a normal
force f o) enforces the non-penetration condition between the objects, and a
tangential force f (") prevents them from moving relative to each other provided
the magnitude of f(**") does not exceed the product of the friction coefficient
times the magnitude of the normal force. When the maximum magnitude is
reached, the tangential contact velocity is opposed by the tangential friction force,
producing dissipation. This is thus also an example of a nonideal constraint.

The only effort constraints considered in what follows are those which can be
derived from Rayleigh functions, which is typical in the engineering system dy-
namics literature [177], where they are called dissipative efforts. The interesting
symmetry here is that potential functions generate forces according to the nega-
tive generalized coordinates gradient whereas Rayleigh functions generate forces
according to the negative of the generalized velocity gradient. As shown fur-
ther below, these can be used to model Coulomb friction—provided appropriate
non-smooth functions are used—as well as a number of constitutive models for
drivers and motors. Since the forces generated by Rayleigh functions were al-
ready stated in (3.87) and since the discretization of non-conservative forces was
already performed in Section 3.12, we do not expand further on effort constraints
until special non-smooth forces are considered in Chapter 10.

3.14.3 Holonomic constraints

Consider an m-dimensional vector function of the configuration coordinates g(g,t) :
Q@ x R — R™ with m x n Jacobian matrix G = 8g/8q, where n = dim @, and,
generally but not necessarily, m < n. The Jacobian maps the changes in co-
ordinates g to changes in the function g(g,t). Each row of G weights the the
changes in each component of ¢ in the global conspiracy to make the value of of
g; change. Matrix G can include conversion in units, scales, or general coordinate
systems. The case where m = n is precisely a change of coordinate systems, from
Cartesian to polar or whatnot. When the restriction g(g,t) = 0 is imposed on
the system, the net effect is to restrict the values of the coordinates g to live on a
manifold M € @. In fact, it should be possible to parametrize M directly and to
reformulate the Lagrangian £(g,4) : @ = R as £(y,9) : M +— R. This is called
a reduced coordinates approach but we choose instead an augmented coordinate
strategy.

To understand the forces required to maintain the system on the submanifold
M, we go back to the variational principle and modify it by restricting the
variations dq to be consistent with the constraints. Specifically, we require that
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they be tangent to the manifold
9g
) t) = =g =0. 3.89
9(a,t) 5g°¢ (3.89)

Now, assuming that G has full row rank and that G can be partitioned as G =
[A B] , Where the square m x m matrix A is assumed invertible, and matrix B
ism xn—m. Given z € R™ with partitioning z = (y,2),y € R™,z € R(»—m)
the solution to Gz = 0 is found to be

I:m:

where I,_p, is the (n — m) x (n — m) identity matrix, for any z € R™®~™),
In other words, the columns of n x n — m Matrix H span the null space of
matrix G. Conversely, consider a vector v = GTA where A € R™,u € R,
then, uT H = ATGH = 0. Therefore, the left null space of H is mapped by the
vectors GTA\, A € R™. Thus we write the variations §q(t) = eHn(t),n : R —
R™™,n(to) = n(t1) = 0, where 7 is uniformly bounded on [tg,¢;] and at least
C? but otherwise, arbitrary. From this, we find that the functional derivative of
the action (3.16) becomes

£ d [oL\ oL
6S(t°’t1)_/to ds{—a <6—q'> g (HN=0 (3.91)

For this to be true for arbitrary 1, we need the term in the braces to be in the
left null space of matrix H which means that it can be written as ATG for some
A € R™, and the value of A is determined by enforcing the condition g(g,t) = 0.
After transposing the vectors in (3.91), the Euler-Lagrange equations of motion

—-A"'B

In_m

z=Hz, (3.90)

now read

dt 8T 8T B (3.92)
9(g,t) = 0.

This is now a system of differential algebraic equation (DAE)s of index 3. There
are several definitions for the index of a DAE [114]). The simplest is the differen-
tiation index. This is one plus the number of times the algebraic equation—the
second line in (3.92)—has to be differentiated twice before the ¢ factors can be
extracted and substituted in the differential equation. The index starts at 1 when
there is a non-trivial algebraic part which must be inverted and substituted in
the differential part, and increases by one for each derivative needed to perform
this substitution and thus eliminate the algebraic variables, A in the present
case. Another way to see that something is missing is that the ghost variable A
appears in the first line of (3.92) but its time derivative A does not appear any-
where in the system. Thus, if we view (3.92) as an implicit differential equation
of the form F(g,4,q, A, A,t) = 0, the function F' has several zero blocks in its
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Jacobian which is in fact rank deficient. Solving linear systems with rank defi-
cient matrices requires using singular value decomposition (SVD), rank revealing
orthogonal factorization (QR), or some form of least squares approximation.

Numerically integrating general DAEs of index higher than 1 is difficult and
usually requires the SVD or rank revealing QR at least once per time step to
solve a 2n + m-dimensional system of nonlinear equations for ¢,¢ and A several
times. Example of Runge-Kutta methods are found in [111, 114] and backward
difference formula (BDF) based methods are described in [54, 29] and in [165].
Some interesting connection to nonlinear least squares methods are described
in [41, 43].

By comparison, the variational time stepping method offers a simpler and
more robust alternative, at least for the case of constrained mechanical systems,
as shown shortly. Before discretizing the Lagrangian, an alternative derivation
of the constrained equations of motion is derived.

3.14.4 The ghosts enter

Consider the augmented Lagrangian defined as
L(g,4: 2, }) = £(2,9) + AT g(g, ), (3.93)

and consider the variable A to be the coordinates of a new type of physical
bodies, namely, m one-dimensional point particles, each having position A;,7 =
1,2,...,m and to be treated like any other kinematic variable in the system.
These point particles have no mass and do not appear in the kinetic energy
though they appear in the potential term ATg(g). This justifies calling them
ghost particles since they have no material realization though, as we shall see,
they are of great importance in the construction of stable and regularized nu-
merical methods. In the present context, only massless ghosts are considered
but, as we show later, if the mass were to be nonzero, it would have to be neg-
ative since otherwise, the energy would quickly diverge. The usefulness of this
conceptualization is that we recover precisely the standard variational structure
where the variations on the A and gq variables are unrestricted. Note also that
from (3.93), there is no energy associated with the ghost at all, since g(g) = 0
along the trajectory. Regularization will change that though.

The Euler-Lagrange equations of motion (3.17) for the Lagrangian (3.93) are
easily computed to yield

ia_[:_a_[":iﬁ_g_cﬂ’)\zo
dt 8gT 89T  dt 8¢T  8gT

d 8L oL
dt GAT AT

(3.94)
= _g(q)t) = 0)

which is identical to (3.92). The point being that with the ghost interpretation,
we can proceed to discretize the Lagrangian (3.93) with the same techniques used
for the unconstrained systems in Section 3.5 and 3.7, which is an alternative to
what has previously been reported in the literature.
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The standard technique to discretize a Lagrangian subject to holonomic con-
straints is to starting from the discretization defined in (3.20) and simply re-
strict the variables gx to satisfy the condition g(gg,tx) = 0. Making the ac-
tion stationary is now a constrained extremal problem in several dimensions
(see [195], section 4.3 for instance), and the result is the constrained, discrete,
Euler-Lagrange equations

oS
—— = DTIL(qk, gk+1) + DIL(qk—1,qx) = GT A
agf — ! * 2 (3.95)

9(qr+1,tet1) = 0.
It is important to note that Gy appears in the first equation whereas the second
equation calls for vanishing g(g,t) at time k + 1.

Discretizing the ghost variables in the augmented Lagrangian directly, the
same result is obtained using

h
/ dsATg(g,t) = hAE go. (3.96)
0

However, assuming for instance that A and g are uncorrelated, we could use

h T
/ dsATg(q,t)zh(M;%) (%) (3.97)
0

to get a slightly different stepping equation

oS 3
AT — DT]L Ak, dk + DT]L Qk—1,9k) = GT}‘
oyt = DFL(G6, 8ess) + DFL(aics,90) = O o

9(rt1stes1) + 29(qr, tr) + 9(qr—1,tr—1) =0,

where A = 41 (Ak+1 + 2Ax + Ag—1). This formulation preserves the constraints on
average even though it allows for gy # 0, and this could produce oscillations at
high frequencies. This will be analyzed in depth Chapter 4 when considering
constraint regularization and stabilization.

3.14.5 Nonholonomic constraints

Nonholonomic constraints are kinematic restrictions of the form a(g,4,t) = 0
which cannot be integrated back to a holonomic conditions of the form é(g) =
0. As such, they cannot be eliminated by a change of coordinates. There is
still controversy regarding the correct equations of motion when nonholonomic
constraints are concerned [182] [50].

The case a wheel contacting a plane which moves by rolling without slipping
is the archetype of a nonholonomic constraints and offers a good illustration of
what is meant by nonintegrable. Consider a vertical wheel of radius p > 0 which
rolls without slipping on the plane z = 0. The center of rotation has coordinates
z,y,z = p. The angle of rotation of the wheel about the center of rotation is
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¢. The projected velocity of the wheel onto the plane is ||v]| = p¢. Now, let 8
be the angle between the plane of rotation of the wheel and the z-axis of the
plane. As the wheel rolls without slipping, its velocity vector is aligned with the

vector v = r(@)(cos(8),sin(8))T. This leads to the following pair of constraint
equations:

& —rcos(§)p=0

¥ — rsin(6)¢ = 0. (3.99)

Now, it is tempting to assume that it is possible to express the motion entirely in
terms of @, 8 and eliminate z,y but this turns out to be impossible. To show this,
first relabel the coordinates z,vy, @, 0 as ¢1, g2, g3, ¢a. Assume assume that (3.99)
can be rewritten as dh(g)/dt = 0, by using an integrating factor, f(g). If we write
the first equation as ), gi¢; = 0, with g1 = 1,92 = 0,93 = —rcos(6),g94 = 0,
then, we need to find f(q) which satisfies equality of mixed partials

0(fg:) _ 9(f95)

= . 3.100

6q,  Ou (3.100)

But g4f = 0 identically and so we need M =0, and 6(f91) = 0. The
0q4 844

first of these two equations implies that f(g) = f(g1,42,qs)/ cos(8) but after
substituting into the second equation, we get a contradiction. Therefore, there
is no integrating factor and so it is not possible to reduce this constraint to an
algebraic conditions on the generalized coordinates. This means that even though
the constraint reduces the number of degrees of freedom locally, it does not reduce
them globally. This is a fundamental feature of nonholonomic constraint.

To elucidate how a nonholonomic constraint affects the motion, start with a
Pfaffian form (a vanishing differential form of degree one) so that a(g,q,t) =
A(q)g + w(t) =0, where A is an m X n-dimensional matrix. In general, m < n,
and w(t) is a given m-dimensional time dependent vector. If we require that the
virtual displacements satisfy the simplified constraint: A(g)ég = 0, then, using
the same analysis as in Section 3.14.3, we find the Euler-Lagrange equations of
motion to be

dt 9T ~ 8T - (3.101)

The motivation here is that the constraint force is ATa and therefore, the virtual
work is a” Adq and since we imposed that Adg = 0, this formulation is indeed
workless as desired.

Note that in this case, it is not possible to augment the Lagrangian with terms
of the form BT a(q, 4, %) as this causes spurious terms proportional to & which are
not physical as verified in [182] [91], though this vakonomic description—a term
coined by Arnold [23] to mean variational and aziomatic—has been used in the
literature several times. As demonstrated in [91], the issue here is whether the
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condition a(g,q,t) = 0 is strictly enforced on the variational paths g + g, or,
instead, only the simpler, tangential condition Adg = 0. Only the latter form is
correct.

However, consider the function R = &Ta(q,d,t) where a is the generalized
coordinate of a ghost particle and use the augmented Lagrangian £(q, ¢, @, &) =
L(q,q). The generalized force due to this Rayleigh function is

R
84qT AT&

fr=— a(i)% =-17, (3.102)
8T

and therefore, if we impose the restriction that the virtual displacements generate

no virtual work, we recover the same equations of motion as (3.101) with a

redefinition of the o variables. On the other hand, we also recover the same

equations (3.101) if we allow for free variations applying d’Alembert’s principle:
R R

( dg + adéa) =0. (3.103)

t1

t1
1) daﬁ_(q,cj,a,d)—i—/ ds

to to 0q

It is curious that this simple fact is not mentioned in the literature and it is not
entirely clear whether the correct equations of motion would be reproduced using
this technique on nonholonomic constraints which do not have a Pfaffian form.
Nevertheless, we consider the formulation R = &Ta(g, ¢,t) and the variational
formulation in (3.103) as axiomatic since we will only use constraints which have
Pfaffian form.

Nonholonomic constraints are now discretized using two alternative methods
which produce the same result. First, following the analysis found in [68], the
restrictions on the variations are imposed as: Agxdgr = 0, and the constraints are
now written as a(g,q,t) &~ Ax(qx — gxk—1)/h + wg. Note the choice of time index
for these equations which is very important for consistency and stability of the
resulting stepper, and is based on a careful interpretation and discretization of
the classical d’Alembert’s principle of virtual work and geometric analysis. Ne-
glecting the boundary terms, i.e., setting dgo = gy = 0, the discrete variational
principle is then expressed as

N-1
8Sa(q0,---»an,h) = ) 6La(gk, qkt1, h)

ko
o

2

= [D1La(gx, qr+1, B)0ax + DoLa(a, Gk+1, h)0qxkt1]

il
= O

+ [D1La(gx, ak+1,h) + DoLa(qe—1, 9k, k)] 8qx = 0.

£
i
<}

(3.104)

If we write Uy = D1La(gk,qx+1,h) + D2La(qx—1,qk, k), then, the stationary
condition implies that U = a Ay for some vector a, and by simultaneously im-
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posing the discretized constraints, we find the discrete Euler-Lagrange equations
for nonholonomic constrained systems

DY La(qk, e+1,R) + D La(qe—1,qk, k) — Aga =0
1 (3.105)
EAk—i-l(Qk-i-l —qx) + Wry1 = 0.

Note once more that the time index of the discretized constraint is shifted by
one here because it includes the yet unknown variable ggyi. This introduces a
slight asymmetry between Ag41 in the second equation and Ag in the first.

But simply using the Rayleigh function R = aTa(q, ¢,t) along with the dis-
cretization of forced system given in Section 3.12, in (3.82), and choosing the
parameter 7 = 0 in (3.85), we recover the same stepping scheme as in (3.105)
but with a relabeling of the dummy variables «;, i.e.,

DTL 4(qx, qr+1,h) + DL a(qr_1,qx, h) — Af (ax — ax_1) =0
1 (3.106)
EAk+1(Qk+1 — k) + Wry1 = 0.

The equivalence between these two discretization strengthens the case that
nonholonomic constraints are indeed equivalent to special Rayleigh functions.
If this were the end of the story, it would be only a curiosity but in fact, this
pony can do more than one trick. Indeed, careful design of Rayleigh functions—
and careful discretization of the force terms—will allow to produce constraint
stabilization forces as well as a variety of effort constraints, opening a continuum
of possibilities apart from standard, pure holonomic constraints.

3.14.6 Inequality constraints

We now turn to unilateral kinematic constraints of the form ¢(q,t) > 0, where
c: R xR®” » R™, with m < n. The restriction on the virtual displacements
is now Cdq > —c(q,t). Therefore, whenever c(q,t) > 0, we recover the free
equations for small enough §g. When ¢(g,t) = 0, we recover the same equations
of motion as in the constrained case with the constraint force CTv. However,
there is yet another restriction, namely, that v > 0. To see this, consider a time
t such that c(q,t) = 0. Assume that at time ¢, the other forces on the system are
summed up as f(t). Considering the simple constant mass Lagrangian of (3.12)
and the constrained equation of motion (3.92), the acceleration ¢ at time ¢ must
satisfy

Mi—CTv=Ff

oa.) =0 (3.107)

which can be solved locally for § = M~Y(f + CTv), where matrix C is the
Jacobian C' = 8c/dq as previously.

Using a first order expansion around ¢t with a small time step A > 0 and using
the expression just derived for ¢, the constraints will still be satisfied at ¢t + h if
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the following inequality is satisfied

oc

ot
. h -1 h? —1~T 3

. h? .
0<c(q(t+h),t+h)=hCdg+h —|—7Cq+...

(3.108)

where ¢; = 8c/8t. For the present analysis, all terms of order O(h®) and above
are neglected. Rewriting the last line of (3.108) in matrix form as

0<g+Hy,

h 3.109
q:h(Cd+ct+§CM_1f> , and H=CM~1C7T, ( )

the question now is how to choose v so the function c is free to become positive,
but restricted from becoming negative. Observe first that the components of
the vector ¢ are the rates at which the constraint components are changing in
the absence of constraint force. Restrict the analysis to m = 1 first so that
CM~1CT = u > 0 is a positive scalar. Obviously, if ¢ > 0, the inequality is
satisfied for v = 0 which leads to ¢(q(t + h),t + h) > 0. Conversely, if g < 0, we
need v > 0 to satisfy the inequality (3.108) and this will keep ¢(g(t+h)t+h) = 0.
In both cases, the result is that v7(q + Hv) = 0, which can also be written as
0 < g+ Hv 1L v > 0. This argument can be generalized to m dimensions as
is done in [224] and the result is the unilaterally constrained Euler-Lagrange
equations of motion

at 84T ~ 8qT (3.110)
0<c(gt) L v>0

where the perpendicularity sign, L is understood componentwise. This means
that given two n-dimensional vectors, z,y, 0 < z L y > 0 implies that for each
index 2 =1,2,...,n, the following three conditions hold simultaneously

z; > 0, Y; >0 y and T:Y; = 0. (3.111)

With the conditions stated in (3.111), the familiar perpendicularity zTy = 0
is recovered. The system of equations and conditions in (3.110) is a nonlinear
complementarity system. The variable v > 0 is essentially a slack variable which
enforces the Fourier inequality, namely, that virtual work is non-positive when
the configuration space has a closed boundary [173] (remember that the Euler-
Lagrange equations (3.17) are the negative of the integrand of the variation of
the action in (3.16)).

The solutions g(t) of this system are nonsmooth since there are jump discon-
tinuities at impact points, i.e., instants ¢; such that for at least one index j,
g;(q(t:)) = 0 but g;(g(t; — €)) > 0 for a small € > 0.

The discretization of inequality constraints can be handled using standard
techniques for constrained extrema from vector calculus. A naive application of
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these produces the discrete, unilaterally constrained, Euler-Lagrange equations

oS
—— = DTL(qx, qrs1) + DI L(gr_1,qx) = CFv
aqf ~ Tt (96, @i41) + D Lge-1, ) = Ci (3.112)

0 <c(gqrs1,trt1) L v 20,

which defines a nonlinear complementarity problem (NCP). However, this for-
mulation is deceptive since we neglected to constrain the energy of the problem.
A careful analysis of this issue is found in [87] in which a time stepping method
is constructed by requiring that energy be strictly conserved at each impact.
However, since locating all impacts is prohibitively expensive for large systems,
we will instead construct an inelastic regularized time stepper which resolves
impact conditions only at the discretized times t = kh. We will restore the
incident momentum when an impact has been detected but this will be reso-
lutely post facto. In order to build a stable method for this though, we need
both constraint regularization and constraint stabilization techniques which are
developed in Chapter 4.

3.15 Discrete momenta and velocities

The description of the stepping equations so far relies on three terms recurrence
relations of the coordinates gg—1, gk, and gx41. For the archetypal case of the
Verlet stepping formula, this leads to

Tkt1 = 2qk — Qr—1 + K2 M 'VV (q) (3.113)

It is however often more convenient to work with two step recurrences based on
velocities and positions only. For the simplest cases, using the approximation

%~ gkt

P (3.114)

Ve =Qqr =

as we did previously in the definition of L 4(go, g1, k), we can rewrite the recur-
rence relation as

Vg1 = Vg + hM71VV(qk)

(3.115)
Qr+1 = Q + hvg4s.

But since a typical simulation does need both the values of positions ¢ and
velocities v = ¢, an implementation should be realized in terms of these observ-
able variables and not using the three term recurrence in gq. It is expected that
this evaluation is a slight numerical improvement. Specifically, it might be a
good idea to use velocities to avoid the potentially problematic sum 2qx — gx—1.
Indeed, this looks much like the textbook example for catastrophic cancellation.
Other than being practical though, this formulation adds no new information.
For this reason, the theory exposition continues with variables ¢ only.
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Of course, this approximation of velocity is only good to first order and, in
deed, a second order approximation could be obtained by putting

1
Vk41/2 = E(Qk-{-l — Q). (3.116)

This leads to the velocity Verlet scheme (see [196] for a variational derivation
of this) which requires two force computation per step in the case where we
have velocity dependent forces or constraints. This is not pursued further in
order to concentrate on constraint regularization and stabilization, as well as the
treatment of friction and impacts.

An alternative formulation which does slightly change the resulting algorithm
formulation is to introduce the momentum variables defined as:

pr = DI La(gk—1,qx, h). (3.117)

As shown in [196], it is possible to construct Hamiltonian flows, (gx,px) —
(qk+1,Pr+1) as long as we can indeed construct the discrete Hamiltonian func-
tion, Hg4(g,p,h) which is the Legendre transform of the discrete Lagrangian
L4(gk,qr+1, ). The theoretical ramifications of a Hamiltonian representation
are interesting but in the context of dissipative systems with nonholonomic con-
straints, many subtleties are avoided by concentrating on the Lagrangian formu-
lation. We shall therefore not consider the Hamiltonian theory at all in the rest
of this thesis. Nevertheless, the definition of discrete momentum will be used
whenever useful. It is interesting to note here that for the simple conservative
mechanical Lagrangian £ = (1/2)¢T Mq — V' (q) of (3.12), the momentum pj, de-
fined by (3.117) is not simply M(gx — gx—1)/h as one might first expect but can
in fact contain terms proportional to VV as well.

3.16 Minimization structure

An interesting fact which was exploited at length in [151, 152, 225] is that in
some cases, with appropriate discretization choice, the solution of the discrete
Euler Lagrange equations (3.22) is in fact the solution of a minimization problem.
For instance, the simple discretization of the prototype mechanical Lagrangian
of (3.12) yields

1
La(ge, qe-1,h) = o (a6 = k1) M (@ = qe—1) = AV (gx1),  (3.118)

leads to the objective function

A(Qrr1,qk, qr—1) =

1
“(@rrr — @) M (qerr — ar) + g2 M (qk — qr—1) — h2qE 1 VYV (ge—1)  (3.119)

2
and the trajectory is found by solving the problems

arg minqk+1 ¢(qk+1a Ak, qk—l)' (3120)
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This is a quadratic minimization problem which is easy to solve with a variety
of methods suitable for unconstrained convex minimization. Numerical convex
minimization is generally better behaved that general nonlinear equation solving
and this can be a great advantage. It is shown in detail in [151] [225] how to
modify the function ¢ to different integration methods, in particular, to a class
of the Newmark integrators. Since we do not pursue this avenue, the details are
not covered further here.

The true usefulness of this formulation lies in that we can introduce holonomic
constraints directly to the minimization problem. This leads to a constrained
quadratic minimization problem which can also be solved robustly by various
numerical methods. But so far, this formulation cannot handle either external
dissipative forces or nonholonomic constraints. The real interest of the minimiza-
tion strategy is revealed when considering forces derived from Rayleigh functions,
as we have done above in Section 3.12, 3.14.1, and 3.14.5. Rayleigh functions
are mazimally dissipative since the rate of energy decay is —¢T89R/8q. From
this fact, it is inferred that gg4+1 should be chosen so as to minimize the value of
the discretized Rayleigh functions at the end of the time step. Discretizing the
Rayleigh functions with

Ralgr, gur,h) = AR(E—TL g ), (3.121)
the following algorithm leads to a maximum dissipation. First, solve
arg min g ¢(qs qk, Qk—l)i (3122)
subj. to g(§)=0
respecting all constraints, and then, solve the minimum problem:
argmin Q1 To(qr+1, §) + Ra(qrt1, ), (3.123)
subj. to g(qx+1)=0
where Ty is the discrete kinetic energy defined here as:

1
Ta(21,90) = 57 (21— %) M (91 ~ %) - (3.124)

This strategy can even be extended for cases where the Rayleigh functions
are non-smooth, which is the case for Coulomb friction as we explain further
below. In particular, it is possible to handle contacts in this way as well, even
non-smooth ones, by imposing the relevant constraints on the minimization prob-
lem as is done in [225], where a non-smooth formulation of Coulomb friction is
also provided. The main issue here is that solving for non-smooth, non convex
quadratic minimization problems subject to nonlinear constraints is not exactly
simple or economical. This is why a different avenue will be explored when deal-
ing with friction and when computing approximations to the constrained, forced
discrete Euler Lagrange equations.

3.17 End notes

The historical development of the principle of least action and analytical mechan-
ics in general is covered at length in the still very fresh and highly recommendable
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monograph of Lanczos [173]. Lanczos explain to great length all facets and all
formulations of the variational principle, including the thinking that went be-
hind the development of the techniques as well as the important elements the
historical debates that opposed the proponents of the variational methods and
those who insisted on sticking to Newton’s three laws.

Another historical account which concentrates on the inception of the principle
and its application to conservative systems, including quantum mechanical and
special relativistic ones, is found in the brief and direct monograph of Yourgrau
and Mandelstam [284]. A more scholarly historical account is provided by Gold-
stine [106] who went to great length in tracing the original correspondence be-
tween the pioneers, namely, Fermat, Maupertuis, Euler, Lagrange, the Bernoulli
brothers, Hamilton and Jacobi. The original work by Hamilton [115, 116], who
is credited with the modern version of the variational principle in integral form,
the Lagrange function itself, as well as the first investigations of the symplec-
tic nature of the flow of conservative systems is still very readable and now
broadly available since the Royal Society of London has digitized its archives
and published them on-line. Also of interest is the original magnum opus of
Lagrange [171, 172], especially because of the direct style in which it is written
and the insistence on relying on the equations themselves, instead of geometric
constructions.

When it comes to Newtonian mechanics, the original Principia [215] is striking
for its direct writing style and, in my opinion, superior to many modern textbook
presentations.

A systematic analytic formulation of non-conservative systems is found in the
brief and lucid monograph of Layton [177], which is perhaps the first attempt to
phrase what the engineers call “system dynamics” into a consistent Lagrangian
form, including effort constraints. This served as inspiration to use Rayleigh
dissipation functions—Layton’s dissipative efforts—systematically.

For the discretization of the least action principle, the credit goes to Moser and
Veselov [208] in the mathematical literature and to Gillilan and Wilson [100] in
the chemical physics literature. A very interesting difference between these two
seminal papers is that whereas Moser and Veselov were chasing after examples
of discrete integrable systems—they used the freely rotating rigid body as their
example—and derived the discrete Euler-Lagrange equations (3.22), Gillian and
Wilson were considering periodic systems and thus used fixed endpoints on the
discrete action and derived a special type of minimum principle for such cases.
It is not clear whether Gillilan and Wilson were aware of the work of Moser and
Veselov or if the idea was already common knowledge. Extensions to systems sub-
ject to holonomic constraints were presented by Wendlandt and Marsden in [277]
and nonholonomic constraints were covered by Cortes and Martinez in [68]. A
comprehensive account of the discrete variational technique which covers all as-
pects is found in Marsden and West [196] which is a must read. Additional exten-
sions of the variational principle to non-smooth contact is presented in Pandolfi,
Kane, Marsden, and Oritz [225, 152]. Energy properties of non-smooth contacts
are presented in Kane, Marsden, and Oritz [150], and dissipative systems are
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analyzed in Kane, Marsden, Oritz, and West [151].

The low order symplectic methods derived via the discrete variational principle
were published by Verlet [271] for unconstrained molecular dynamical systems
and this was extended to constrained systems in a technique called SHAKE by
Ryckaert, Ciccotti, and Berendsen [242], a direct extension of the Verlet step-
ping scheme which works directly on the generalized coordinates, and later in an
extension called RATTLE, Andersen [5] which computes both generalized coor-
dinates and velocities. These three methods are bread and butter in molecular
dynamics simulations [178] but are little known outside that field. These two lat-
ter methods which solve DAEs of index 3 and require only one or two solutions of
systems of nonlinear equations per step, respectively, are seldom reported in the
DAE literature. They are found in [114] but neither in [54] nor in [29], and that
even though constrained mechanical systems are generally taken as an archetypal
example of a higher index DAE. A comprehensive survey or geometric integration
methods, of which variational methods are a subset, is found in the monograph
of Hairer, Lubich, and Wanner [112], who provide numerous numerical examples.
The same topic but with particular focus on conservative physical systems and
applications to molecular dynamics is covered in the book by Leimkuhler and
Reich [178]. Kane, Marsden, Oritz, and West [151], reported on the connection
between some Newmark integrators, used widely in structural engineering, and
variational formulation. They found that some Newmark integrators could be
derived from the variational principle by redefining the potential energy term—
precisely those members of the Newmark family which were known to produced
better results. But in addition, they proved a “shadowing theorem”, implying
that trajectories generated by these Newmark methods intersect those produced
by any variational integrator applied to the original problem, within each time
step. In other words, the Newmark integrators do not generate identical tra-
jectories as any variational integrator but for each time step k, there is a point
ai € (0,h), where h is the fixed time step, such that q,(cl_\:_ivl? = q,(c\f;rz,
k + ay, denotes the linear interpolation @gta, = @& + o (Qk+1 — &)-

Standard techniques for integrating differential equations are found in the en-
cyclopedic two volume monograph of Hairer Wanner and Ngrsett [113, 114],
for instance, and well covered in the literature as well. The difference between
standard techniques and the variational ones which are the subject of this the-
sis is illustrated in Figure 3.10. Fundamentally, discretization of trajectories
and application of the principle of least action are non-commuting operations.
Applying discretization on the equations of motion—using a standard integra-
tion technique on the Euler-Lagrange equations (3.17) or the extension (3.94)
for holonomic constraints and (3.101) for nonholonomic constraints—offers no
guarantee on the preservation of invariants, unless the method is constructed
specifically to account for these, as is done in symplectic Runge-Kutta methods
for instance [112]. By contrast, any approximation of the time integral of the La-
grangian (3.19) yields a stepping scheme which preserves the symplectic nature
of the flow and other symmetries as well, and the construction of the stepping
scheme via the discrete Euler-Lagrange equations (3.22) is straight forward.

where

83



3 Analytic and Discrete Mechanics

Lagranglan
T(q, 7)—V(q)
Least action principle T - Discretization
T

(Newton’s second law)

Equations of motion Discrete Lagrangian
La(gx, qe+1,h) = k+1 dsL(g(s),d(s))

d 0L oL
dt 64T 6qT
~
[ N
. - ! b Discrete principle
Discretization : Specral, symmetry of least action
I preserving: met hods
|
| T~ ~
\l T
Discrete Trajectory Discrete Trajectory
ax = q(hk) @ = q(hk)
No preservation of symmetry Preservation of some or all
except accidentally symmetries

Figure 3.10: The non-commutativity of discretization and the principle of least
action.
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The fact is that the two operations, namely, applying Hamilton’s principle of
least action and discretizing the trajectories, do not commute. By discretizing
the Lagrangian function first, the only possible stepping equations that can be
produced are those which preserve a number of physical invariants down to the
precision used in solving the nonlinear stepping equations. By contrast, if dis-
cretization is used after the least action principle is applied to the Lagrangian to
produce the equations of motion, physical symmetries are preserved only when
they are explicitly built into the numerical method. But of course, the numer-
ical analysts have been industrious and have identified very many integration
methods over the years and, therefore, usually, when producing discrete step-
ping equations using the principle of least action, we do recover a known method
and this is why there is a cross link.

Nevertheless—and this is remarkable—, when it comes to integrating differen-
tial algebraic equations of index 3, one of the black beasts of numerical analysis,
the discrete principle of least action produces easily implemented methods with
extraordinary properties, whilst the standard methods for this problem, either
BDF [54] or RADAU5 [114], take enormous amounts of computational power,
fail to preserve the symmetries, and are extremely difficult to implement.
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4 Regularized and Stabilized
Analytic and Discrete Mechanics

The variational stepping methods introduced in Chapter 3 generally require the
exact solution of nonlinear systems of equations. This is always required when
nonlinear constraints are present and moreover, the well-posedness of the non-
linear equations is dependent on constraint Jacobians having full row rank. This
is not compatible with the requirements listed in Section 1.2.

The present chapter addresses this issue by introducing regularization—a small
perturbation parameter—directly in the physical formulation. This is done by
adding small self-potential energy on the ghost variables and by perturbing the
Rayleigh dissipation functions. Combining these two techniques makes the time-
stepping well conditioned and provides constraint stabilization. In turn, this
allows to linearize the stepping equations since resulting constraint errors can be
strongly stabilized without diverting the numerical solution too far from that of
the idealized unperturbed problem.

After introducing justifications for and problems related to constraint realiza-
tion in Section 4.1, the case of holonomic constraints is covered in Section 4.2. A
suitable discretization of the ghost variables is constructed after taking due con-
sideration of the results of the classical theorem of Rubin and Ungar [241], which
demonstrates that penalty forces converge only weakly and generally suffer from
high oscillations. An analysis of the realization of nonholonomic constraints lead-
ing to a regularized stepping scheme is then presented in Section 4.3. The two
results are combined in Section 4.4 to produce a physics based stabilization of
holonomic constraints. This is followed by a linearization of stepping schemes for
systems containing both types of constraints in Section 4.5, defining the SPOOK
stepper. A proof that the constraint stabilization scheme is strongly stable for
the case of linearly constrained systems is provided in Section 4.6. Relation to
previous work is discussed in Section 4.7.

4.1 Introduction

It was mentioned in Section 3.14 that constraints essentially model the net ef-
fect of physical phenomena occuring over time and length scales much smaller
than the ones considered in a given system. At the macroscopic level, the high
frequency physics should be ignorable, allowing for a reduction of the problem
without much loss.

The analysis which yields constraints from integrating over fast oscillatory
modes is known as constraint realization in the literature and has received consid-
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erable attention over the years from both theoretical and numerical perspectives.
In the latter case, this is known as penalty forces. The purpose of this chapter
is to introduce a constraint realization scheme which can be discretized reliably
within the variational framework, and which can be interpreted in terms of phys-
ical parameters. At the numerical level, this is a regularization scheme whereby
one solves a perturbed problem with a stable numerical scheme to produce a well
behaved solution that is hopefully close to that of the original problem.

The need for regularization is threefold. For one, more realistic systems can
be simulated if it is possible to “relax” the constraints, making them compliant
or yielding a little. This is closer to the real world. Indeed, there is no such
thing as a perfect hinge in nature. Hanging a heavy enough bag on a door knob
will make the door scrape the floor, whilst pulling on that door hard enough
will rip it off the hinges or off the frame. Forcing exact numerical satisfaction of
the geometric constraints, as is common in robotics and mechanical engineering
literature, is unnatural. Given that mechanical problems with exact constraint
satisfaction are incredibly more difficult to solve efficiently and with decent error
bounds, it seems a complete waste of computational power to pursue this route.

Second, the stepping equations (3.95) presented in Section 3.14.3 can only be
solved accurately in the case when the Jacobian matrix G has full row rank.
There are simple examples such as the planar slider crank mechanism, presented
in Chapter 7, which exhibit degenerate configurations where the Jacobian matrix
G is rank deficient. When the problem is close to rank deficiency, the numerical
errors become unbounded and the solutions can be erratic. Regularization re-
moves such degeneracies in a physical way by introducing compliance, and finite
compliance makes the solution easier to compute reliably and efficiently. Finally,
a numerical solution of the nonlinear system (3.95) will contain errors of the
order of machine precision at best, but typically much larger in case of bad con-
ditioning, ill-posedness, or lack of processing time to produce a high precision
result. And that is discounting the fact that the problem to be solved in (3.95)
is a non-symmetric saddle point problem, a very unusual animal. Regularization
can help average out or bias such errors by keeping condition numbers low for
instance, and help keep the overall balance in precision by demanding that only
constraint violation averaged over a few steps be forced to vanish. With a good
stabilization strategy, these averages can be kept small whilst larger errors can be
forced out of existence within a few steps, all the while sticking to nicely behaved
problems at the cost of increased modeling power. In the limit, this issue is a
realization of the fable of the hare and the tortoise: keep a steady pace instead
of rushing frantically.

In more serious terms, the aim with regularization is to first formulate a family
of perturbed physical problems, R say (R stands for “real”), which are closely
related to a given ideal problem Rg in the sense that the data of Ry and R, differ
by a term of O(e) whilst the solutions S(R¢) converge uniformly to the ideal
solution S(Rg) as the perturbation e vanishes, i.e., lime ,o S(R:) = S(Rp). A
discrete formulation P, of the perturbed problem R, is then constructed which
can be solved by a backward stable numerical method M, yielding exact answers
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to P so that |e — €'| is small to machine precision. If the numerical solutions
N, = M(P.) converge as € — 0, then, the limit is also a discretized solution
of Py and a good approximation of Ry. Because every approximation step and
every regularization step is nicely behaved, this roundabout way of computing
an answer should never be too far off.

An additional consideration is that, typically, the physical problem R, is well
posed as long as € > 0. However, the same problem is often nonsensical for
€ < 0, and has no finite solution then. For instance, a unit mass point particle
can be attached to the origin with a harmonic oscillator of frequency w = 1/+/e,
corresponding to a spring constant of 1/e. As € — 0, the particle cannot move
away from the origin. However, € < 0, describes an exponential escape trajectory
with unbounded energy—mno longer a conservative mechanical system.

This means that the solution S(R.) cannot be expected to be an analytic
function of e. Thus, a sensitivity or error analysis of R, is in fact expected to
break down at Rp, likewise for the numerical problems P, and Fy. By contrast,
if P is well posed for € > 0, one expects to be able to analytically continue
the solution to extract S(Rp) from M(P.). A concrete example of this is the
Cholesky factorization algorithm [107] which has good stability properties for
symmetric, strictly positive definite matrices and can be extended to process
symmetric matrices which are only positive semi-definite at the numerical level
by perturbing them “just enough” [125, 126].

The distinction of the present approach to regularization is that we always
relate the perturbed discrete problem P, both to a perturbed physical problem
R, and to a backward stable numerical method M. In other words, the only
perturbations allowed in P, are those which can be traced directly to a physi-
cal parameter and which improve the performance or stability of the numerical
method by allowing the use of a backward stable algorithm. In particular, this
scheme is used so that the main computation is the factorization of symmet-
ric, positive definite matrices, for which there exists backward stable numerical
methods.

In addition to regularization, we need constraint stabilization scheme so that
errors made in solving for a constraint equation, g(gx) = 0 at time step k, say,
do not accumulate to produce large constraint error ||g(gx)|| over time, or cause
instability. As discussed above for the case of regularization, the aim here is to
construct stabilized trajectories corresponding to a nearby physical problem, as
opposed to an ad hoc construction with spurious, non-physical dynamics.

In what follows, analytic formulations of constraint realization is presented
for both holonomic and nonholonomic kinematic constraints. It is shown below
that holonomic constraints are a limit case of strong potential forces—essentially
harmonic oscillators. Nonholonomic constraints on the other hand are the limit
of a strong dissipative force. In both cases, the limit of the trajectories is well
behaved and uniformly convergent but in the case of holonomic constraints, the
forces generated by the realizations are only weakly convergent, in the sense that
time integrals involving the penalty forces do converge but the forces themselves
do not. The cause of this is high frequency low amplitude oscillations which fail
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to converge but which can easily be averaged away. In consequence, care must
be taken in the discretization so that this noise is filtered out of the numerical
solution.

The combination of the oscillatory terms generated by the numerical realiza-
tion of holonomic constraints with the dissipative terms generated by the realiza-
tion of nonholonomic constraints yield regularized, stabilized discrete stepping
schemes. These are proven to be unconditionally stable for the case of linear
constraints, though, regrettably, a nonlinear stability analysis is still missing.

As a final note, the weak convergence of highly oscillatory forces is of con-
sequence in molecular dynamics. Indeed, if one replaces very strong molecular
forces with exact constraints, the oscillation energy of these modes is lost and the
overall thermodynamics properties of the system are altered, since the equipar-
tition theorem states that each degree of freedom should receive equal share of
the energy on average [132]. Therefore, using exact constraints in molecular
dynamics is problematic though there are resolutions [89, 60].

4.2 Regularization of holonomic constraints

Classical mechanics text books often state as fact that kinematic constraints of
the form g(g) = 0 can be understood as the limit of a potential function of the
form [173, 22]

Ue(a) = £ll9(a)II*. (4.1)

However, the proof that the trajectories of a mechanical system described by a
Lagrangian of the form

Le(g,9) = L(2,9) — Ue(9), (4.2)

with trajectories (ge(t),ge()), converges to the trajectories of the constrained
Lagrangian
L) =L+ Xg(qg), (4.3)

is rarely provided. In addition, the fact that the constraint forces generated

1/2 and

by the potential U, of (4.1) oscillate with frequency proportional to e~
converge only in the weak (time averaged) sense is seldom stated. As we show
below, this is what plagues penalty techniques in which constraints are directly
replaced by strong potentials. From the numerical point of view, these high
frequencies in the forces are usually catastrophically unstable, unless they are
filtered properly.

As was first done in [241], and with somewhat simpler methods in [166], con-
sider a sequence of Lagrangians of the form (4.2) subject to potential functions
Ue, of (4.1), where the sequence {ex}%>, converges with limg_, € = 0. This
implies that limg oo U, = 00, except where g(g) = 0. To simplify the nota-
tion, the Lagrange function £(g, d) of (4.2) is taken as £(g,q) = (1/2)||¢||*>. This
particularly simple form does not affect the theoretical results.

Fixing the initial conditions (g(0), g(0)) consistent with the constraint so that

g(g(0)) = 0 and G(g(0))g(0) = 0, the trajectories (ge, (%), de, (t)) are found to
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converge uniformly to the limit trajectory (go(t),do(t)), which is a solution of
the constrained Lagrangian £ (%) of (4.3). However, the forces generated by the
potentials U, of (4.1) only converge weakly to the constraint forces, f () = @T),
computed from the constrained Lagrangian £(¢). The Rubin and Ungar [241]
version of the theorem is now stated.

Theorem 4.1 (Rubin and Ungar [241]). Assuming that conditions a—e below
are fulfilled,

a. The potential U(q) : Q@ — R is C* in some bounded domain Q € Q;

b. The functions g;(q) : @ — R,% = 1,2,...,m, where m < n, are C2 over Q
such that M = {q € Q | gi(¢g) = 0,2 =1,2,...,m} is non empty and the
Jacobian matriz Gi; = 8g9;/0q; has full row-rank except at isolated points
mnQEQ;

c. There exists go € @ and (qo,do) € TQ with g(g) = 0 and G(go)go = O,
i.e., the initial position qg lies on the manifold M and the initial velocity
is tangent to M;

d. The sequence {€x}3> ; satisfies € > 0 and limg_,o0 €5 = 0;

e. The sequence of problems {Ax}e>, consists of the ordinary differential
equations

. R
Qe + VU(qu) + avz (gi(qék))2 =0
=1

(4.4)
with initial conditions

2.(0) =0, e (0) = do.
Then, the following statements A—G hold:

A. There exists a positive number § and a sequence of functions gy : [0, 6] —
Q,k=1,2,..., such that qr(t) solves problem Ag;

B. The sequence {ge, (t)}3>, converges uniformly to a continuous function,
q:[0,8] — Q;

C. The functions gD (q(t)) = 0,4 = 1,2,...,m, vanish identically in t € [0,6);

D. The function q :[0,68] — @Q is C?;

E. The sequence {(ge, (t), @e, (£)) 33215 (Qexrdex) : [0,6] — TQ converges uni-
formly to (g,4q) : [0,8] —» TQ on [0,4d];

F. The initial conditions q(0) = go and ¢(0) = go hold;
G. There exist continuous functions A® :[0,8] = R,i = 1,2,...,m, such that
§+VU(Q)+GTA=0 (4.5)

identically on [0,0], i.e., so that the limit trajectory (q(t), 4(t)) satisfies the
Euler-Lagrange equations of the constrained problem.
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The proof is omitted for being far too long and technical. What is most
interesting to note is that the constraint forces generated with this procedure are
weak—%* convergent with respect to time integration so that

Aer(®) = = - 9(ga (1), and
. S o 5o (4.6)
dim [ 4T ()h(s) = [ asAT(s)n(e),

for any integrable function h(s) : [0, 8] — R™. Indeed, it is expected in general—
see Chap. 8 for a concrete example—that A, contains sinusoidal terms with
frequencies proportional to 1/,/€x and fixed amplitude.

The analysis of Rubin and Ungar [241] shows that naively replacing a con-
straint g(g) = 0 with a strong potential of the form U.(g) = (2¢) ' g7 g generates
high oscillations which must be damped by the integration methods if the results
are to make any sense at all. Concrete examples demonstrating the failure of such
numerical constraint realizations, even when using the stable implicit mid-point
rule, are presented in [30].

The regularization starts from the analysis of the extended variables Lagrangian
presented in Section 3.14.1, and particularly from the augmented Lagrangian (3.93),
namely £(g,d, X\, A) = £(g,4) + A\Tg(q). As previously argued, the ghost vari-
ables A are to be considered as full fledged dynamical variables. In some sense,
each variable A; corresponds to the coordinate of a one-dimensional point parti-
cle with zero mass. Adding the self-potential term (€/2)ATA to the augmented
Lagrangian (3.93), the resulting Euler-Lagrange equations of motion become

—— - -G"x=0
dt 6T ~ g7 (4.7)
ex+g(q) =0.
Obviously, the second equation can be solved for A = —e~1g(q) and this can be
substituted back to yield
. . 1
Le(9:9) = £(g,9) — 59" (9)9(), (4.8)

which establishes a direct correspondence with Theorem 4.1. However, this form
of the regularization is fundamentally different from the usual form (see for in-
stance, in [114], Section VI.3), where the second equation of (4.7) is replaced
with eX + g(g) = 0, thus adding spurious dynamics to the A pseudo particles.
Indeed, no term can be added to the Lagrangian to yield that equation of motion
using the variational method.

Other formulations include the addition of a kinetic energy term of the form
—(e/2)ATX. Note note the minus sign in this expression which justifies the ghost
terminology advocated here. Now, such a ghost kinetic energy changes the second
line in the equations of motion (4.7) for eA+g(g) = 0. This is used in [83], among
many other instances. This form does not map to the framework of Theorem 4.1
and it is not clear that it produces the correct dynamics at all.
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4.2 Regularization of holonomic constraints

One must understand that the motivation to introduce either €A or €X to the
dynamics is so that the DAE of motion of the constrained systems becomes an
ODE and thus, can be discretized correctly, as done in [114] for instance. The
reason why we can do without derivatives is because the variational principle
provides the discretization.

To discretize the regularized Lagrangian, let us first write the following

[’(q1 >‘: d: A) = ['0 (q1 q) + 6‘Cl ()" j‘) + [’Ol(q: >‘7 d1 j‘):
Li(\ ) = %/\T/\, (4.9)
‘C01 (q) )‘: da >‘) = )\Tg(q),

dropping the € subscripts, and proceed to evaluate discrete expressions for L;
and Lp;. In view of the high oscillations and weak limit of A as € — 0, we
approximate the integrals using symmetric averages. To correctly approximate
Lo1, we first recall that we are considering A to be an independent variable at
this stage of the process so that Lo1 & h < A >T< g > where < - > denotes the
time average over the time interval h. This leads to the following approximations

" st & 2
Lay = [ ds;INP % gla + Ml
0 (4.10)

h
h
Lao; = / dsATg(q) ~ E(Ao +21)7 (g0 + 91),
0
from which the discrete time stepping Euler-Lagrange equations are extracted

DY Lo(gk, qk+1) + D3 Lo(gqk—1,qx) + hGLA =0

-1 (4.11)
€N+ 2 (9k+1 + 29K + gk—1) = 0,
where we relabeled the A variables as
- 1
A= Z (}\k—i-l + 2Xx + >\k—1) . (412)

Averages are used since there is no need to keep track of the Ay variables directly
from step to step—except perhaps if one wants to keep track of the ghost energy
in the system.

Observe also that we recover precisely the same stepping equations as in the
standard constrained case (3.95) as € — 0, as long as the initial conditions
9(90) = 9(q1) = 0 are imposed. Indeed, once we set € = 0 and g(qo) = g(q1) = 0,
the stepping equation (4.11) sequentially enforces g(gx) = 0 for & > 2. There only
remains a labeling difference between (4.11) and the original derivation (3.95).

In addition, the numerical solutions of (4.11) are expected to yield A which
differ by € from the unperturbed problem. To see this, consider the case where
the Jacobian Gy = G is constant and the basic Lagrangian £ has constant
mass matrix as in (3.12). Solving (4.11) requires the solution of a linear system
Sede = l_7, with matrix S. = GM~1GT + eI, and some vector 5, whereas solution
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of the unperturbed problem (3.95) requires the solution of the problem SpA = b,
with So = GM1GT and for a vector b which differs from b by terms of second
order in h.

Whenever G has full row rank, S, is symmetric and positive definite and so
is the limit case Sg. Therefore, the solution vectors A and A differ by order
O(e) + O(h?).

Thus the regularized numerical solution is neither far from the exact solution
of the regularized problem nor from the numerical solution of the exact problem.

In other words, the following diagram commutes.

[,_ regularize: € > 0 L(E)
ldiscretize: h>0 ldiscretize: h>0 (413)

Ld realization: € — 0 ]Ll(;)

The simplest approximation of the second equation of (4.11) consists of ex-
panding gg+1 to first order in terms gx. This is done as

grt1 = 9(qr+1 = 9(qx + (qrt+1 — &)
= 9(qx) + Gr(grr+1 — ax) (4.14)
= gk + Gr(Qrt+1 — %)

From this, the result is

1 h
2 (gr+1+ 9k + Gr—1) =~ gk + ZGk (qr+1 — 2qx + qr—1) - (4.15)

After introducing A = h25\, and specializing to the constant mass model La-
grangian (3.12), the stepping equation is defined by the linear system

qw] _ [M 2% — g 1] — k2 -

M -G

e 2_5 (4.16)

A —4g; — Gr [2qx — k1]

Observe now that the matrix involved in (4.16) is strictly positive definite, though
non-symmetric, for any value of € > 0. A linear stability analysis of this scheme
is presented in Section 4.6.

The usefulness of a regularized scheme without any stabilization is limited since
errors made while solving the nonlinear stepping equations can quickly accumu-
late and cause wild oscillations. Regularization of nonholonomic constraints is
now introduced so that a scheme for regularizing the implied velocity constraints
Gg = 0 can be constructed. This will be used to impose both g(gx) ~ 0 and
Gr(qx — qx—1)/h = 0 simultaneously.

4.3 Regularization of nonholonomic constraints

As was noted in the Section 4.2, the standard mechanics texts often mention
the correspondence between holonomic constraints and strong forces. However,
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the correspondence between nonholonomic constraints and the limit of strong
Rayleigh dissipation functions is less well known and seldom quoted, except per-
haps in more recent monographs [23].

An analog of the proof or Rubin and Ungar [241] for nonholonomic systems
had to wait until the early 1980s for a demonstration [55, 153], using two different
techniques, but with identical results, as quoted in Theorem 4.2.

Theorem 4.2 (Brendelev [55] and Karapetian [153]). Given a function,
a:RxTQ— R™, of the form: a(q,q,t) = A(g,t)q + w(t), where A is an m xn
real matriz valued function. Assuming that a is smooth and differentiable, there
exists a sequence of numbers {v;}32, with y; > 0,7; — 0 ast — 00, such that the
motion of a Lagrangian system with L£(g, q,t) subject to the Rayleigh dissipation
function

Ry = iaTa, (4.17)

having the trajectories (gy,(t), 4y, (t)), converge uniformly over a time interval
[0,6] to the trajectory of the Lagrangian system L(q,4,t) subject to the nonholo-
nomic constraints a(q, g,t) = 0.

The proof hinges around Tykhonov’s theorem on separation of slow and fast
variables (see [186] for instance). Note that, as per the analysis provided in
Section 3.12, the rate of decrease of energy is —(1/7v)¢T AT (Ag+w(t)) and so, for
the homogeneous case w(t) = 0, given that AT A is symmetric and positive semi-
definite, the regularized system dissipates energy until it reaches the constraint
surface A(g,t)d = 0.

It is noted in [153] that the convergence is independent of the initial conditions
so in fact, the theorem should state uniform convergence on the open interval
(0,6). This contrasts with Theorem 4.1 on realization of holonomic constraints
where satisfaction of constraints at the initial time was essential. The constraint
forces are not expected to exhibit highly oscillatory terms should thus converge
directly, in contrast to the weak convergence of the holonomic constraint case.

Note also that Rayleigh dissipation functions of the form R = 2y~1¢7 Dg,
for a square, symmetric, positive semi-definite n X n matrix D corresponds to
a linear viscous drag force. When dry friction is considered in Chapter 10, the
corresponding nonholonomic constraint reads Dg = 0 for a suitable matrix D,
and regularization thus introduces a very small creep velocity of the order 7,
which is a form of viscous friction. Though this is undesirable, this creep can
be kept at the order of machine precision since vy only serves to guard against
degeneracy and thus, the result is stable stable friction, within achievable accu-
racy. Essentially, the discretization strategy saves the flawed idea of replacing
dry friction terms with viscous drags which has been reported numerous times
in the literature but is also known to be a spectacular failure, mostly because
the viscous drag coefficient, 1/, cannot be made large enough to recover the dry
friction mode without introducing stability problems.

95



4 Regularized and Stabilized Discrete Mechanics

To use this new theorem, introduce the auxiliary variable a and write

Ry(0,4,2,0,t) = ——a & —a"a(q, 4,1). (4.18)

This leads to the equations of motion

dt 8¢  8qT (4.19)
7a + a’(qy Q) t) = 0)

which are are satisfied by the trajectories of the regularized system which is now
denoted as the pair (L(q, 4),R(q,4,t)) or simply (£,R,).

A simple substitution using the second equation shows that the new Rayleigh
function is strictly equivalent to the original definition (4.17) in Theorem 4.2.
As this form of constraint realization only introduces first order dynamics—
exponential decay—high oscillations of the constraint forces are not expected.

Therefore, in the limit case where v = 0, the regularized equations of mo-
tion (4.19) produce the trajectories of the restricted Lagrangian, written as
L£(q,9)|a(q,4,t)=0- The discretized version of the restricted Lagrangian is writ-
ten Lgla(g,q4,6)=0 and the numerical trajectories are computed by the discrete
stepping equations (3.105).

The regularized physical system (4.19) is now discretized using the framework
introduced in Section 3.12. The discrete forces acting on the ¢ and a variables
are as follows as follows

0N, Oq(t)

(+) _
faq (90,91, 0, 011) —/0 dt W ba,

(=) _ MR, bq(t) a; — Qo
fd,q (QO,Q1,ao,a1)—/0 dt BqT a h.Ao T

() _ [ g 8% 0a(t) _
(qO) Q1,a0,a1) /0 BaT 6(11 0 (420)

=0

_ ORy Oa(t)
fzg,a)(qO)qhaO;al):/c; dt BaT 6&0

=h<7<a1;ao> +a((j,€h;€lo,0))_

The choice of approximation for g(t) = u4(qo,q1,t, ) that is made to compute

f,(hi) (g0, g1, @0, 1) does not affect the choice of the approximation of the last two
integrals f,(li) (90,91, 20,a1). The choice of the value of § in the last equation
of (4.20) is set to ¢; so the known unregularized nonholonomic stepper of (3.105)
is recovered in the limit where vy — 0. This leads to the following discrete stepper
by using the forced, discrete, Euler-Lagrange equations (3.82)

DiLa(gk, qe+1, h) + DaLa(gr—1,qx, k) + AF (k11 — ax) =0
Jk+1 — 9k
h

(4.21)

v (akt1 — ax) + ha(gry1, ,hEk) =0,
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and this is referred to as the pair (Lg, f‘gi) (Ry))-

Now, the numerical trajectories of the pair (IL 4, flgi) (R,)) computed by solv-
ing the stepping equations (4.21) are expected to differ by O(«) from those of the
discrete restricted problem, L 4|q(q,4,6)=0 computed by (3.105), at least as long as
the Jacobian matrices Ag have full row rank. Indeed, in that case at least, the
nonlinear systems are well conditioned. In addition, the same regularized numer-
ical solutions of (4.21) are expected to be close within O(h?) of the trajectories
of the regularized system, (£,%R,) for a fixed value of 4y > 0. Finally, the result
of Theorem 4.2 says that trajectories of (£,9y) are uniformly close within O(7)
to the trajectories of the restriction Lg(q,4,t)=0-

These facts indicate that the following diagram commutes, though some steps
are still missing for a rigorous proof.

regularize: v > 0
—)

(£, %)

ldiscretize: h>0 ldiscretize: h>0 (422)

(La, £ (R,))

Ela(q’d’t):()

L realization: v — 0
dla(q.q,6)=0

4.4 Physical stabilization of holonomic constraints

Armed with discretizations of both holonomic and nonholonomic regularized con-
straints constructed in Section 4.2 and Section 4.3, respectively, the problem of
stabilizing holonomic constraints by combining the two aspects is now investi-
gated. First observe that a constraint of the form g : @ — R™, g(q) = 0, implies
that g(g) = G(q)g, where the n x n Jacobian matrix G is defined as G = 9g/0q
at the analytic level. However, this relation does not survive discretization since
even with g(gx) = 0, 9(gr+1) = 0, then, using Taylor’s theorem

- (0(a1s) — 9(ar)) = 3 Galass — ax) + O(h), (4.23)

so that even nailing g(gr+1) = g(gx) = 0 exactly, the approximation of the
constraint velocity might only vanish to O(h).

Strangely enough, the notion keeps appearing in the literature that constraint
drift is due to round-off error, which is typically of the order of machine precision.
This is utterly negligible in comparison to the discretization errors of the type
just described. It should be clear also that if a local linear approximation is
used to compute g(g) = 0, the errors made are O(h) which makes the constraint
velocity estimate O(1) as per (4.23). Severe constraint drift is thus expected over
time.

Secondly, it seems reasonable to relax the accuracy requirements on the so-
lution of g(gx) = 0 to balance it with the overall error made by the stepper
which is expected to be O(h?) at best. In fact, it should be best to keep both
llg(9)|l = O(h) and ||G(g)g|| = O(h) along the trajectory. This argument often
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appears in the finite element literature [52] but seldom in the ODE or DAE liter-
ature. In fact, in [114], Section VI, where solution methods for DAEs are exposed
in detail, the notion of violating the constraints g(q) = 0 is never considered and
no effort is spared to satisfy g(g) = 0 to machine precision. This leads to solv-
ing degenerate systems of nonlinear equations and in turn, this requires using
either SVD, or QR which are expensive computationally compared to regular
factorization methods such as LU factorization (LU) or Cholesky [107].

The strategy adopted here is to consider g(g) = 0 and G(g)g = 0 as independent
constraints, to be enforced separately. To this end, the following regularization
and coupling terms are introduced

1
Lo1 = Tg(q) = Lao1 = §(>‘0 +21)" (90 + 1),

€ c ) (4.24)
L1 = I = Lax = gllro + Al
and the Rayleigh functions and associated discrete forces
R(g, 4,2 4) = -7 (gﬁ + ATG(q)q') =
_ AL — A
bl =0 Ji =G, (4.25)
_ A1 — A —
fy;\):O, f‘gx):h'r e 0+G1111 D),
) B h h
With these choices, after relabeling with
1 T
A= 2 [Ak-l,-l +2X, + Ak] + E(}\k_H — }\k), (4.26)

the stepping equations for £ + £; 4+ Lp; subject to the forces derived from
R(g,d, A\, A), are found to be

D1L4(qk, @k+1,h) + DaLa(gk—1,qk, k) + hGx"A =0
1 T (4.27)
€A+ 2 (gr+1 + 29% + Gr—1) + EGk+1(Qk+1 —qx) =0.

This provides for a natural parametrization of the dissipation rate parameter T,
namely, 7/h is the half life of the constraint violation decay.

4.5 Linearized mixed systems: spook

The stepping equations derived so far for various types of systems such as (4.27),
are systems of nonlinear equations in the general case. It is very instructive to
compute the linearized form of these equations since this is what is ultimately
processed, whether only the first linear estimate is used, or whether this is refined
using any form of Newton-Raphson iterations.

The local linear approximation is now constructed explicitly, in both position
and velocity formulations, for a general system containing both holonomic and
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nonholonomic constraints as well as potential functions. The analysis is restricted
to constant mass matrices. The changes that must be made to this formulation
to cover the rigid body cases where the mass matrix is configuration dependent
are covered in Chapter 15.

The linearized version of the regularized and stabilized stepping scheme for
mixed systems with both holonomic and nonholonomic constraint needs a short
name for convenience. With blatant disregard for paganism and superstition, it
is hereby christened SPOOK. The reason for the name is that previous instances
of variational steppers for constrained systems were called RATTLE [242] for the
simple extension of the Verlet stepping scheme [271] to constrained system, and
SHAKE [5] for a velocity formulation of the same based on Hamiltonian mechan-
ics. The implementation of these steppers in molecular dynamics involves using
approximate solutions of the constraints and thus, the method developed here is
much in line with that development. Since “rattle” and “shake” are both verbs
and nouns, “spook” fits in the nomenclature scheme. Now, Lagrange multipli-
ers are classical equivalents to the ghost particles of quantum field theory [265].
Regularization and stabilization provided them with real energy, making them
manifest themselves. Since to spook is to appear as a ghost, the name SPOOK is
appropriate here.

Consider a system moving configuration manifold @ of dimension n according
to the constant-mass model Lagrangian function of (3.12), namely, L(g,q) =
(1/2)¢g* Mg —V(g), where the square n X n matrix M is constant and symmetric
positive definite, and V' : @ — R is a smoothly differentiable function of gq.
Assume the system is subject to nonholonomic constraints of the form a : R x
TQ — R™~, with a(q, g,t) = A(q)g+w(t) = 0, where matrix A is of size my, X n,
and the vector function w : R — R™» is m,-dimensional. In addition, assume
holonomic constraints of the form g : @ — R™, with g(gq) = 0, and Jacobian
my X n matrix G = 8g/9q.

For each nonholonomic constraint function a;(g,d,t) = 0,2 = 1,2,...,my,
define a regularization parameter y; > 0. Likewise, for each holonomic constraint
function g;(q) = 0,2 = 1,2,...,mp, define the regularization and stabilization
parameters, €;,7; > 0,72 =1,2,..., mp, respectively.

Next, the simplest discretized Lagrangian computed previously in (3.25) is
used, yielding the following basic stepping equations as shown in Section 3.7,

DY La(k, @41, k) + DI La(qe—1,q, h) =

1
- EM(Qk-H —2gx + qx—1) — hVV(gx) = 0. (4.28)

After linearizing all the constraint terms in the second line of (4.27), expanding
all terms about time step k, and reorganizing the explicit terms of (4.28), the
linearized stepping equations become

M —AZ —G% Qr+1 2qu — qu,:[ — h2VVk
Ag r 0 a = Arqr + hwy , (4.29)
Gy, O bY A —4Tgr + 5(I + T)Grgr — TGrar—1
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where the following square diagonal matrices were introduced

1

r'= hdiag(’h,’)’z,---:’)’mn):
4 €1 €2 Em
E — 7d PN
oz 1ag(1+4%,1+4%, 11+4rmT,,)’ (4.30)
1 1
T = diag( ),

b rttt Tm'n,
144701447 1447

and the Lagrange multipliers have been redefined to absorb a factor of h for a
and h? for M.
When using a velocity formulation, the linearized stepping equations become

M —AZ' —G% Vk+1 M’Uk + hVVk
A, T 0 a | = wy , (4.31)
Gk 0 % 5\ —%Tgk + TGk’Uk

where the matrices I', ¥ and T are defined as previously in (4.30). The difference
here is that no factor of h is absorbed in the definition of &, whilst only one factor
of h is absorbed in the new definition of A. The specific formulation in (4.31) is
the SPOOK stepping scheme.

Now define the matrix

M —AT _GF
H= |4 T o |, (4.32)
Gy O by

which is common to both the position formulation of (4.29) or the velocity formu-
lation of (4.31). This matrix H is not symmetric but it is strictly positive definite
as long as all parameters 7; and €; are strictly positive. Indeed, the symmetric
part is positive definite for 4y; > 0. For the partitioned vector w = (z7,y7, 2T)T
of appropriate dimension yields

wTHw = 2T Mz + y"Ty + 2782 > 0, (4.33)

and given the assumption that mass matrix M is symmetric and positive definite,
the equality is satisfied only when all components w; = 0.
If Newton-Raphson iterations are used, the iteration matrix is easily verified
to change to
M -AT -GF
Ap r o1, (4.34)
Gr 0 P

where gg: is the current estimate for the final position g1 and Ax and Gy are
the Jacobian matrices evaluated at ggr. Strict symmetry is lost but the symmetric
structure is preserved.

The simple linearized form of the velocity formulation (4.31) has been used in
practice. Future work will determine when it makes sense to compute a better
approximation of the nonlinear equations.
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4.6 Linear stability analysis

To understand the properties of the stepping equation (4.11), consider the case
of linear homogeneous constraints g(g) = Gg = 0 with constant m X n matrix
G. Define 6; = 71;/h,7 = 1,2,...,m, and © = diag(61,02,...,0m). Relabel
the Lagrange multipliers of the constraints, A, to absorb a factor of A as done
in (4.31), and reuse the definition of the diagonal matrices with strictly positive
entries & and T of (4.30). Starting with the constant mass model Lagrangian
of (3.12), define the generalized forces as usual with fr = —8V/8¢} and thus,
the SPOOK stepper of (4.27) expressed in terms of positions g and velocities

v = (1/h)(qr — qr—1) is

Q1 — PVUk41 = Gk
Mugyy — Mu, — G = hfy (4.35)
h

1
ZT*TA + 4G (Qe+1 + 2qk + qr—1) + hOGUE 41 = 0.

Multiplying the first equation with GM~! and isolating the term Guvgy1 in both
equations, the following identities are revealed

Gurp1 = Gug + GMIGTA + R2GM 1 fy,,

4 (4.36)

Gvk+1 =-YA-— ETqu - TG‘Uk.

The following definitions will simplify what follows

S=GM'GT, (4.37)
Se=85+1%, (4.38)
K.=8S'=(S.-%)S;' =1, - 281, (4.39)
T = qu, (440)
Yk = hGug, (4.41)
Iy = K*°GM ' fy. (4.42)

Using these and grouping the A terms between the two lines in (4.36), one finds

4 1 1
A=—=T —(T - I, — —1. 4.4
S o Toe + h( )Yk L (4.43)

Given that S is symmetric and positive semi-definite at least, S is strictly posi-
tive definite and invertible. Solving (4.43) for A and substituting in the first line
of (4.36), the stepping equation is now reduced to

T+l — Ye4+1 = Tk

(4.44)
Y41 = (Im — 4KET@)yk —4K. Tz + (Im — KE)lk,

and the factor of 1/h of (4.43) was absorbed in the definition of yr = hGvg as
previously explained.
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The force term I is dropped at this point to understand the stability of the
homogeneous equation. First rewrite (4.44) without forces as the recurrence

Bzyi1 = Az, or
4.45
Zp+1 = sz, with Zp = lwk] , ( )
Yk
and with the definitions:
Im _Im —1 Im Im
B = Bl =
0 I, ] ’ 0 In|’
A= Im 0 ’
-D I,— DO (4.46)
D =4K.T =4(1,, — ES;I)T, and
Iy — D I,— DO
—_— -1l _ m m
H=5"4= -D I,-DO|"

Convergence is thus guaranteed if the spectral radius of H is within the unit circle,
i.e., p(H) < 1. Consider an eigenvalue A of H with eigenvector z = (z7,y7)7.
A short computation yields that Ay = (1 — A)z, and so, in terms of the vector z
only, the eigenvalue A must satisfy the following vector equation

N2z — 2A(Im — %D(@ + 1))z + (Im — DO)z = 0. (4.47)

This is in fact a quadratic eigenvalue problem. Consider for a moment that
matrix D is symmetric and positive definite and that © is merely a multiple of
the identity. Decompose vector z along the eigenvectors v; of matrix D so that
z =), iV, where u; € C. Take any eigenvector v; of D and multiply (4.47) on
the left with vI. If the scalar p;v7v # 0 divide through to obtain a polynomial
of second order with real coefficients in A. Given estimates on the spectrum of
D and the parameter 8, bounds can be placed on the magnitude of each given A
using all eigenvectors v; of D. This is the content of Theorem 4.4 below.

To clarify this analysis, consider the one-dimensional case, m = 1 where & =
€ and likewise for ® = 6. Let the Schur complement matrix S of (4.37) (a
nonnegative scalar here) have the eigenvalue Ag so that S;1 = 1/(As + €) and
0< K. =2As/(As +€) =0 < 1. Equation (4.47) reduces to

A2 —2)\3 + a =0, where
G=1- 20+ 1)As ’
(1+468)(As + ¢)
0< B <1when8>1/2, and € > 0,
0< B <1/3 when 8 >2, and € > 0,
46)g
*=1- 0 apg 1o

0<a<1when8>0, and € > 0.

(4.48)
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and the roots are
A =pBEtVp%—aq, (4.49)

which have modulus |A+| = |a| < 1 when §2 > a. A short computation reveals
that
5= 4)g 4(6 +1)2X%

 (1+40)(As+e)  (1+46)%2(As +€)?’
which means that 82 — a < 0 when 8 < 2 and € > 0. Thus, for fixed € > 0, if
§=0,a=1andB=1-20 and so, B2 —a = —40(1—0) < 0 and |Ay| = 1. For
0<8<2 B2—a<0and [AL| =|a] =a < 1. Beyond 6 > 2, if 8% —a < 0, we
have B < 1/3 and so |Ax| < 2/3. Thus, |Ax| < 1is all cases where 8, € > 0. This
includes the case where Ag = 0, in fact, which always leads to a unit eigenvalue.

(4.50)

Note that for 8 =0, [A1| = 1 and this leads to oscillatory dynamics which never
decays, much in accordance with the results of Theorem 4.1 though any amount
of dissipation provides some stability, as per Theorem 4.2.

This analysis can be repeated for dimensions m > 1 in the case where ® = 81,
and & = €l,, since then, matrices (I, — 2D®) and (I, — D(© — I,)) in (4.47)
commute and their eigenvectors are those of matrix H defined in (4.46). The
bounds just derived for A4 still hold here.

A similar analysis holds for the case where ¥ is not a multiple of the iden-
tity but ©® = 61, since in that case, the decomposition of D into eigenvectors
with positive eigenvalues is guaranteed by Lemma 4.3 below, a well-known re-
sult. However, these eigenvectors are no longer orthogonal which means that a
convexity analysis is required when considering the bounds on the coefficients a
and B of the quadratic equation (4.48).

Lemma 4.3. For a real, nxn symmetric, positive definite matrix A and a strictly
positive diagonal matriz T' = diag(y1,Y2y---»n),¥i > 0, the matric B = T'A
has the same real, positive eigenvalues as the symmetric, positive definite matrix
V =TY2ATY2 and if v is an eigenvector of V with eigenvalue A, then, b= T''/2y
is an eigenvector of B with the same eigenvalue. Unless I' is a scalar multiple of
the identity, the eigenvectors of T'A are not orthogonal.

Proof. Since A is symmetric and positive definite, so is V' = I''/2AT"Y/2. Consider
an eigenvalue A of matrix V. Since V is positive definite, A is real and positive.
Now, Vv = dv = I'/2AI'Y2y and thus, writing b = I''/2y, assuming that all
elements of I' are strictly positive, we find

T'/2Ab = A ™Y/2p, (4.51)
and after multiplying both sides by I''/2, the desired result
T'Ab = Bb = )b, (4.52)

is obtained. Considering two eigenvectors of matrix V = I'Y/2AT'Y/2 v, v;, and
the corresponding eigenvectors b; and b; of matrix B, we have

bTb; = vl Tw; #0, (4.53)

which does not necessarily vanish unless I' = y1,,. O
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4 Regularized and Stabilized Discrete Mechanics

For the case at hand, observe first that S, is positive definite and so is St
Using © = 6I,, and correspondingly, T = (1 + 46)7I,,, and given that the
matrices appearing in (4.47) only differ by scalar multiples and scalar multiples of
the identity, the same analysis done for the scalar case in (4.50) holds, replacing
the factors €/(As + €) with the scaled eigenvalues guaranteed by Lemma 4.3.
What is missing here is a tight estimate of the eigenvalues of S !. In the
diagonal case, there were just €/(As 4+ €) < 1, and this produced nice bounds
even for the case where Ag = 0.

Numerical results on the spectrum of the stepping matrix H of (4.46) are
presented in Figure 4.1. Random Jacobian matrices G of size m = 200 were
generated and the mass matrix M was set to the identity. The rank of the ma-
trices G was made deficient in the first three cases to illustrate the point made
here that regularization does resolve this issue. The last line on the plot corre-
sponds to a matrix with full row rank which is even better behaved. Condition
numbers of the Schur complement matrix S are shown on the plot for each line.
These range from the moderate 108 to the extreme 108, which at the limit of ma-
chine precision, and this hopefully explains the spurious overshoot for the largest
eigenvalue for this latter case. The perturbations €; were chosen randomly in the
range [€min, 2€min] and so were the stabilization parameters 6; € [2,3]. These
simple experiments show that the spectrum of H is expected to be well behaved
in general, even in cases where the proofs provided above do not apply.

A complete characterization of the spectrum of the iteration matrix would
have been desirable and, hopefully, will be available in the future. For the gen-
eral nonlinear case, the recurrence relation must be analyzed in terms of its
contraction properties and this is also left for future work. The discussion of this
section is summarized in Theorem 4.4 below which is restricted to homogeneous
perturbation and damping.

Theorem 4.4. Given a configuration manifold @ of dimension n, a constant,
symmetric and positive definite n X n mass matric M and linear homogeneous
constraint functions g 1 @ — R™ with m < n with g(q) = Ggq for a con-
stant m X n matriz G. Given also a constant diagonal perturbation matrix
X = diag(e1, €2,...,€6m), where €; > 0,7 =1,2,...,m, as well as diagonal stabi-
lization matriz © = diag(7y/h, Ta/h, ..., Tm/h) where T; > 1 for 3 =1,2,...,m.
The dynamics of the SPOOK stepper given by (4.27) converges to Ggr — 0 and
Guyx, — 0 when the projected forces vanish.

Proof. Given that & = €l,,, the main matrix to analyze is K = SS;! = I, —
€S- where m x m matrices are defined in (4.37) for S, in (4.38) for S and
in (4.39) for K.. Note first that given forces f, the forcing term Iy of (4.42) does
not contribute to the constraint stabilization dynamics as long as [I, — K]l = 0.
This happens when either GM~!f; = 0 which means that forces are acting
tangentially to the constraint g(g) = 0, or when Iy = h2GM ™1 f; is in the null
space of [Im — K.

Next, since S and S, differ only by a constant diagonal element, they are
diagonalizable with the same orthogonal transformation, U. If the eigenvalues
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of S are (Ag;,Asg,,---,As,,), say, and thus, K, is also diagonalized with this so
that we have

)‘51 ASz ASm ) (4 54)

UK.UT = dia ,
g(>\51+6 )\52—|—E }\Sm+6

Now, consider an eigenvalue A of the iteration matrix H = A~ B defined in (4.46)
with eigenvector w = (zT,yT). Any such root satisfies the quadratic equa-
tion (4.47). Now, decompose the vector z according to the eigenvectors v;,1 =
1,2,...,m of matrix S, multiply (4.47) on the left with v7 (the Hermitian con-
jugate is needed here since the coefficients of z may be complex) and divide
through with z#z. Since all matrices appearing in (4.47) differ from K. by
only a scalar multiple of the identity and an overall scalar factor, the vectors v;
are eigenvectors of these as well. This leads to m equations of the same form
as (4.49), namely A2 —2)\B; + a; where the real coefficients 8;,a;, ¢ = 1,2,...,m,
are now

=1 2(6 + 1)As,
t (1+48)()s, +¢)’ (4.55)
46)g, '
a; = 1-—

(1+46)(As, +¢€)

Repeating the computations found in (4.50) and (4.48) for each eigenvalue Ag;, >
0 of S, each such eigenvalue A of H is found to have modulus |A| < 1 whenever
6 >0 and Ag; > 0, and |A| = 1 when 6§ = 0 or Ag; = 0. The dynamics of the
iterates zg in (4.45) thus corresponds to potentially oscillating exponential decay
for the relevant modes, i.e., those corresponding to nonzero eigenvalues Ag, # 0,
and this means that ¢ = Gqr — 0 and v = Gqx — 0 as k — 00. Since the zero
eigenvalue modes do not contribute, the constraint Ggq is thus stabilized in both
position and velocity and the proof is complete. O

4.7 End notes

A physics based, numerically stable constraint realization algorithm was con-
structed for both holonomic and nonholonomic constraints. The same techniques
were used to provide a stabilization algorithm for holonomic constraints. This
was proven to be globally stable for the linear homogeneous case, given homoge-
neous regularization and stabilization parameters.

Previously known regularization schemes are not physical in the sense that they
cannot be formulated within a Lagrangian mechanics framework. In addition,
the numerical realization of constraint realization schemes or penalty forces has
been repeatedly observed to be a disaster except for the simplest cases.

Even in the careful analysis of [166], the numerical examples have high oscil-
lations and exhibit noise. For constraint stabilization, with all the deep analysis
and beautiful results of Uri Ascher and his colleagues and students reported
in [61, 26, 24, 25] and [27], there is nothing that comes close to the simplicity
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Spectrum of system stepping matrices : n=200
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Figure 4.1: The spectrum of the stepping matrix for moderate values of condition
number and degeneracy.

and physical motivation of the results we have just presented. Also, in most
of Ascher’s work, one uses an explicit Runge-Kutta method as the main work
horse and performs extra computation to stabilize and regularize the system af-
terward. As discussed in Chapter 3 however, it is possible to stabilize constraints
in a physical way, and still using a first order, one stage method, which is faster.

There are high order, accurate and efficient methods for DAEs [165]. These
have well established application domains, and to the extent that they are not
used to model physical systems which satisfy a least action principle or systems
having symplectic flows, they are perfectly fine choices.

With much the same motivations behind the present thesis, low order methods
Runge-Kutta methods for DAEs were developed with an eye on efficiency in the
work of Cameron and Piché [59, 58]. It could be interesting to see if some of
these ideas could be reused to build higher order variational methods.

For mechanical systems, discrete variational mechanics yields simple and re-
markably good low order methods, and this is what is needed for interactive
simulations at least, namely, relying only on linear systems, global error bounds,
and strong linear stability. Indeed, for fixed time step h, discrete energy oscillates
within bounds of order A% for the methods considered here. Since the regular-
ization strategy here is to associate an energy cost quadratic in the constraint
violation. Since the total energy budget is bounded, the allowed violations are
globally bounded as well.

Also because of the strictly physics based approach, regularization is not just
a lesser evil in choosing between inaccuracy, high computational cost or instabil-
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ities, but a genuine physical model. Using a large regularization parameter for a
given constraint amounts to introducing compliance into the system. The regu-
larization and stabilization scheme can thus be used to model any form of stiff
force in a stable way, for the cost of adding one extra row and column to the lin-
ear system (4.32). Other schemes for modeling stiff forces in multibody systems,
such as [18], which amounts to using linearized implicit Euler discretization for
the stiff forces, much like in [39], correspond to modifying the mass matrix with
terms of the form h?GT KG, where G is the Jacobian of the stiff force, K is the
stiffness matrix, and A is the time step. When the eigenvalues of the stiffness
matrix K become large, the linear systems become ill-conditioned. By contrast,
in the present formulation, the corrections are of the form GK~'GT and these
are well behaved as the eigenvalues of the stiffness matrix become large.

Stiff forces can also be handled using adaptive time steps. A variational formu-
lation of this for the context of smooth but stiff contact force potential is found
in Modin and Fiihrer [206].

Previously [168], I reported a different discretization scheme for the analytic
constraint regularization and stabilization technique of the present chapter. This
amounted to a first order backward discretization of the constraint equations and
in turn, that amounts to discretizing the strong oscillatory forces using linearized
first order implicit integration. In fact, that stepping scheme is in the regular-
ized, stabilized family of Section 4.5, when choosing suitable parameters. This
was used in three Master’s thesis projects, two of which completed successfully.
The first application was the simulation of cloth [70] and the second was for
deformable solids [201, 254]. In both cases, the results compared favorably in
performance to the state of the art in computer graphics literature. However,
from the modeling perspective, the new strategy was superior because it did not
dissipate so much energy for degrees of freedom orthogonal to the constraints.
The same techniques have also been used in collaborative work with Servin, re-
sulting in one refereed conference proceeding article [254], one article to appear
in 2007 [253] and another in preparation, where the goal was to simulate light
cables having both bending and torsion resistance and subject to heavy loads,
for interactive simulations of cranes for training applications. Since the cable
is modeled using constrained rigid bodies, it is possible to subject the hoisting
cables to frictional contacts, using techniques similar to those described in Chap-
ter 10. Prior to this work, the literature only reported the modeling of cables
with pure constraints [131] and thus not allowing any contacts and not providing
for bending and torsion, or using Crosserat theory [222] which allows for bend-
ing and torsion but not contacts, or with point masses [187] which allows for
modeling contacts and bending but not torsion.

Constraints were only considered to first order here but higher order schemes
can be built and these will be developed in the future. It is hoped that regular-
ization and stabilization techniques discussed in the present chapter will permit
stable linearization of the internal stages.

The stability result could be stronger if the spectrum of the stepping ma-
trix could be proved to be within the unit circle at all time, and with a better
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characterization of the unit eigenvalue modes of degenerate systems.

The correspondence between exact and regularized systems, both in continuous
and discrete, could be analyzed to greater length. Also, a comprehensive error
analysis is still missing, though important elements and techniques for doing that
exist already [196].

Rayleigh dissipation functions are central to the stabilization and regulariza-
tion analysis. Though they are well known in system’s engineering though [177],
they are conspicuously underused in the analytical mechanics literature, receiv-
ing all the attention of one paragraph in Goldstein [105], and barely mentioned
in Lanczos. Their role in the optimization framework of the principle of least
action, continuous and discrete, is only now being recognized.
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5 Bagatelle II:
Numerical Stability of Simple
Harmonic Oscillator

Explicit computations of the linear stability function of integrators [114] are
performed for a variety of methods for the case of the simple harmonic oscillator
described in Chapter 2. This amounts to evaluating the stability function on the
imaginary axis. This is argued to be a good measure of the usability of a given
integration method for physical systems. The standard technique is described in
Section IIT which contains all computations. General observations are made in
Section 5.2.

5.1 Classical stability analysis and classical methods

The simple harmonic oscillator is the second simplest physical example. Indeed,
if one considers a power series of potential functions V(g) near an equilibrium
point, one finds V(q) =V + %qTq + ... after the g variables have been changed
so that ¢ = 0 is the equilibrium point. The constant term Vy does not contribute
anything to the physics. The quadratic term in g produces a linear restoration
force and is thus the prototypical example of a linear physical system.

Investigation of linear stability theory of numerical methods for ordinary dif-
ferential equation rests on evaluating the result of a single step of a given method
on the canonical test function of Dahlquist [114], namely

q=2q, (5.1)

where g, A € C, are complex numbers. Applying any given one step method to
an arbitrary initial condition gqg for a single step, one finds

01 = R(hA)go, (5.2)

where R : C — C is a scalar complex function of the complex argument z = hA,
and is called the stability function of the integrator. This illustrates the fact
that integrators are linear filters. Stability is then defined as the region of the
complex plane such that |R(z)| < 1, where | - | is the modulus operator for
complex numbers. Of course, being only linear, this analysis does not yield the
complete picture. However, a method which fails to be linearly stable cannot
be expected to produce good results in general. In addition, not all integration
methods can be amenable to the format (5.1), and in particular, the variational
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integration methods described so far do not fit in this framework, because they
involve two term recurrence relations where g2 depends on both ¢; and go (of
course, replacing R in (5.2) with a matrix can work).

The description of stability as the region of complex plane where | R(2) |< 1
is focused on the preservation of stability of dynamical systems under discretiza-
tion, and provides little or no information on unstable systems. For instance,
the perfectly valid equation ¢ = 2¢q describes exponential growth and a perfect
integrator would then yield | R(z) |= 2, and thus be considered unstable. The
analysis provides useful information as long as one concentrates on the combina-
tion where the time step is positive, A > 0, and the real part of A is positive so
that ®(A) < 0. The case R(A\) = 0 is marginal in fact, but that is precisely the
one corresponding to conservative mechanical systems.

The reason to use A € C is that oscillatory systems necessarily have a non-
zero imaginary component in this one-dimensional framework. Indeed, a simple
harmonic oscillator corresponds here to the pure imaginary case: A = i|A|. The
present analysis is thus restricted to pure imaginary A to get a better picture of
some popular, simple integration methods, including the first order Euler implicit
and explicit methods, as well as the second order Runge-Kutta method and the
wildly popular RK4a method [113, 112], in the context of the simplest linear
physical problem.

The stability functions for these are known to be [114]

Ree(2) = 1+ 2z, explicit Euler

Ri.(2) = T2 implicit Euler ,
1 2
Rnia(z) = 1 tji 5 implicit midpoint

22 (5.3)
Roz(2)=1+2z+ o explicit midpoint,

2 3
Rus(z) =142+ % + %, explicit third order Runge-Kutta ,
22 28
Rupa(z) =142+ - + 5 + o1 explicit fourth order Runge-Kutta.

In general, an explicit Runge-Kutta methods of order p has a linear stability
function Rrx(p)(2) equal to the p first term in the Taylor series expansion of
exp(z), namely, exp(z) = 1+ 2+ (1/2)2% + - -+ (1/n!)z™.... Restricting to the

110



5.1 Classical stability analysis and classical methods

case where z = 1z, € R, and £ > 0, we have,

|Ree(2z)| = V1+ 22 > 1,

1
R; )| = — < 1,
Bielol = s
|Rmia(iz)| =1
. z
|Rrkz2(iz)| = \/E > 1, (5.4)
zt 6
| 'rkS(zx)l 12 + 36’
. 1 1
[Brsalia)] = 1= o+ ke

It is clear from this that the first order explicit Euler method and the second
order Runge-Kutta method are useless for physical systems without additional
dissipation since the stability function is always greater than unity. By contrast,
the implicit Euler method is, as was observed previously, unrelently dissipative
and can never keep the oscillations going. The implicit midpoint method is stable
for any step size and never dissipates anything. Explicit Runge-Kutta of order 3
and above do have non-zero stability region which increase in size with the order
of the method.

For the third order explicit Runge-Kutta method, the linear stability function,
R,k3(2z) for real z > 0, starts at 1 for z = 0. The modulus |Rx3(¢z)| decreases
monotonically to take the minimum value /8/9 at z = V2 = 1.4142, and
increases henceforth to reach value 1 for z = /3 & 1.7321, and is greater than
unity afterward. Within this range, the Verlet formula holds steady but requiring
one third of the computational work.

Likewise for the fourth order explicit Runge-Kutta method, the stability func-
tion, Ryx4(i2) for real £ > 0, starts with value 1 at ¢ = 0. The modulus | R4 (¢2)|
decreases monotonically to reach a minimum value of 1/2 for z = V6 =~ 2.4495
and increases monotonically from that point onward, reaching the value 1 at
z = /8 ~ 2.8284, and is greater than unity after that point.

Though on the surface, it appears that using RK4a would allow greater time
steps than the simple Verlet formula which holds up to £ = 2 as seen before
in Section 2.4.4. However, this is deceptive. Already from z = 1.5, RK4a is
decreasing the modulus of the complex state vector ¢ by nearly 6% per step.
Just around z = 2, RK4a is loosing 25% of the oscillation amplitude per step
whilst Verlet is still holding up. At z = 2.5, Verlet is useless but RK4 is now
producing garbage trajectories which decay to 0 at the rate of 50% per step. This
holds up until z = /8 ~ 2.8284 ..., at which point the solution explodes.

The extension of the stability range by a mere v/8 — 2 & 0.82843... comes
at the cost of 4 function evaluations per step, and at least twice the storage
requirement. Not only that but this method is slightly dissipative everywhere
within the stability domain which means that this method eventually decays to
g = 0 when integrating over a very long time interval. The reason for that is
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that RK4a is not symplectic and it therefore does not preserve any surface area

during integration.
The only interesting functions in (5.4) are those for |R,x3(:iz)| and |Ryxa(i2)].

These are plotted in Figure 5.1 below.
Stability function along imaginary axis for explicit RK3 and RK4a

RK3 — |

RKda -

1.4

|R(2z)]

Figure 5.1: The modulus of stability functions |Ryk3(iz)| and | Ryka(iz)| for com-

plex arguments.

5.2 End notes
It might seem artificial to look at the stability of the simple harmonic oscillator.
However, as is well known in mechanics (see [105], Chapter 6, or [22] Chapter 5,
and [174] Chapter V), simple harmonic motion is the most important dynamics
near any equilibrium point of any system. For a complicated system, the spec-
trum of frequency corresponds to the eigenvalue spectrum of the Hessian of the
potential function v(g), which is expected to have vanishing first derivative at an
equilibrium point g € @, say. When integrating at fixed time step, the danger
is always present that one of the natural frequencies has a period commensu-
rate with the time step and thus, it is always possible that the system become
suddenly unstable. An a priori analysis of all possible natural frequencies of a
system is prohibitively expensive in most cases.
High precision integrators based on high order Runge-Kutta formula address
this issue by adapting the time step, reducing it when high frequencies or large

derivatives in general are detected. As explained previously, the real-time context
does not really allow for adaptive time step adjustment, even though such a
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strategy might be more efficient for a given error margin.

It is also true that the simple Verlet stepping scheme, used here as an exemplar
for unconstrained systems, is not unconditionally stable but it nevertheless does
preserve the symplectic flow over the entire stability domain, and does so at an
incredibly low computational cost. The extra precision gained by using a fourth
order Runge-Kutta method for instance is not so useful because it comes at the
cost of losing symplecticity.

Stability is but one of many qualitative measures of an integration method
and it must be considered in the context of the target application.
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6 Bagatelle IlI:
The Simple Pendulum

The sSPOOK scheme of Section 4.4 is compared to a variety of standard techniques
on the simplest nonlinear constrained mechanical system, the simple pendulum.
The problem is described in Section 6.1. Several well-known mathematical refor-
mulations and integration techniques are then presented in Section 6.2, including
penalty force, projection, index reduction, coordinate reduction and standard
DAE techniques. The results of numerical experiments on these are illustrated
in Section 6.3 and various observations are collected in Section 6.4.

6.1 Introduction

The simple pendulum in two dimensions is the simplest non-trivial example of a
system with holonomic constraint. The case considered here consists of a bob of
mass m moving in two dimensions at a fixed distance I from the origin subject to
a uniform gravitational field of strength a,. This example is easily and correctly
reduced to a one-dimensional problem but nevertheless, it is commonly used as
a test of numerical methods designed to handle arbitrary constrained systems
which are not so easily reduced.

The dynamics of this system is described by the position of the bob, g(t) € R2,
its velocity ¢(¢) € R?, its mass m > 0, the gravitational acceleration ag >0 and
its orientation w € R?, ||w|| = 1, and the length of the pendulum ! > 0. The
Lagrangian is simply

. m. .
L(g,4) = EIIQII2 — maguw’y, (6.1)
and this is subject to the scleronomic holonomic constraint
9(q) =gl =1 =0, (6.2)

or equivalently

g:(a) = 5 (lal* - 12) =0, (6.3)

N

which have the Jacobian

1
G = qu, and Gs = qT, (64)

respectively.

115



6 Bagatelle III: The Simple Pendulum

’ ~ o i - '\

| S~ i -7 S

' I e - : v

.
. P
Fixed anchor i - Massless cable

1
1

of lenght [

Elevation arslgle 1)

R

L

Velocity ¢ tangent

to constraint curve
Constant downward

pull by gravity: ma, in direction w
Figure 6.1: Schematics of a two-dimensional pendulum.

Obviously, the description of a point moving in two dimensions at fixed distance
from the origin is easily demonstrated to be

o=t i) 09

where the origin ¢ = 0 was chosen to correspond to the bob at the lowest position,
which is the equilibrium state.

Performing these substitutions in the Lagrangian, the following one dimen-
sional system is recovered

.. . mi? .,
L(o,9) = Tqﬁ + ma,l cos(9), (6.6)
and this leads the equations of motion
é+ % sin(¢) = 0. (6.7)

For small oscillations, the approximation sin(¢) & ¢ can be used to recover simple
harmonic oscillator motion near the equilibrium point with frequency w = /a4 /1.
This was observed by Galileo who noted correctly that the frequency and the
period of oscillations did not depend on the mass of the bob at all, but only on
the length of the cable. Since there is a single free parameter w, the length I and
mass m are renormalized to 1.

For large swing, the solutions of (6.7) is a Jacobi elliptic function

F($\3) = F(9,sin’ 3),

¢ 1
wt=u= / dé = 5
0 \/1-— sin? 3 sin? 6 (6.8)

sin(g) = sn(wt — @o,sin %):
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where the frequency w = y/a,/l, o is the angle at maximum amplitude, ¢q is
the angle at initial time, and F(z\ ¢) is the incomplete elliptic integral of the
first kind [176].

6.2 Alternative formulation and integration
techniques

The two-dimensional pendulum is a great test bed for any constraint handling
strategy. Out of a large number of alternatives, the following representative
strategies have been selected for direct comparison. First, the distance constraint
g(g) = 0 is replaced by a strong potential V. = (1/2)e 1g%(g),e > 0, and a
damping term R = (1/2)bg?(q) with b > 0, and the resulting equations of motion
are integrated using either the first order implicit Euler or the implicit midpoint
methods. Second, the time integration is split into two stages, first stepping the
bob according to the Verlet formula and following this by a projection back onto
the constraint surface. Third, the library DASSL [54] is used on an augmented
formulation of the problem which introduces one extra variable. Finally, the
SPOOK stepper of Section 4.4 is applied to this system. The exact solution
of (6.8) computed using numerical implementations of elliptic functions is used
for comparison.

6.2.1 Penalty formulation and implicit Euler integration

Assuming a finite spring stiffness of k = 1/e > 0 and introducing the potential
force

v(g) = o (Il -1)’, (6.9)

neglecting all damping terms since implicit Euler is already dissipative, the equa-
tions of motion are found to be

g=v

. 1 ( l ) (6.10)
V= —aw — 1--—1g,

me llgll

where w is the constant unit vector pointing along the gravitational acceleration
asin (6.1). To integrate this using implicit Euler, the following nonlinear systems
of equations must be solved

Qrt1 — Qe — hvg41 =0

) l (6.11)
V41 — Vg + ha,g'w + hﬂ 1-— m Qk+1 = 0
+1
for the new state ggy1,vks1, in which p? = 1/(me) was introduced. Using
Newton-Raphson iterations, the Jacobian matrix here is
I —hI
J = 6.12
e(q) lh”2(1 _ mﬁ_qu) T ‘| ( )
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The non-linear equations in (6.11) can be solved in Matlab™ (from The Math-
Works, www.mathworks.com) or Octave (www.octave.org, open source software
released under the GNU Public License) using the function fsolve which, in
turn, invokes the hybrd1 routine from MINPACK [207]. It is of little consequence
exactly how efficient the nonlinear solver is in this case. The point made here
is that even with solving non-linear equations down to machine precision, the
results obtained are worse than with the simple physics based stepping scheme
with a linear approximation.

6.2.2 Penalty formulation and implicit midpoint integration

The equations of motion (6.10) of the previous section still apply here, though it
is now advisable to add the damping term via R = (b/2)g2(g) since implicit mid-
point exactly preserves energy otherwise. The damping here serves as constraint
stabilization. After taking the damping term into consideration, the discrete
stepping equations become

h
Qk+1 = Qk + 3 (Vi1 + V&)

I+ hb 1 qeqt | v v haw+h'u2<1 l )q 6.13
——qk k+1 = Uk — — -7 |9k .
lgel® WT ] (6.13)

N hu? (1 l > ]
e T k+1,
2 (g1l

and the corresponding change in the definition of the Jacobian

I ~k ]

hpl T 1T (6.14)
(I - rpaa’) I+hbpmag

Im(q) = [

One could be fancy here and use a symmetric discretization for the damping term,
as described in (3.86). In fact, a strict definition of the midpoint rule would lead
to that. However, an interesting aspect of the variational framework is seen
here in that it is entirely possible to mix and match different discretization for
each individual term appearing in the Lagrangian and the Rayleigh dissipation
functions.

6.2.3 Post facto projection

A very popular strategy in game physics engine due to Jakobsen [140] is to first
step the system ignoring all constraints and then apply a projection step using
a nonlinear Gauss-Seidel process. For the simple pendulum in two dimensions,
the projection step is merely to adjust the length of the vector gr41 to satisfy
llge+1| = I. This is a radial projection. Since this stepping strategy is naturally
dissipative in the radial direction, no additional damping term is needed.
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Using Verlet integration, the stepping process is then

2
h*aq

4=2qk — qu—1— w

(6.15)

o~

l
drk+1 = le = a[j with a = porriS
l4ll ’ llgll

This process is illustrated in Figure 6.2. If the energy of the system is measured
using the symmetric formulation

m 2 Mag
B, = —|lar — qr_ — _
k 2h2||4k g 1ll” + 5 W (g% + qx-1)
m ma
= Tl + T (@t asa), (6.16)

the energy change in one step can be found using
AEyy 1 = Bpy1 — By

m ma
2 (loeeall = llonl?) + 520" (gean — a6) + (@ — ge-))

m hma
= 5 (Ukt1 = )" (U1 + k)T + + 2w (veyr + vi)

m
=5 (Vi1 + 'uk)T ('Uk+1 — v, + hagw) (6.17)
_(e=1)m r _(a=1)m T
= 5 (Vi1 +ve) g = oah (Qr+1 — Qr—1)" Qry1
_(a—=1)m 1 qkT+1Qk—1
o 2a 12 !

and this last expression is almost always negative leading to quick dissipation. In
fact, with this method, the dissipation is higher with higher velocity. Only when
the pendulum is nearly upside down with low tangential velocity is the energy
increasing. lustrations of this behavior is found in Section 6.3 below.

6.2.4 Variational integration

Because strict variational integration calls for the exact solution of g(gg+1), no
damping is added here, leaving it up to the nonlinear equation solver to follow
the constraint closely. The equations of motion reduce to

@1 = 2k — @r—1 — h2agw g + Age

(6.18)
lgerll® — 2% =0,
which leads to the quadratic formula to solve for A
T T, )2 2
_ Q% (¢7qx)* Il
Ay = — B j:\/l—}—T— 2 , where (6.19)

q=2gx — qr—1 — h’aqw.
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6 Bagatelle III: The Simple Pendulum

Figure 6.2: A post facto projection stepper illustrated. Note how the point § is
almost always outside of the circle.

Figure 6.3: A vector diagram to illustrate the variational stepper applied to the
simple pendulum in two dimensions.
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6.2 Alternative formulation and integration techniques

In the case when ¢7qr > 0, which is true unless the time step h is enormous,
the difference A_ < A4 < 0 and the root A, makes ggy;1 closest to gx and is the
correct choice. A vector diagram explaining this is shown in Fig 6.3.

Measuring the total energy of the system with the symmetric formulation as
in (6.16), the change in one step is now

AEpt1 = Epy1 — By

m ma
= 2 (Ivesall = l1ol?) + 220 (ges1 = 96) + (26 — ge-))
m hma
=5 (Vg1 — v)T (rgr +v)T + +Tg‘wT (Vky1 + Vi) (6.20)
m
=5 (Vg1 + vk)T (V41 — vk + hagw)
um

um
(a1 + k)T s = o (qg‘qk-i-l - ngk) ,

2
and this expression has indeterminate sign. As shown in Section 6.3 below, the
energy actually oscillates with amplitude proportional to A2 which is a reasonable
approximation.

Note that the equations of motion are integrated using a single square root
operation per time step.

6.2.5 Index 2 reduction and DASSL integration

The DASSL [54] package can provably handle index 1 DAEs only, but has been
observed to handle some higher index problems correctly. Given the index 3
formulation of the pendulum

i=v
my = Ag — agw (6.21)
9s(q) =0,

DASSL can process the system using the special options to increase the abso-
lute tolerance to 1073, the relative tolerance to 107!, and using configuration
parameters to the error on the algebraic equation from the convergence tests.
It is also possible to reformulate the system as an index 2 problem by adding
the velocity constraint Gg = 0, a trick which is due to Gear and Leimkuhler [96]

and reads
g=v+aq
V= Aq — QoW
17 % (6.22)
gs(Q) =0
7"'v=0,

and the new Lagrange multiplier a corresponds to the last (redundant) equa-
tion g¢Tv = 0. Even for this formulation, as observed by Petzold et al. [54] (see
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6 Bagatelle III: The Simple Pendulum

notes ppl04—105 in the STAM edition), it is necessary to remove algebraic equa-
tions from the error tests and to increase the absolute and relative tolerance to
approximately 107% and 1073, respectively.

Note that the workhorse of DASSL is a BDF method and that this reduces
to the implicit Euler method for first order. A fast decrease of energy is thus
expected with this strategy. It would be possible in this case to add the en-
ergy equation as an extra algebraic condition, as was done by Barrlund [41] for
a similar DAE solver strategy. This would indeed conserve energy but not the
symplecticity of the flow. In addition, for a general system, especially one which
contains some dissipative components, the nonlinear equation describing the ex-
act energy is not available making this strategy impractical except for simple
examples. Finally note that the number of nonlinear equations processed by this
method is alarmingly large. Indeed, each constraint in fact introduces at least
two equations using the Gear and Leimkuhler strategy and at least three using
the Barrlund strategy. By contrast, the SPOOK stepper of Section 4.4 introduces
one and only one equation for each constraint component. When direct meth-
ods are used for solving the linear systems, the computational work increases as
O((1+ k)®*m3) where m is the number of constraint equations and k is the num-
ber of additional equations that must be processed. Each additional equation
introduces almost one order of magnitude of extra work.

6.2.6 Index reduction and Baumgarte stabilization

By far the most popular method for solving constrained systems with simple
methods is that of index reduction and constraint stabilization due to Baum-
garte [47]. Here, the constraint g(g) = 0 is replaced by the mathematical equiva-
lent G(q) + ag(q) + Bg(q) = 0, where a, 8 > 0 are free parameters which have to
be chosen carefully. Choosing a = 1/h, 8 = (a/2)? works well for a number of
cases. Nevertheless, it is not easy to find appropriate values which work well for
a general problem. In fact, the simplicity of this method is entirely defeated by
the impossibility of finding reliable parameter values in general, as demonstrated
in [24].
In any event, the equations of motion now read

qg=v
mu = Aqg — mayw (6.23)
¢+ 2ol + ow”q + & (el —7) = o,
and this is easily manipulated to yield a semi-implicit ODE formulation

g=v
Je

B
A] ~ |—aGv - Bg(q) - Gq

where M is the constant mass matrix of the basic modelLagrangian (3.12), the
vector of generalized forces f, is defined as before, fo = —0V/8qT, and the

M -GT (6.24)

G 0
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6.3 Numerical experiments

constraint functions g;(¢) = 0,7 = 1,2, ...,m, have Jacobian matrix G = 8g/8q,
or Gi; = 09;/8q;. Whenever G has full row-rank, this linear system is solvable
for v which thus yields a standard ODE formulation for variables g, v.

This strategy for solving the DAEs of mechanical systems has prevailed in
the graphics literature and some of the engineering literature. As seen in the
examples, it is in fact suitable for simple systems and this is why it is included
here. However, this is deceptive since tuning the stabilization parameters for
larger problems can be very difficult or impossible [24].

6.2.7 Using the spook stepper

Using the SPOOK stepper from Section 4.4, one finds stepping formula

L =g | |G+ 2qk — qr—1 — h?agw
= 2 (6.25)
l iBes A _1-:4dgk - 1iid||‘Ik|| + rﬂququ_l '

T
9% %2 1t4d

where € > 0 is the compliance parameter, d = 7/h is the dimensionless damping
rate. In addition, gr = g(gx) is the constraint value at step k and I, is the 2 x 2
identity matrix. The 3 x 3 linear system of (6.25) is easily reduced to a single
linear equation for A, which is well behaved as long as gx is away from the origin.
The regularization parameter can in fact be set to e = 0 without any ill effect in
this case.

Of course, linearization does introduce an error but as shown below in the
results section, these are of the order of h? which is satisfactory.

6.3 Numerical experiments

Starting a unit length, unit mass pendulum with natural frequency w? = 10
horizontally, at rest, perpetual oscillations are expected in which the z coordinate
varies within the interval [—1, 1] and the y coordinate within the interval [—1, 0].
For this example, the total energy of the system is constant and exactly vanishes:
E(t) = 0. The period of oscillation is T' = 4\/gK(sin(7r/4)) ~ 2.3445, where
K (k) is the complete elliptic integral of the first kind (see [21] for instance).

The analytic solution is easily computed for this set of initial conditions using
widely available numerical implementations of the Jacobi elliptic functions and
is compared with numerical results on each graph.

Given the period of a little over 2 seconds, and the maximum velocity of
v/10 ~ 3.1623, a fixed time step of 1/60 = 0.0167 should be small enough for all
numerical methods. This gives more than 100 sample points per period which
should be sufficient.

For the rest of this chapter, the numerical results obtained from a variety
of method are explored. For each method, a picture with either three or four
subplots was produced and, whenever possible, the reference solution, labeled as
“exact” in the plot keys, was drawn using a dotted line. When the trajectories
computed by a given numerical method coincide with the exact method, only one
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6 Bagatelle III: The Simple Pendulum

solid line is visible because the two lines with different style are drawn directly
on top of each other.

The scales on the subplots are all linear though in a few cases, a different scale
is used on the left hand side vertical axis as opposed to the right hand side one.
This is indicated with a “(left)” and “(right)” qualifier in the plot key, in the case
where the Lagrange multiplier A is on one scale and the constraint violation g(q)
on another in Figures 6.10 and 6.11.

The minimum energy for this system is when the bob is at rest at the bottom
position and this yields & = —10. Negative energy is perfectly valid in the
context of classical mechanics.

Consider first what can happen using a standard ODE solver (LSODE in this
case [129], as this is available in Octave) directly on the reduced formulation.
Fig 6.4 shows that the trajectory is in very good agreement with the exact
method.

The energy subplot tells a worrisome story though as the line creeps up re-
lentlessly. By contrast, at least for this sort of time step, integrating the reduced
equation with the simple leapfrog scheme yields cyclic and bounded energy vari-
ations as seen in Fig 6.5.

Now, moving on to a simple projection scheme, as illustrated in Fig 6.6, there
is a rapid decay of the energy until the pendulum is at rest, pointing down. The
rate of energy loss increases with the velocity but is otherwise unpredictable.
Using the SHAKE [242] algorithm though, the energy fluctuations are significant
but the system keeps oscillating forever as seen in Figure 6.7.

Methods designed to handle DAEs such as DASSL [54] essentially fail in index
3 formulation as seen in Figure 6.8 but work reasonably well in index 2 reduction
if care is taken to chose the parameters correctly, as seen in Figure 6.9.

SPOOK from Section 4.4) produces the data shown in Figure 6.10. The en-
ergy oscillates as was seen before in the case of the simple harmonic oscillator in
chapter 2 but these oscillations stay bounded. The exact trajectory is indistin-
guishable from the computed one as well. Meanwhile, the constraint violation
stays within ||g(g)|| < 8-1073. In fact, this is true even when the regularization
parameter is driven as € — 0, and even when solving the non-linear equations
defining this stepper (4.27). There is in fact always a residual error here of the
order of O(h?).

Next, results from the Runge-Kutta 4a method using the Baumgarte stabiliza-
tion scheme [47] are presented in Figure 6.11. The energy curve looks good at
first with a drift of less than one part in a thousand over 400 steps, and so goes
the constraint violation curve with errors of ||g(g)|| < 3-1075. Trajectories are
also indistinguishable from the exact solution. However, the energy is drifting up
relentlessly at a linear rate and the method eventually breaks down after a large
enough number of steps. In addition, four times as much work is performed at
each step in comparison with SPOOK illustrated in Figure 6.10.

Comes the turn of integrating the penalty formulation of Section 6.2.2 using
the implicit midpoint rule and results are presented in Figure 6.12. The spring
constant here is k¥ = 10* and the damping ration is ¢ = 1, which should produce
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6.4 End notes

critically damped oscillations.

The energy plot here is not bad but the damping, which should act only
along the radial direction, is also removing kinetic energy from the system. It
is known that the implicit midpoint rule should exactly preserve energy for this
case [112]. Not too surprisingly, the trajectory is in reasonably good agreement
with the exact solution. There is still a noticeable drift in phase shift over
time even though a fairly large spring constant is used. As the spring constant
increases even more, it is expected that the nonlinear equations to solve become
progressively more ill-conditioned and thus increasingly difficult to solve. Again,
for the effort and the cost, the results from SPOOK in Figure 6.10 are better.

Last but not least, and apologizing for labeling such a poor method with
such an illustrious name, the results of applying the implicit Euler method on
the penalty formulation of Section 6.2.1 are shown in Figure 6.13. A moderate
spring constant of k = 10* and damping ratio of { = 1 were used here again. As
is customary with the implicit Euler method, the energy dissipates away much
faster than expected from the value of the damping constant. What is clear from
the plot of the y coordinate though is that the observed frequency of oscillations,
which is essentially determined by the value of the gravitational acceleration a,,
is wrong by a noticeable amount. Increasing the spring constant further, this
rate of falling would decrease even more. Curiously, the radial force is damping
motion that is orthogonal to it.

This curious phenomena gives some indication why cloth simulated using net-
works of point masses connected with springs and dampers, simulated using a
linearized version of Euler’s implicit first order method [39], appears to fall too
slowly.

6.4 End notes

The numerical behavior of the simplest DAE for a mechanical system was investi-
gated using several alternative methods. It is clear from the data that integration
methods based on the variational principle presented in Chapter 3 are best in
terms of qualitative behavior, and even performance as measured by the number
of linear system solve operations done per step. The one exception to this be-
ing the coordinate reduction strategy since it only involves one scalar equation.
In more general cases, coordinate reduction involves smaller linear systems but
these are more dense and sometimes ill-conditioned [28]. In addition, comput-
ing the coordinate reduction often involves additional QR and SVD operations
and thus, are not clearly faster a priori. Among the variational methods, the
sPOOK scheme of Chapter 4 stands out for requiring only the solution of linear
systems but still maintaining good agreement on the trajectories and keeping
good bounds on energy.
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6 Bagatelle III: The Simple Pendulum
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Figure 6.4: Integrating the reduced equations of motion of the planar simple
pendulum with the reference integrator LSODE [129] available in
Octave.

0.2 g

0.0 .

1k y(2) i
predvar —
exact --
| | WM |
i 1L i
0 2 4 6 8 0 2 4 6 8

Figure 6.5: Integrating the reduced equations of motion of the planar simple
pendulum using the Verlet method.
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6.4 End notes

Figure 6.6: The planar simple pendulum integrated with the Verlet method fol-
lowed by a pure projection back to the constraint surface.

0.02 | B - | 0.000 ko
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] 1} y(t) |
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i -1k i
0 2 4 6 8 0 2 4 6 8

Figure 6.7: The planar simple pendulum integrated using the SHAKE algorithm.
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6 Bagatelle III: The Simple Pendulum

y(t) ]
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exact —

Figure 6.8: The planar simple pendulum integrated with DASSL with index 3
formulation.
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Figure 6.9: The planar simple pendulum integrated with DASSL after performing
an index reduction and adjusting parameters.
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Figure 6.11: The planar simple pendulum integrated using index 1 reduction,
Baumgarte stabilization, and Runge-Kutta method RK4a.
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Figure 6.12: The planar simple pendulum integrated with implicit midpoint
method, with a small damping coefficient of b = 1.
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Figure 6.13: The planar simple pendulum integrated using the implicit first or-
der Euler method to the regularized problem for moderate spring
constant.
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7 Bagatelle IV:
The Slider Crank

The planar slider-crank mechanism is perhaps the simplest constrained mechan-
ical system to exhibit constraint Jacobian degeneracy at isolated points in the
configuration space. This is analyzed here to demonstrate how the SPOOK method
of Section 4.4 resolves such problems gracefully in comparison with standard
techniques. The slider-crank mechanism is described in Section 7.1 where the
different parts and constraints are defined in details. The Lagrangian for this
system is constructed explicitly in Section 7.2 and the singularities are precisely
identified in Section 7.3. The results of numerical experiments are presented in
Section 7.4 and observations are collected in Section 7.5.

7.1 Introduction

A slider-crank is a common mechanical device which converts rotational motion,
as produced by the most commonly available type of motors, to linear motion.
This is done by attaching one body to the shaft of the rotational driver, connect-
ing this body with a hinge joint to a second body at one end, and attaching the
other end of this second body to a linear guide in a way that allows translational
motion.

The slider crank in two dimensions is also the simplest example of a system with
a constraint singularity. When the two arms have identical lengths, the Jacobian
matrix of the slider crank has two isolated singularities where it becomes rank
deficient. Such singularities are integrable if the velocity does not vanish but this
is cold comfort since it is easy to construct an example for which the equilibrium
configuration comes to rest at the singularity, as constructed below.
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7 Bagatelle IV: The Slider Crank

Free hinge

Free or driven

777777777777

L‘ Free prismatic
Fixed base joint to fixed base

Figure 7.1: A schematic diagram of a slider crank mechanism.

The basic motion of a two-dimensional rigid body is shown in Section 12.4 to
be described by the coordinates

T
9= 1Y21, (71)
¢

where z = (z1,¥2) € R? and ¢ € R is a scalar angle. The rigid rotation matrix
defined by ¢ is denoted R(¢) and has the following definition

cos(@) —Sin(¢)] ‘ (7.2)

”@:Fw)mw)

The time derivative is found to be
. . 0 _1
R(¢) = $1R(#),  where Jy = ll . ] . (7.3)

The inertia matrix in this case is a constant diagonal 3 x 3 matrix of the form

m 0 0
M=[{0 m 0 (7.4)
0 0 S
where Jp is a scalar computed using
2 2
= [ Eap@el’, (75)

and € R? is the bounded region covered by the rigid body in rest configuration,
with the center of mass at the origin, in some reference orientation. The scalar
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7.1 Introduction

function p(z) : R? — R, is the mass density at  and is non-negative, and ||z||?
is the standard Euclidean norm in two dimensions.

The slider crank mechanism requires mathematical definitions for the hinge
(revolute joint) and the prismatic (slider joint) holonomic constraint, in addition
to a constant rotational velocity driver, a nonholonomic constraint. These are
defined below.

Note before starting that even if the lengths of the two arms are different,
simple trigonometry indicates that

1y sin(¢ (V) = —l,sin(¢p@). (7.6)

This will be of use later when locating the singularities.

7.1.1 Two-dimensional hinge joint

To define the hinge or revolute joint in two dimensions, start with an attachment
point z (©) that is fixed in the inertial frame. Then, consider the vector p() that
is fixed in the frame of a rigid body so that p()(t) = z(®) at all times. The only
motion allowed is then a rotation about z (®) and therefore, the constraint

g, (2:29) = 2(2) + R(#(2))p M (0), (7.7)

and from this, the Jacobian matrix is extracted by computing g, = Gg, g

Gu, = [ LR(@PV)], (7.8)

where I is the 2 x 2 identity matrix.

The construction of the two body hinge constraint is similar. Consider now
pM p®@) which are fixed vectors in the frame of body one and two, respectively.
By forcing the location of the point on body one defined by the position of p ()
to coincide with that of p(®, then, the relative motion of these two bodies is a
rotation about the location of the center of rotation which is given by both p ()
and p® | namely,

g, =z + ROpM(0) — 2@ — R@p3)(0) = 0. (7.9)

The notation here uses R® = R(¢®, and p(?)(0) denotes the fixed position of
the attachment point in the frame of body 2.
The Jacobian for this is found to be

GH2:[12 JLRWpW(0) —I, _JlR@)p(z)(o)]. (7.10)

7.1.2 A constant angular velocity constraint

Since for a rigid body, the angular velocity ¢ is the same for all points attached
to it, an angular velocity driver is defined simply by the constraint

90(q) = ¢ —w(t) =0, (7.11)
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7 Bagatelle IV: The Slider Crank

where w(t) is the driving velocity at the attachment point. The Jacobian for this
constraint is the constant projection matrix

Gw:[o 0 1]. (7.12)

This can also be made into a two body constraint if needed.

7.1.3 The two-dimensional prismatic constraint

A prismatic constraint forces a point fixed on a rigid body to move along a given
axis. For the slider crank mechanism, the axis is defined in the inertial frame
only and so a representation for the line is chosen as

vz +a=0, (7.13)

where z € R? is any point on the line, v € R? is a unit vector normal to
the direction of the line, and the scalar a is the intercept at the origin. Given
a reference point p() fixed in the rigid body coordinate, the definition of the
prismatic constraint is then

gr(q) = vz +v"R(¢)p +a =0, (7.14)
where z(t) is the position of the center of mass. The Jacobian is easily computed

Jp = [UT vTJlR(qﬁ)p(l)] . (7.15)

7.2 The slider-crank Lagrangian

Agglomerating the variables as follows,

z (D 4
(%) 0 0
1 1 m
_ [ M= |MP 0 MO =] 0 m® o
= || 0o M| 0

$® o 0 X

(7.16)
leads to the free Lagrangian
N S

L(g,4) = ;4" Mg — gq" Mw (7.17)

where g is magnitude of the gravitational acceleration and w is the constant
vector in the direction opposite to gravitational acceleration

w=[0 100 1 o]T. (7.18)

The equations of motion for both the continuous and discrete cases are con-
structed from this using the techniques of Chapter 3.
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7.3 Singularities

7.3 Singularities

Choosing a configuration such that both arms have lengths ! and the attachment
points for the hinges and prismatic joints are p( = F(I/2)u,i = 1,2, for the
first and second attachments, respectively, with u = (1,0)7 is a unit vector in
the z direction, the follow Jacobian matrix G is found

I, —(1/2)7iR®u 0 0
G=|I, (/2)hRWu —I, (1/2)7;RPu |, (7.19)
0 0 uT  (1/2)J1vT Ry,

which evaluates to

(1/2)sin(¢™M) 0 0 0
—(1/2)cos(¢™) 0 0 0
—(1/2)sin(¢™) -1 0 —(1/2)sin(¢@)] . (7.20)
(1/2)cos(¢®) 0 -1 (1/2)cos(¢®)
0 0 1 (1/2)cos(¢p®@)

@

I
OO~ O K
o = O = O

This has a row rank deficiency for ¢ (1) = +7/2 at which point

10 +(1/2) 0 0 0
0 1 0 0 0 0
Gr/2)= |1 0 F(/2) -1 0 =(/2)|. (7.21)
01 0 0 -1 0
0 0 0 0 1 0

Adding row 5 to row 4 and then subtract row 2 from the new row 4 creates a
ZEero TOW.

7.4 Numerical experiments

Since the singularity of the slider crank mechanism is isolated, it is rather difficult
to hit it precisely during a simulation unless starting precisely on it. Alternately,
a viscous drag force of the form —vyg,y > 0 can be added and the mechanism
can be left to stabilize in the degenerate configuration.

Simulations where performed using the plain variational formulation, equiva-
lent to RATTLE, the SPOOK stepper of Chapter 4, as well as Baumgarte stabilized
Runge-Kutta methods of order two and four as described in Section 6.2.6.

The first set of runs were performed without any form of friction. This is
illustrated in Figure 7.2 which contains two panels. The top panel shows the time
evolution of the z coordinate of the first body and the bottom panel indicates
the logarithm of the condition number of the matrix used during the integration
process, either GM~'GT or a perturbation thereof.

For these runs, the slider crank was started at an angle ¢ = 7/4 at rest, and
left to drop freely under the action of gravity. The slider crank then oscillates
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7 Bagatelle IV: The Slider Crank

like the pendulum. The time step is A = 1/60 as usual. Notice that the condition
number shoots up each time the system comes near the singularity, though since
it is crossed at non-zero velocity, there is no real problem. The maximum value
of the condition number here is 108 which is modest. The trajectories produced
by the different methods do not differ significantly over a period. For SPOOK,
the regularization was chosen to be € = 107® and the constraint stabilization
parameter was 7/h = 2. For the Baumgarte methods, the parameters were
chosen as @ = 1/h and 8 = (a/2)?, as in Section 6.2.6.

For the second set of runs illustrated in Figure 7.3, some small amount of
viscous damping was added so the slider crank settles precisely on the singularity
at ¢ = —m/2. No driver was added here and the system was started at rest at
¢ = m/4, adding a viscous drag force of f = —0.3¢. After oscillating for a while,
the slider crank settles near ¢ = —m/2 and the condition number of the stepping
matrices increase toward 10729, at which point the linear and nonlinear solvers in
Octave issue warning that SVD is being used to find a minimum norm solution.
Of course, the matrix processed by SPOOK has maximum condition number of
1/€ = 10° and this poses no problem. The trajectories are all close to each other.

7.5 End notes

Point singularities where Jacobian matrices become rank deficient are not the
worst possible numerical problem but SPOOK definitely removes these without
any additional cost. By contrast, an exact variational method, RATTLE in the
present case, can have severe difficulty at or near a singularity. Other methods
might simply just fail where the solutions of the stepping equations become ill-
behaved near or at the singularities.
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Figure 7.2: Integration of the planar slider crank without viscous friction using

four different methods. The initial conditions are ¢ = 7/4 and ¢ = 0.
See text for details on the methods used.

137



7 Bagatelle 1V: The Slider Crank
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Figure 7.3: Integration of the planar slider crank with viscous friction of magni-
tude ¥ = 0.3, using four different methods. The initial conditions are
¢ =m/4 and ¢ = 0. See text for details on the methods.
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8 Bagatelle V:
High Oscillations

The seminal constraint realization paper of Rubin and Ungar [241] contains a
simple illustrative example in two dimensions which captures all the essential
aspects of the limit behavior of strong forces. The same example is investigated
here to give flesh to the theory presented in the previous chapters. A simple
highly oscillatory planar mechanical system is described in Section 8.1 along
with its known analytic solution. Section 8.2 illustrates how the SPOOK stepper
of Section 4.4 removes the highly oscillatory parts with numerical experiments.
General observations are collected in Section 8.3.

8.1 High oscillation example

The simplest possible case is a two-dimensional particle constrained to move on
a straight line subject to a constant force normal to that line as illustrated in
Figure 8.1.

Consider a point particle of unit mass moving in two dimensions with coor-
dinates g(t) : R — R?,q = (q(o)(t),q(l)(t))T. Subject this particle to a linear
constraint, i.e., restrict it to move on the line g(q) = q® — ¢ = 0. This
constraint has constant Jacobian G = 8g/0q = [1, —1]. Add the constant force
f = [-1, 1], corresponding to the potential V(q) = ¢(® — ¢ which acts
trying to veer it off the constraint surface.

g®

X: [_11] y q©
Y= -1 1]

Constraint surface:

Figure 8.1: Schematics of a two-dimensional linearly constrained system.
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8 Bagatelle V: High Oscillations

This is now a system subject to a linear constraint equation and a constant
force that is orthogonal to the constraint surface. Without any other applied
force, the particle should move with constant velocity along the line ¢ (© (t) —
gM(t) =o.

The question now is what happens to the trajectory if the constraint is replaced
by a strong force, and, in particular, how does the particle respond to the constant
unit force which acts against the constraint force.

First consider the exactly constrained problem. The analytic formulation of
the equations of motion starts from the constant mass model Lagrangian of (3.12)
using the mass matrix M = I, i.e., the 2 X 2 identity matrix, and the constrained
equations of motion of (3.92) to yield

§© 1l -1

S| —A =

q -1 1 (8.1)
g©@ —¢gM =0,

This can be solved by inspection by setting A = 1. But for completeness,

differentiating the constraint equation twice with respect to time yields G¢§ = 0,
and this leads to the linear system of equations

1 0 1| [¢©@ -1
1 —1f [gD®] =] 1], (8.2)
1 -1 off| A 0

and these can easily be solved to yield the solution A = 1, producing the con-
straint force GTA = —f, exactly balancing the applied force. This leaves the
particle free to move along the line g (t) = ¢ (¢) according to the reduced
equations of motion

§© =41 =, (8.3)

the solutions of which have constant velocity v = ¢(® = —¢( as per initial
conditions.

To realize the constraint as the limit of a strong force, introduce the potential
function Ve = £ g2(q), and impose initial conditions g(0) = 0,4 = [1, 1]T. This
leads to the equations of motion

. 1
PO (1 +1q© _q<1))> —0

X (8.4)
O <1 +1gO - q(l))> _0

Introducing the variables z = ¢(® 4+ ¢ and y = e + ¢(® — ¢, the ODEs of
motion are transformed to the decoupled equations

z=0, (8.5)
j+2y=0, '
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8.2 Damping the high frequency oscillations

which have solution z = at,y = Bsin(wet) + v cos(wct), where w? = 2/¢, and
a, B and v are determined from the initial conditions to be a = 2,8 = 0,7 = €.
Therefore, the complete solution of (8.4) reads

go)(t) =t — g (1 — cos (\/%0) )

(8.6)
O@y=¢t+<[1- 2
) =t+ 5 (1 cos(\/:t)> .
The value of g(g) and A = —e 1g(q) are thus computed to be
9:(t) =@ — g™ = —¢ (1 — cos (\/gf>> :
(8.7)

Aelt) = —%g(t) — 1 cos <\/Et) .

It is evident from (8.7) that lim, ,0ge = 0. However, A, does not have a limit
and it oscillates more and more rapidly in the interval [0, 2] as € — 0.

A standard integration method is bound to fail on this problem unless these
oscillations are damped somehow. The problem is illustrated in Figure 8.2 which
portraits the analytic solution of the constraint force which quickly becomes
intractable. The SPOOK stepper of Section 4.2, without the stabilization and
damping terms introduced in Section 4.4 fares slightly better as shown in Fig-
ure 8.3. The averaging process used to construct this numerical method does
work in decreasing the amplitude of the oscillations but not their frequency,
which is problematic. The next section introduces damping and illustrates how
this helps the numerical method as well.

8.2 Damping the high frequency oscillations

Adding a Rayleigh function of the form R = n~1g%(q) produces the drag force
—n~1GGT ¢ and after a few computations, using the same change of variables as
previously, the new equations of motion are

z2=0
. 2.2 (8.8)
y+-y+-=0
n €
To analyze these new equations of motion, set we = 1/2/e and introduce the
damping ratio ( = 7w !. Changing the time variable to 7 = wt, and intro-
ducing u(1) = y(wet), the differential equation for y transforms to:
U+ 2(u+u=0, (8.9)

where the @ = du/ d7 is now the natural time derivative. The solutions of (8.9)
is easily verified to be
u(0) + ¢u(0
u(7) = exp(—(7) (u(O) cos(é7) + 4(0) + ¢u(0)

¢ sin(f’r)) , (8.10)
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8 Bagatelle V: High Oscillations
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Figure 8.2: High oscillations in the analytic solution of a constraint realization

problem in two dimensions.
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Figure 8.3: High oscillations in a regularized but unstabilized stepping scheme.
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8.2 Damping the high frequency oscillations

where T = wt is the natural time, and where £ = /1 — (2 is allowed to take
imaginary values. For the case £ = 0, the second term in (8.10) reduces to
%(0) + u(0)7.

Note that the variable z(¢) is unaffected by the damping term. The solution
of the problem now involves the following variables

y(t) = u(7),
9(a(t)) = y(t) —e = u(r) — ¢,
9(q(t)) = y(t) = weu(r), (8.11)

Ae = —(1/€)g(t) — (1/m)g(¢)
=1-— “’7 (u(r) — 2¢i(r)) .

By taking € — 0 limits of various terms in (8.11) for fixed damping ratio ¢
(and fixed ¢ = /1 — (?), the conclusion is that for any ¢ > 0, the functions
Ue(T), Ye(t), ge(t), Ae(t) all converge uniformly as € — 0. All that is needed is the
known fact that the following expression

lim w"exp(—wta) — 0, (8.12)
w—00
converges uniformly, over any finite interval [0, T, for any power n > 0, and for

any scalar a with positive real part.
To compare this with the stabilization strategy of Section 4.4, note the follow-

ing identity
1 2
= =(we = C\/j, (8.13)
n €

and from this, the parameter 7 of Section 4.4 is computed to be
== (V2 (8.14)

so that a fixed value of the numerical damping rate 7/h corresponds to an in-
creasing damping ratio { = a/4/e. Likewise, if the damping ratio { is fixed,
the numerical damping rate 7/h decreases as the square root of the compliance
parameter €.

Simulations were made using the SPOOK stepper for different values of compli-
ance and damping ratio, and compared with the exact result. Several cases are
now illustrated in which the initial conditions are either consistent or not.

For moderate frequency, using € = 1072 and damping ratios of either ¢ = 1
or ( = 0.1, the exact trajectories are shown in Figure 8.4 and the result of
simulations with the SPOOK stepper in Figure 8.5. These graphs offer little
surprise, since oscillations are suppressed as one would expect from looking at
the equations. Numerically, these equations are not very stiff either.

However, when the compliance is reduced to € = 1076, the picture becomes
more interesting. Of course, the analytic solution immediately reaches equilib-
rium in Figure 8.6 but so does the numerical method in Figure 8.7, provided the
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8 Bagatelle V: High Oscillations

Damped oscillations: g(0) = 0,g(0) =0
15 T T T T T T T

force

-15 1 1 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

time

Figure 8.4: The effect of damping with regularization € = 1072 for the exact
solution.

damping ration is set to { = 1. Note also that in the numerical implementation,
the case ( = 1 is not critically damped but slightly under damped. Nevertheless,
oscillations quickly die out.

Fixing the compliance to € = 10~%, Figures 8.8, 8.9 and 8.10 illustrate the
behavior of the exact solution for the cases where the initial position, initial
velocity, or both initial position and velocity violate the constraint. As expected
from the analytic formulation, the transients quickly die out, especially for critical
damping ¢ = 1, and the unperturbed solution is recovered.

For the same value € = 10~ Figures 8.11, 8.12, and 8.13 illustrate the nu-
merical solution computed by the SPOOK stepper and these reflect precisely the
behavior of the exact solution. The value of € could easily be decreased much
further in this case, as demonstrated in the analysis of Section 4.6, without any
concern for stability. The graphs would not be so instructive though as all the
stabilization dynamics would occur in one or two steps when using ¢ = 1.

This is an example of a bona fide stiff system of differential equations as it has
both high oscillations and high damping. Discretization of such systems requires
great care to avoid instabilities and to separate the fast dissipative modes from
the rest of the dynamics.

But the interesting conclusion is that suitable damping will extract the correct
slow motion from the highly oscillatory parts and remove sensitivity to the initial
conditions.

The SPOOK stepper of Section 4.4 is successful at extracting the correct slow
motion without much tuning.
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8.2 Damping the high frequency oscillations

Damped oscillations: g(0) =0,¢(0) =0

force

_20 1 1 1 1 1 1 1 1
0 02 04 06 038 1 1.2 14 1.6 1.8

time

Figure 8.5: The effect of damping with regularization € = 10~2 for the numerical
solution of the SPOOK stepper.

Damped oscillations: g(0) =0, g(0) =0
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Figure 8.6: The effect of damping with regularization € = 107 for the exact
solution.
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8 Bagatelle V: High Oscillations

Damped oscillations: g(0) = 0,g(0) =0
800 T T T T T

¢=10"1 —
600 | C=1 - -

400 r 8

200

force
o

-200

-400 - .

-600 8

_800 1 1 1 1 1 1 1 1
0 02 04 06 08 1 1.2 14 16 18

time

Figure 8.7: The effect of damping with regularization € = 10~ for the numerical
solution of the SPOOK stepper.

Damped oscillations: g(0) = 0.1,g(0) =0
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Figure 8.8: The effect of damping with regularization € = 10=* on the exact
solution when starting from an inconsistent initial condition.
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8.2 Damping the high frequency oscillations

Damped oscillations: g(0) =0,g(0) =1
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Figure 8.9: The effect of damping with regularization € = 10~* on the exact
solution in the case of inconsistent initial velocity.

Damped oscillations: g(0) = 0.1,g(0) =1
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Figure 8.10: The effect of damping with regularization ¢ = 10~* on the exact
solution when both the initial position and velocity are inconsistent.
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8 Bagatelle V: High Oscillations

Damped oscillations: g(0) = 0.1,¢(0) =0
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Figure 8.11: The effect of damping with regularization € = 10~* on the varia-
tional solution when the initial position is inconsistent.

Damped oscillations: g(0) =0, g(0) =1

1.4

T T T T T T C I: 1071| .

1.2 (=1 - .

1 W /\AAUH .
(i

0.8

force

0.6 |

0.2 | 4

0 1 1 1 1 1 1 1 1
0 02 04 06 08 1 1.2 14 16 1.8

time

Figure 8.12: The effect of damping with regularization € = 10=* on the varia-
tional solution when the initial velocity is inconsistent.

148
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Damped oscillations: g(0) =0.1,g(0) =1
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Figure 8.13: The effect of damping with regularization € = 10=* on the varia-
tional solution when both the initial position and velocity are in-
consistent.

8.3 End notes

The theory of constraint realization of Rubin and Ungar [241] predicts that
penalty forces suffer from high oscillations in the absence of damping. As this
was considered in the development of the constraint stabilization scheme of Sec-
tion 4.4, simple numerical experiments show that indeed, the SPOOK stepper does
suppress these oscillations in a stable way. This shows that, at least for linear
cases, the SPOOK stepper can handle constraint inconsistencies and recover from
large constraint violations.
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9 Bagatelle VI:
Smooth Impacts

Impacts are physical phenomena best idealized as instantaneous events resulting
in discontinuous velocity changes, at least in the context of interactive simula-
tions. A simple damped harmonic oscillator model is introduced to illustrate
how it is possible to summarize the result of fast dynamics into macroscopic
constitutive laws. Section 9.1 presents the model and the analytic solution. This
is followed by analysis for the analytic behavior for the oscillatory regime in
Section 9.2, the critically damped regime in Section 9.3, and the overdamped
regime in Section 9.4. The limitations of the model and the need for the nons-
mooth models of Chapter 10 are discussed in Section 9.5.

9.1 Introduction

The surface of solids is a physical system which is at equilibrium under normal
circumstances. But when the surfaces of two solids come into near proximity,
the disturbances produce forces which act to prevent any penetration. For many
solids such as steel, wood, or glass, these forces become so strong so quickly that
hardly any visible deformation is produced. When two billiard balls collide for
instance, the time taken by the surface forces to change the velocities is of the
order of microseconds and therefore, essentially instantaneous. The deformations
are so small that a linear analysis of surface forces is sufficient.

When two solids impact at a high incident velocity, some of the energy of
the impacting momentum is transferred to vibrational modes and from there, to
sound and heat. Though the incident velocities are considered large, the analysis
still starts with a linear dissipation process as this is sufficient for the present
purpose.

Consider a point particle with mass m and position ¢ : R — R in one spa-
tial dimension. Subject this particle to a one-sided spring damper system with
stiffness k£ and damping constant b so the force generated is

—kq—bg when ¢<0
;= (9.1)

0 otherwise.

Consider the initial conditions ¢(0) = 0,¢(0) = —wvg,vo > 0, i.e., the particle
starts at the origin but moving towards the ¢ < 0 forbidden region. In this
region, the spring-damper force is active and the trajectory for this system is
now computed from ¢ = 0 up to the time when the force becomes inactive again,
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9 Bagatelle VI: Smooth Impacts

i.e., when g(¢) = 0,4¢(¢) > 0. This corresponds to one full cycle of the spring-
damper system.

Using Newton’s second law of motion (3.2), the trajectory must satisfy the
equation

mqg + bg + kg = 0. (9.2)
To simplify the notation of the solution, write
b 1
=b 2 -k = wt =X _2 - .
y=b/m, w /m, T=wt, ( w0 km (9.3)

After changing variables to z(7) = z(wt) = g(¢), the canonical equation is recov-
ered
E+2(z+2=0, (9.4)

where the dots denote derivatives with respect to the natural time variable, T,
and where ( is called the damping ratio. Solutions for this are

z(T) = ae™+ 4 be™-, (9.5)
where A4 are the roots of the indicial equation
M 42(A+1=0
Ap=—C£V/(-1=-(¢ (96)
£=V0C-1
For the initial conditions under considerations, this leads to

z(r) = U?Oe_CT sinh (7). (9.7)

In turn, this produces an oscillatory regime for 0 < ¢ < 1, a critically damped
regime for ¢ = 1, and an overdamped regime for ¢ > 1.

9.2 Oscillatory regime

When the damping ratio is in the range 0 < ¢ < 1, the solution satisfying the
initial conditions z(0) = 0,z(0) = —vg/w is

z(7) = —007“1_@67(" sin(y/1 — (7). (9.8)

w

The second zero occurs when /1 — (271 = 7 at which point the velocity is

vF=g(w ) =wz(rh) = vge Vi-¢7. (9.9)

Setting the restitution coefficient r < 1 as the exponential in this expression,
labeling v~ = —wg, the Newton impact restitution law is recovered

vt =—rv™, r=exp <_\/17F—C_C2> . (9.10)
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9.3 Critical damping

Now, the damping ratio is defined as

b1
=

so that for fixed m, it is possible to let b = oo, k — oo with constant ¢ without
changing any of the behavior. Therefore, provided the response time is small
compared to other time scales in the system—and it is—the contact physics
which changes the incident velocity v~ to T can be considered as instantaneous.

¢ (9.11)

The maximum penetration is proportional to vg/w and is of course small for a
high frequency oscillator.

It is also clear that using a simple spring-damper model for contacts and
impacts is a bad idea because of the mass dependence of the damping ratio
and the very high frequencies involved. If the frequencies are allowed to be
moderate, then, the penetration will be large. A mass-independent solution is
better in general and this is constructed in Chapter 10.

9.3 Critical damping

When the damping ratio reaches unity, ( = 1, the solution is an exponential
decay

z(7) = —%"re—‘f <o0. (9.12)

Therefore, this contact never becomes free again and the velocity goes to 0 asymp-
totically, with a maximum penetration at 7 =1

z(1/w) = —1—0% (9.13)

which can be made arbitrarily small by choosing a very large frequency.

9.4 Overdamping

When the damping ratio ¢ increases beyond unity, the solutions of (9.4) is

z(r) = —%e_ﬁ sinh(1/(2 — 17), (9.14)

and again, this is always negative and never escapes. With this process, the
incident velocity quickly vanishes and the point particle stays near ¢ = 0.

9.5 End notes

Though a linear spring and damper model of contacts is easily analyzed and
easily implemented, correctly yielding known phenomenology of impacts, the
frequencies typically involved are too high for simple explicit or semi-implicit
integration methods. In addition, the behavior of this model depends critically
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9 Bagatelle VI: Smooth Impacts

on the mass of the bodies in contact, since both the frequency w and damping
ratio ( depend on the impinging mass, and thus requires careful tuning. For
multibody systems, though the mass of each component is known, the effective
mass at a contact point depends on the configuration of the system and can vary
greatly between that of a single component and that of all of them. For instance,
the effective mass of a well aligned stack of books resting on a table is the sum
of the individual masses. But if this is knocked away from equilibrium, the mass
effective inertia felt at the point of contact with the table decreases to that of
the books at the bottom of the pile.

But the spring and damper model teaches one important lesson. The exact
details of the contact dynamics are irrelevant and the net effect can be modeled
using a single mass independent impact parameter. There are alternatives for
impact models [56] but the Newtonian restitution coefficient and the impact
law (9.10) suffice for the present purposes. This is good news for the applicability
of the SPOOK stepper as well since the linear stability analysis of Section 4.6 shows
that it can in fact process linear systems with both high frequencies and high
damping coefficients in a stable way, without tuning. Chapter 10 goes into the
details of this.
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10 Nonsmooth Problems:
Contacts and Friction

Nonsmooth phenomena arising from impacts and dry friction are investigated in
the context of the variational method. After introducing the general context of
contacts and other nonsmooth problems in Section 10.1, a geometric formulation
of nonpenetration conditions and the description of impact discontinuities are
described in Section 10.2. This is followed by a review of essential elements of
nonsmooth analysis in Section 10.2, and this theory is then used to present the
exact variational impact resolution method of [87] in Section 10.4. This is then
approximated to yield a two stage impact resolution process that is guaranteed
to be dissipative in Section 10.5 and the results are illustrated and compared
with numerical experiments in Section 10.6.

Nonsmooth forces and nonideal constraints are introduced in Section 10.7 us-
ing the variational framework developed in Section 3.12. This is used to build
dry friction models in stages. Velocity limit constraints are first considered in
Section 10.8 which are found to be strictly dissipative in Section 10.9. This is
followed with an analysis of ghost constraints—general constraints on the ghost
variables themselves—in Section 10.10. Both the phenomenology of dry fric-
tion and the variational modeling using all the previously defined elements are
presented in Section 10.11 which contains a novel, isotropic, regularized and
solvable dry friction model, and a solvability analysis for it. Short descriptions
of alternative dry friction models are provided in Section 10.12. The results of
a well-known one dimensional numerical experiment and general comments are
provided in Section 10.13

10.1 Introduction

Surface interactions between electrically neutral solids are combinations of elec-
trostatic and quantum-mechanical phenomena of great complexity as the source
of much scientific and technological interest. However, these interactions take
place over such small distances and time scales that they are entirely irrelevant
in the context of interactive simulations except in their geometrical and consti-
tutive aspects, such as non-penetration conditions and dry friction laws. The
exact time and length scales are not relevant here but they are several orders of
magnitude smaller than the ten millisecond and ten millimeter resolution used in
the interactive simulations. In this context, impacts are instantaneous and occur
in-place. This means that when two bodies meet with a non-vanishing normal
velocity for instance and, very shortly thereafter depart or stick together, the
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10 Nonsmooth Problems

change in velocity is considered to happen instantaneously and without produc-
ing any change in position.

Also, solid bodies in resting contacts are subject to normal separation forces
as well as dry friction forces which lie in the plane tangent to the contact normal.
The normal of this plane is given by the gradient of the separating distance func-
tion. Dry friction exhibits two modes, namely, a stiction, rolling, or static mode,
wherein the relative tangential velocity vanishes, and a friction, sliding, or kinetic
mode mode wherein the tangential contact forces have magnitude proportional to
the normal contact forces and directly oppose the finite relative tangential veloc-
ity. The normal forces are presumed to arise from localized surface deformations
but these are assumed to be so small as to be entirely negligible.

Impacts and dry friction are nonsmooth phenomena, producing jump discon-
tinuities in the velocities of the system. They are naturally best analyzed from
a discrete viewpoint dealing only with the continuous positions and impacts—
time integrals of forces. This is precisely the framework provided by the discrete
variational formulation exposed in Chapter 3.

This formulation is extended in the present chapter to introduce an economical,
dissipative impact resolution algorithm, as well as an isotropic friction formula-
tion based on NCP which is proved to be solvable. The linearization of this NCP
is showed to correspond to previously known linear complementarity problem
(LCP) models except for the physics motivated diagonal regularization terms.

10.2 Normal contact forces and impacts

When the surfaces of solids come into close proximity, the very strong microscopic
interactions and bulk elastic forces translate essentially to unilateral constraints
at the macroscopic level, imposing non-penetration conditions between the bod-
ies. Considering any two bodies, given a point p(® fixed on body 0, say, and
pM fixed on body 1, the signed distance between these two points should be
non-negative: ¢(p(®,p®) > 0. Such inequality constraints necessarily lead to
impacts, i.e., forces which are so large and vary so rapidly as to cause jump dis-
continuities in the velocities g, at least for any reasonable observation scale. To
clearly separate the time scales, impacts are idealized as true mathematical jump
discontinuities and so that if an impact occurs at time ¢;, then

lim a(t) =q- #4q4 = lim q(t), (10.1)

i.e., the velocity before and after the impact differ.

For such impacts, the trajectories g(t) remain continuous but the velocities g(t)
exhibit jump discontinuities, implying that accelerations §(t) are not defined at
impact times, t;.

The first thing to consider is the treatment of the impact impulses and contact
forces arising from the non-penetration conditions c(p®,p)) > 0 between any
two points p(®), p(9) fixed on bodies i and 7, respectively. Though this constraint
is expressed in terms of body coordinates, it is not strictly holonomic since there
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10.2 Normal contact forces and impacts

is no global change of coordinates which can remove this degree of freedom from
the system. Consider a spherical rigid body and an infinite plane for instance.
From the convexity of the geometries involved, the closest point between these
two objects can be identified uniquely. The signed distance function can be
written directly in terms of the rigid body center of mass position, z(t), say, as
c(q(t)) = é((z(¢)) > 0. When the sphere contacts the plane so that &(z(¢)) = 0,
the vertical motion of the sphere can be eliminated. When the sphere is in
free flight, the vertical motion must be added. Such an approach would lead to
two configuration manifolds, namely, @; C R? x SO(3) for the planar motion,
and Q2 C R3 x SO(3) for the spatial motion, and where SO(3) is the group
of rigid rotations in three dimensions. Selecting between these two manifolds is
cumbersome and becomes quickly intractable if one considers a large collection
of contacting rigid bodies. This is where the extended coordinate formulation
becomes advantageous for its simplicity and uniformity.

Continuing with the simple example of a solid sphere and an infinite plane,
our configuration manifold remains @ € R3 x SO(3), but a Lagrange multiplier
v € R must also be added. This multiplier is the magnitude of the force acting in
the normal direction at the contact. However, a further restriction is imposed on
v given the inequality constraint ¢(g) > 0. To see this, start from the regularized
constraint formulation of (4.7). Choose € > 0, so that ¢(g) is now allowed to
become negative, producing a restoring force v = —e~1c(g), which shows again
that € is much like the inverse of a spring constant. But typical contact forces
have very little adhesion and it is expected that v = 0 whenever the separation
is positive, i.e., ¢(q) > 0.

Another perspective on this is the consideration of the augmented discrete
Lagrangian and the discrete principle of least action. Ignoring regularization for
the moment and discretizing the coupling term with

h
/ dsvTc(q(s)) = hpT co, (10.2)
0

the least action principle demands that the discrete action S4(qo, - - -, qn, k) be
minimized over the allowed trajectories, namely, c(gx) > 0. Using the well known
theorem of Karush-Kuhn-Tucker [49], the stationarity conditions read

DiL4(gk, qet1, h) + DaLia(ge—1, 9k, h) + hCT g = 0

(10.3)
0<cky1 L w20,

where the perpendicularity sign L is understood component-wise in the case
where ¢: @ = R™,m < dim @), is a vector function leading to v € R".

Now, though the formulation of (10.3) clearly imposes the desired constraint
cr > 0 and clearly demonstrates the complementarity condition between the
components of the Lagrange multiplier ¥ and the components of the distance
function ¢(q), this strategy does not conserve energy at all. In addition, it does
not allow for a description of the physics of impacts which usually includes energy
dissipation.
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This can be remedied in several different ways. For instance, in the strategy
exposed in [87], the times ¢; at which the signed distance function ¢(q) crosses
zero are located using a binary search and an impact resolution stage is performed
at these instants so that the energy is kept constant before and after, E(tj') =
E(t; ), and the outbound velocity is in the normal cone of the restriction manifold
¢(q) > 0 at the impact location, i.e., C(g(¢;))v(¢]) > 0. In other words, the final
velocity is receding and the energy is preserved. Such a strategy is expensive to
implement as observed by the authors of [87].

Instead, the intention here is to construct a fixed time-step strategy. This
implies that penetration constraint violation are detected post facto or, if a pre-
dictor estimate is used, preemptively, since impacts have zero probability to occur
precisely at time kh, for some integer k. This has two implications. The first is
that a constraint stabilization strategy is required so that violations ¢(gx) < 0 are
quickly stabilized back to ¢(gg+;) > 0 for some integer j > 0. The second is that
impacting velocity must be resolved without regards to the actual penetration
depth as the two aspects are treated independently.

The strategy proposed here hinges on the dissipative physical constraint stabi-
lization scheme introduced in Section 4.4 and the known complementarity con-
ditions of (10.3). The idea here is that a stabilization parameter 7 is chosen
so that 7/h = 1, there should be almost instantaneous dissipation of the inci-
dent velocity C'q > 0 which violates the constraint at the time of impact. The
constraint stabilization scheme should then produce ¢(gx) ~ 0 after a few steps.
Modifying the stepping equations for the SPOOK steeper of (4.27) to restrict both
the Lagrange multiplier and the constraint violation to be non-negative, as done
further below, should yield a reasonable approximation for non-adhesive contact
forces. The drawback is that this model leads to totally inelastic collisions. This
remedied by an impact stage during which a simplified version of the energy pre-
serving impact resolution of [87] is performed. The overall scheme is proven to
be is strictly dissipative, though experiments show that the artificial dissipation
rate is small. Given the linear stability Theorem 4.4, the constraint violations
are expected to quickly disappear in a stable way.

10.3 Essential notions of nonsmooth analysis

Before delving in the analysis of nonsmooth contacts, it is necessary to under-
stand the generalization of concepts of tangents and normals to cover nonsmooth
surfaces. A very short overview is provided here. The reader is referred to the
monograph of Clarke [66], from which the present section is adapted, for a thor-
ough treatment of optimization problems on nonsmooth sets.

Considering that all geometrical objects of standard 3D graphics used in a
virtual environment (VE) are defined in terms of polygons and that these are
nonsmooth at all edges and all vertices, a suitable definition of contacting surfaces
for the scope of the present thesis must include the nonsmooth case.

First consider the a scalar function f : R® — R which satisfies a Lipschitz
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condition at point z as follows
17"y — f(2")|| < K||z" — 2'||, for all 2’,2" € z + €B, (10.4)

where B is the unit radius ball centered at the origin, and € > 0 is a small positive
number. Here, 2’ merely means “a point other than z”, and z"” means “ a point
other than z or z'”.

Note that f need not be continuous to have this Lipschitz property. Next,
instead of using standard one sided derivative, the notion of a generalized direc-
tional derivative of the function f evaluated at the point z in the direction of
v € R" is introduced

£°(z; v) = limsup flz+2v) — fy)

y—z A
AL0

(10.5)

This limit exists at any point £ where the function f(z) satisfies the Lipschitz
property (10.4). The properties of the subderivative (10.5) are such that a gen-
eralized gradient can be defined as

0f(z) = {y € R™ | f°(z;v) > vz for all v in R"}. (10.6)

For a piecewise continuous function which has discontinuities in the derivative
at a point z, and such that it has m distinct one sided gradients, namely, the
row vectors &1,&2,--.,&m, the definition in (10.6) expresses the fact that 0f is
the convex hull of the row vectors &,72=1,2,...,m.

Consider that function f(z) satisfies the Lipschitz condition (10.4) for a given
ball z+€B, and has countably many discontinuities within that same ball. These
discontinuities are located in a set € which has measure zero so that f is dif-
ferentiable almost everywhere in the Lebesgue sense. Assume also that there is
another set S of measure zero which is to be avoided (for reasons clarified in [66]),
then, the generalized gradient can be expressed as

0f(z) = co{lim 8f(z;)/0z; | z: — z,z; ¢ Qy,2; ¢ ST, (10.7)

where co{-} is the convex hull of a given set.

The meaning of this definition is that the generalized gradient is the convex
hull of all the gradients found within a small ball of a given neighborhood of
dimension €. Of course, for a continuous function, the gradient is the same
within O(e) for all sample points z; and thus, the generalized gradient coincides
with the standard one.

To apply this to the familiar notion of tangents and normals, start with the
definition of the distance to a given set A. € R™, defined, for instance, as the
following set

A.={z € R" | ¢(z) > 0,i=1,2,...,m}, (10.8)

for m continuous functions ¢; : R™ +— R. With this or any other definition of an
allowed region A, the distance function d4_ is defined as follows

d.(2) = min(|lo = ) (10.9)
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The notion of a tangent to a smooth surface defined with ¢(z) = 0 is the
normalized vector v which can be followed so that c(z + Av) = 0 for small
enough A. In other words, the directional derivative of ¢(z) in the direction of
the tangent vanishes. Using the generalized directional derivative, the following
definition for the tangent cone is produced

Ty (z) ={v e R" |dj (z; v) = 0}. (10.10)

Now, the usual definition of a normal is that it should be orthogonal to the
tangent. But the strict orthogonality must be relaxed here and replaced with an
inequality to obtain the normal cone definition

Ny, (z) ={&| &v <0 forall vin Ty (z)}, (10.11)

where £ are now row vectors. The set N 4_(z) can also be understood to be the
closed convex cone of 8d4,(z) using the definition (10.6), so that all directions
making d 4, increase should be included.

The definition (10.11) is important in that it establishes a fundamental in-
equality for the product between the row vectors in N4 (z) and the vectors
v € Ty, and at a given point. However, Clarke [66] does provide a more intuitive
definition of this set based on the notion of perpendicularity. Consider a point
z' which is outside of the manifold A.. If point z is the unique vector on the
boundary 8.A, closest to z', then vector u = ' — z is perpendicular to A. at z,
and this is written as u; L A..

Now, choosing a point z on the boundary 8.A., collect all such perpendicular
vectors u; obtained from points z; € z+€B,1 = 1,2,..., in the vicinity of z and
build the closure of the convex hull

T
Ui

Ny (z) = co{X
P

| A>0,u; L A at z, z; - z,u; — 0}, (10.12)
where ~ denotes the closure of a set.

The inequality in the original definition of (10.11) is now easily understood.
Consider one of the candidate points z; in the definition of the set (10.12). The
distance of that point to the set A, is simply the norm ||u;||. If point z € A, is the
closet point to z;, it follows that for any vector in the tangent cone, vy € Ty (z),
the distance between z; and a point z, = =z + ay € A is greater than the
distance ||z; — z||. Now, for any vector in the tangent cone, vy € T4 (z), the
vector £o = T + avg, a > 0 is also in A, for sufficiently small a > 0. The non-
negativity of a follows from the definition of the tangent cone as the generalized
directional derivative (10.5). Explicitly, the following inequality must hold

llzi = (2 + cve) I* > [l — 2| = [Jusl|*, (10.13)

for small a > 0, any vector u; L A, and any vector v € T4,. Now, expanding
the terms on the left hand side of (10.13),

sl I? + o foel| — 200w > s, (10.14)
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and after neglecting the term in o2, this yields
aulv, <0, (10.15)

for any normal vector u; L A.(z) and any tangent vector vy € Ty, (), at any
given boundary point z € 8.A..

A picture of the the different cases which can be encountered is provided in
Figure 10.1.

Figure 10.1: The different cases for tangent and normal sets of a nonsmooth
curve. Here, perpendicular vectors to A, have solid black arrows
and tangent vectors have white arrows. This picture is adapted
from Fig 1.5 in [66].

Referring to Figure 10.1, the first case with label A is the usual one, namely,
there is a unique normal and a unique tangent at g4 so that the normal cone is
the single row vector Ny (ga) = {8¢c(qa)/8q} and likewise for the tangent cone
T4.(ga).

The points labeled gp, gc and g illustrate different types of kinks in which
the normal cone N4_(gq) is the convex hull between the normals of the curve ¢(q)
evaluated on each side of the discontinuity, and similarly for the tangent cone
T4.(q) at these points.

The point labeled gg is an extreme case where the normal and tangential cones
consist of a single vector but they are in the opposite direction of what would
normally be expected, the normal being the horizontal line and the tangent the
vertical one.

As exposed in [66], optimization problems are readily generalized to nonsmooth
and nonconvex sets such as the boundary illustrated in Figure 10.1. The reason
to adopt these concepts here is to emphasize that the result of [87] are valid for
the case of a nonsmooth boundary.

These observations now serve to establish an equality condition in the discrete,
nonsmooth principle of least action of Section 10.4.
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10.4 Accurate discrete nonsmooth mechanics

In a recent paper by Fetecau et al. [87], the discrete variational principle is ex-
tended to include impacts. This formulation is important because it is strictly
energy preserving and establishes a solvable numerical procedure to compute
impact impulses. In particular, the formulation covers the case where a point
particle is restricted to move in a region of space defined by a nonsmooth bound-
ary. The case of nonsmooth contact surfaces was already analyzed by Marsden
and co-workers in [152] and in [225], where a representation of Coulomb’s dry
friction model is constructed as well.

A different strategy for handling impacts and contacts, also based on varia-
tional principle, is found in Modin and Fiihrer [206] where the time scales are not
separated as is done here. Instead, very strong potentials are combined with an
adaptive time step strategy to resolve the fast dynamics. As argued previously,
this is not well-suited for the interactive physics context though.

A simplified version of the construction found in [87] is presented here with
emphasis on the computational method, and with the explicit intention of con-
structing the approximation presented in Section 10.5. The details of the exten-
sion of the variational principle and its discretization to include finitely many
impact points—isolated instants in time at when the velocity g suffers a jump
discontinuity—are well covered in [87] and it would not be particularly useful to
reproduce the long, technical proof here.

Consider a sub manifold of the configuration space @ so that A, C @. This
manifold of allowed configurations is constructed with a piecewise continuous
function ¢(q) of the configuration variables ¢ € @. For simplicity and to closely
follow close the argument in [87], first consider a single scalar function ¢ : @ — R.
The generalization to a vector valued function ¢ : @ — R"e, with piecewise
continuous components ¢;(q) is straight forward.

The restriction manifold A, is the set of points g € @ such that the function
¢(q) is non-negative, i.e.,

Ac={g€Q|c(q) 20}, (10.16)

and the boundary of this manifold is written

0A. ={g€Q|c(q) =0} (10.17)

Note that this is a manifold with a closed boundary.
Consider a trajectory:

(q01t0)’ (QIitl)’ R (q'i:ti)i (61 .E)’ (q’i—i-l:t’i—i-l), RN (qutN)i (1018)

so that § € 8C, i.e., t is the location of the impact. The extended variational
principle applies as before but contributions from the variation of § and £ must
now be included so that § + 6§ € 8C. Likewise, the variation of £ will lead to
conservation of energy at the impact location. Simplify this by setting t; = zh,
where h is the fixed time step for all steps other than the one containing the
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10.4 Accurate discrete nonsmooth mechanics

impact. The impact time £ is then parametrized as £ = (i — 1)h + ah, with
a € (0,1). The action then reads

i—2
Sa(g0,91,- -, G @) = Y La(ge, k1, k) + La(gi-1,d, ah)
k=0
N-1
+1La(d, 0, (1 — @)h) + > La(ge, qes1, k). (10.19)
k=1

In order to compute the variation of the action, follow the procedure devel-
oped in Section 3.14.3 for holonomic constraints where restrictions on the al-
lowed variations d¢q were considered. Concentrating on the collision event at
k = 1, the discretized action principle requires that variations of the action
Sa(go, 91, - - -, 9w, §, @) vanishes with respect to the allowed variations of each of
the variables of interest, namely 6g;_1,64,dq; and da. A straight forward com-
putation on the definition (10.19) produces the following four terms

(D3L4(gi-2, @1, k) + D1La(gi—1,§, ah)) 6gi—1 = 0,
(D2La(gi—1,d, ah) + D1La(d, gi, (1 — a)h)) 64 <0,
(DsLa(gi-1,d, ah) — D3LLq4(d, ¢i, (1 — @)h)) héa = 0,
(D2LLa(§, ¢;, (1 — @)h) 4+ D1L4(gi, ¢it1, b)) 8g; = 0,

(10.20)

which must be satisfied simultaneously. The inequality of the second line is the
Fourier principle of virtual work stating that when the configuration space has
a closed boundary, virtual work must be nonpositive [173]. To extract the exact
meaning of these equations, it is necessary to compute the allowed variations in
terms of unconstrained variables, as was done in Section 3.14 for the derivation
of the constrained, discrete, Euler-Lagrange equations (3.96).

Of course, for all other time steps k # ¢, the standard stepping equations (3.22)
apply. Now, in the first line of (10.20), the variations dg; are unrestricted since
it is assumed that g; is away from the constraint surface. For n = dim @), this
produces m nonlinear equations to be solved for § and a. However, it is already
known that § € 0.A. and so, when this boundary has codimension 1, there are
n+1 equations to solve for the n components of vector § and the scalar a, namely,
the n equations from the first line of (10.20) and one equation for ¢(§) = 0.

Next, since § € 8.A(§), the allowed variations of §§ must therefore be in the
tangent cone T4 (§) defined in (10.10). Using the definitions of the normal cone
N4 (g) from (10.11), the second line of (10.20) will be satisfied when

Dng(Q’i—l: [j’ ah) + D’{'Ld(q1 qi, (1 - a)h’) € NAc ([j) (1021)

For a smooth boundary, this can be rewritten as

Bc(g) v=20
dq (10.22)

D3 L4(gi—1,d, ah) + D La(d, ¢, (1 — a)h) +
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if the restriction manifold is defined as ¢(g) > 0. If the boundary is nonsmooth,
then, there are multiple tangent Jacobians C'¥) and multiple positive Lagrange
multipliers v (9,

Next, consider the third line in (10.20). There are no restrictions on o other
than a € [0, 1] and thus, the following scalar relation holds

D3lLg(gi-1,d, ah) — D3Lg4(d, ¢;, (1 — a)h) = 0. (10.23)

This is a nonlinear condition between for g;, since a and § are known at this
point. Recalling the theory of Section 3.10 and the definition of discrete energy
of (3.61), the second and third line of (10.20) have a clear meaning, namely, that
we are looking for a position vector g; such that the discrete velocity h=!(g; — §)
lies in the normal cone N4 (§), and so that the discrete energy is preserved.

Finally, the fourth line of (10.20) tells us how to restart the standard stepping
at time index k = 7 + 1, using the corrected velocity appearing in the term

Dng(d) Qi:(l - a)h) (1024>

Applying this analysis on the constant mass matrix Lagrangian (3.12) with the

simple discretization of (3.25), the procedure is as follows. First, find § € 8 A,
and a € (0,1) to solve

u (q_Qi—l) M (‘1’—1_‘11—2) +ahVV(gi—1) =0

ah h (10.25)

c(§) = 0.
Defining the incident velocity as: v = a=*h~1(§—gq; 1), this step computes the
exact location of the impact as well as the incident velocity v_.

The next step is the impulse response which will compute the outward velocity
v4 so that it lies in the normal cone N 4_(§) and so that the energy before and
after the impact are identical. Of course, a dissipative energy model could be
added here as well. What is thus needed is the solution of

M (ﬁ) M (%) +(1-a)hVV(§) € No(d)

1 . 1
§U+TM’U+ +V(§) = EU,TM'U, +V(gi1)+W(v_), (10.26)

where W(v_) is a dissipative term which is normally dependent on the incident
velocity.
Finally, the stepping continues with

M <%> M (ﬁ) = —hVV (). (10.27)

The different processes are illustrated in Figure 10.2.

The theory exposed in [87] justifying this model is impeccable. However, lo-
cating all impacts one at a time in this fashion is far from desirable. In addition,
the occurrence of multiple simultaneous impacts leaves much to be desired. Also,
exactly locating ¢ is not feasible except for very simple cases such as collisions
with a plane for instance. Simplifications of this model are now investigated.
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Qqi—2 qit+1

Allowed region, ¢(g) > 0

Contact manifold; e(q) =0

ar
Disallowed tegion; c(g) < 0
Rejected prediction

Figure 10.2: Schematics of the exact impulse model described in this section.

10.5 A two step approximate impulse model

An approximation strategy is now constructed to avoid locating § precisely and
skip many of the steps to compute the incident and outbound velocities, v_ and
vy. The first model considered is a post facto impulse resolution so that at step 1,
g: lies inside the restricted region. The constraint stabilization mechanism could
be used by itself to operate for a few steps to bring g;4n near the boundary 9.A..
However, this leads to nearly zero outbound velocity, v4 = 0, independently of
the incident velocity v_ which is nice for stability but not good for accurate
modeling of elastic or nearly elastic impacts.

If the violation at g; is not too big, a good approximation of the incident
velocity is:
% — %1
—
To estimate the outbound velocity vy, first impose a discrete impulsive Newton

VR

(10.28)

impact law [56] on the system. In one spatial dimension, this law is usually
stated as
vy = —Yu_, (10.29)

where 9 € [0,1] is called the restitution coefficient. A perfectly elastic collision
corresponds to ¢ = 1 in which case the outbound velocity is just a reflection of
the incoming one. Now, given that impulses occur at fized location g, the only
change in energy is a kinetic energy change. For the Newton-Poisson impact law
in the context of a one-dimensional impact of a point particle of mass m, the
change in energy is have:

E+ —-B_ = T(q,?}+) - T(q,’U_) = (1/)2 - 1)T(qa 'U—) <0, (1030)
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Allowed region, c¢(q) >0 %

Contact manifold, ¢(g) =0

Disallowed region, ¢(g) <0

Figure 10.3: Schematics of the approximate impulse model described in this sec-
tion. The case illustrated here is the preemptive impact resolution
where the incident velocity v_ is changed before impact has oc-
curred.

for an impact at location g and where T'(v) is the kinetic energy, defined earlier
in (3.11).

This is illustrated schematically in Figure 10.3 for the preemptive impact de-
tection case and in Figure 10.4 for post facto detection.

To generalize this to higher dimensions, an estimate of the part of the incident
velocity that is normal to—or approximately so—the contact manifold is needed.
This is precisely Cxv_ where C% is the n. x n Jacobian matrix of the n. contact
surface evaluated at the discrete time k. A strict equivalent of the Newton impact
law would state Cvy = —¥Cv_, where ¥ is a diagonal matrix of size n. x n.,
¥ = diag(y1,¥2,---,¥n.), ¥ € [0,1] being the Newton restitution parameter of
the ¢th contact manifold. However considering that impulsive contact forces must
be non-adhesive leads directly to a complementarity formulation (an analysis of
this is found in [224]). Thus, the second stage of the exact procedure presented
in the last section, assuming also the presence of other equality constraints with
agglomerated Jacobian G, and adding regularization parameters with diagonal,
non-negative matrices ¥ and =, for the equality and contact constraints, respec-
tively, the discrete Euler-Lagrange equations (10.26) are approximated with the
following LCP

Muv, — GTA—CTyv = Mu_
Grvy + 2 = Gru_
Crvy +¥Cv_+Ev=w
0<v L1 w2>0,

(10.31)

where the potential forces h2VV were neglected. Indeed, impulsive forces suffi-
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qi—1

Allowed region, ¢(g) > 0

Contact-manifold, ¢(g) =0

Disallowed region, ¢(g) <0

Figure 10.4: Schematics of the approximate impulse model described in this sec-
tion. The case illustrated here is the post facto impact resolution
where the incident velocity v_ is changed after impact has occurred.
Constraint stabilization is then used to stabilize back to the contact
surface.

cient to revert the incident velocity must be very large in comparison to other
forces in the system. Note that this update only affects the velocity variables so
the energy change from this update is restricted to kinetic energy change. This
is now evaluated:

T, = v'_{M'U_,_ = v_{M'UT + v_q;GTA + v_{C’Tz/
= v Mvu_ + MTGuv_ +vTCv_ +vTCvy + UIGT)\
=T - ATEA+vT(Cvy +¥Cv_) +vT(I - ¥)Cv_  (10.32)
=T - ATZx+vTw —vT5v +07(I - ¥)Cu_
<T..

The last inequality is derived from the following facts

—ATEXA <0 since ¥ is symmetric and positive definite,
vTw =0 from the complementarity condition in (10.32),
—vTEr <0 since E is symmetric and positive definite,
Cv_ <0 by assumption on the contact conditions,
(I —¥)Cv_ <0 from the definition of ¥ since 0 < 9; < 1,5 =1,2,...,n,,
v >0 in the solution of LCP (10.32).
(10.33)

Therefore, this impulsive stage can only decrease the kinetic energy. Since the
positions are not changed in this stage, the total energy can only decrease.
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Once the impulsive stage is computed and velocities updated, the integration
proceeds using the computed velocities, v, and the previous positions.

Observe that impact conditions are caught a posteriori, i.e., after detecting a
non-zero penetration for one or several of the nonpenetration conditions. Stabi-
lization back to the contact surface is handled using the constraint stabilization
mechanism described in Chapter 4. This strategy is not very good for cases in-
volving a combination of high incident velocities and deep penetration. For some
cases, one can implement a preemptive impact strategy. This is left for future
work.

This model still lacks friction forces in the direction tangential to the contact
plane. The friction model derived in Section 10.11.4 can be added to the present
formulation without changing the dissipative properties.

Other work related to impacts and friction is discussed in Section 10.12.

10.6 Numerical comparison

The behaviors of different impact models described in the previous sections are
now illustrated. First in Figure 10.5, a short simulation using the exact model
of Section 10.4 is portrayed. For a one-dimensional problem, this method is fast
and very simple to implement. Modifying the energy conservation stage (10.26)
to dissipate a fraction of the incident kinetic energy is easily done, requiring
that the outgoing kinetic energy be a fraction of the incident one. This amounts
to Newton’s law of impacts. This is parametrized with a restitution coefficient,
1 € [0, 1]. Data on the graphs has been sub-sampled (due to a technical problem)
which is why the lines do not touch the plane z = 0 exactly.

In Figure 10.6, the long term behavior for unit restitution as computed by
the exact, preemptive and post facto methods is illustrated. The approximate
methods loose energy linearly in the case of post facto detection and exponentially
for the preemptive method. For the post facto case, the decay is small and
tolerable since in practice, there is no perfectly elastic collision. Preliminary
experiments show that this decay can be made very small if one makes a better
estimate of the impact location parameter a.

In Figure 10.7, the regularized stepper of Section 4.2 is used without any con-
straint stabilization. This leads to unpredictable impact restitution, depending
on exactly when and how deep a penetrating configuration is caught. This is
clearly not a usable scheme.

In Figure 10.8, different values of the normalized constraint stabilization pa-
rameter d = 7/h of Section 4.4 are used to stabilize the regularized contact
constraint. This is strongly dissipative from d > 2 and can in fact be made to
absorb all the impact energy for d = 100, if desired. Such an impact processing
scheme is stable for d = 2 but the observed restitution coefficient is random, and
very close to 0.

Finally, in Figure 10.9, one step before and a few step after impact are illus-
trated with each of the methods at zero restitution ¢ = 0. For the post facto
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One-dimensional impact with exact method, different restitutions
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Figure 10.5: One-dimensional impact simulated with the exact method of Sec-
tion 10.4 but with different restitution coeflicients. Initial conditions
are v(0) = —10,z(0) = 2, and the time step is h = 1/60.

method, the point penetrates deeply and is then stabilized, with some compar-
atively small overshoot. For the preemptive case, the trajectory is modified to
avoid penetration and is made to graze the contact surface instead. The exact
method locates the time step when penetration would have occurred and puts
the particle on the surface = 0 and the end of that step, with zero energy.

The post facto strategy offers a good compromise. For complicated cases with
very fast moving objects, a combined preemptive and post-facto scheme should
be considered, and this is left for future work.
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Long term behavior of different methods
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Figure 10.6: Long time integration of the exact, preemptive and post facto meth-

ods using unit restitution, ¥ = 1, which leads to elastic impacts.

The post facto method still looses energy slowly but does a better
job than the preemptive method.

One-dimensional impact using only stabilization
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Figure 10.7: Long time simulation using only the regularized stepper. Even with
zero restitution, this produces erratic behavior which can be unsta-

ble. Note that changing the initial position causes wildly different
behavior. The initial velocity is fixed at v(0) = —10.
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One-dimensional impact using only stabilization
45 T T T T T T

time

Figure 10.8: Integrating over impacts using only the SPOOK stepper of Sec-
tion 4.4, the stabilization parameter d = 7/h is varied. Note that
for d > 2, the collisions are completely inelastic.

One-dimensional impact with different methods, restitution ¥ = 0
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Figure 10.9: A few integration steps before and after an impact with zero resti-
tution, illustrating how the different methods behave. As expected,
the exact method finds the contact manifolds and stays on it. The
other methods quickly converge to it.
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10.7 Nonsmooth forces and nonideal constraints

Impacts arising from non-penetration conditions are but one instance of a non-
smooth phenomenon in physics and they are distinguished for being based on
position only. In this respect, non-penetration conditions are very much like
holonomic constraints when they are active. By contrast, friction forces and
other nonsmooth phenomena are expressed in terms of velocities and this fact
suggests that the correct strategy is to construct appropriate Rayleigh dissipation
functions.

Noting that for a given Rayleigh function 2R(g, g,t), the effect on the dynamics
of a system with Lagrangian function £(g, ¢,t) is via the integral term appearing
in d’Alembert’s principle, namely:

h
OR -
- dsgr09 = fi (20,01, 1300 + 13 (0,01, h)Sas. (10.34)
o]

This integral term is well behaved even for nonsmooth functions R, as long as
the velocity partial derivatives are integrable functions.

Also, when applying d’Alembert’s principle to nonsmooth systems which have
hard boundaries, so the virtual displacements d¢ might be restricted, the equality
sign of (3.77) is replaced by Fourier’s inequality [173], namely

t1

§ | dsL(q(s),d(s)) + /tl dsfT6q <O0. (10.35)

to to

In the following sections, several nonsmooth Rayleigh functions are constructed
to model different forms of dry friction.

10.8 Velocity limits

First consider a dissipation force which restricts the magnitude of the velocity
vector ¢ so that ||g|] < p,p > 0. Clearly, it is possible force [|¢|| = O using
the dissipation function R(q,¢,a,&) = —7 [(7/2)de + de], where the ghost
variables a have the same dimensionality as g. However, limiting the magnitude
of ¢ away from ¢ = 0 requires only a one-dimensional Lagrange multiplier.

What is needed here is a dissipation force which is switched on whenever ||g||
exceeds the limit p. The regularization parameter § > 0 will control how quickly
the velocity is brought back within bounds. To do this, introduce the nonsmooth
function:

0 whenz <0,

6, = 10.36
+ r otherwise . ( )

This function extracts the positive part of any scalar z € R. The derivative of
64 is well defined away from the origin but nonsmooth analysis [66] reveals that
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10.8 Velocity limits

the proper definition is

a6, (z) 0 when z < 0,
z
;T =6 (z)=11 when z > 0, (10.37)
[0,1] when z=0.

In other words, ', (0) is undetermined as it can take any value in the interval
[0,1]. This appears problematic at first but it is shown below that the regulariza-
tion procedure picks a unique value for ', (0). Note carefully the use of 8’ (z) to
denote the total z derivative in order to avoid confusion with the time derivative
which is still written as ¢ = dg/ dt.

The constraint being imposed now is simply 84 (||g|| — p) = 0 and therefore,
the regularized Rayleigh function needed here is

§¢2 )
Re = = +¢0+(lldll - p), (10.38)

where ¢ € R is a scalar, and this generates forces on the ¢ variables according
to (10.35)

_d (3_£> oL M _
dt \8gT ) " 8¢T  8¢T (10.39)
fo= =22 = &8, (ldll - p) |
1T T gt + ll4ll ™
and for the ghost C ,
d (oL 8L %R,
dt (agT) T T e (10.40)
0R¢ ; .2

fe P ¢=6:(ldlI" = p)

Note here that Fourier’s inequality (10.35) is not used since there is no restriction
on ¢ or ¢. Combining (10.39) and (10.40) leads to a nonsmooth nonlinear system
of equations to be solved when discretized though, in fact, it is simpler to use
an equivalent NCP formulation, as already suggested by Fourier’s inequality.
Indeed, the ghost equation (10.40) is identical to the complementarity condition

0<8—lgll+pL¢>0. (10.41)

The inequality sign to the left of (10.41) accounts for the fact that 64 (z) >
0. Now, the Rayleigh function in (10.38) produces change in energy as shown
in (3.88) and given the choice of signs in the definition of R in (10.38), it follows
that restricting C > 0 leads to dissipation, which is the current intention. Next,
whenever ||g|| < p, the value of ¢ vanishes from the f; equation in (10.39).
Therefore, as long as ¢ = 0, it follows that §¢ — ||| + p > 0.
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To formulate the equations of motion (10.39) as a bona fide NCP, the derivative
term §’, in formulation of f; must be considered carefully. Note first that if { > 0,
the fe equation in (10.39) yields

;1. 1 .
¢ =5 (ldll = p) = 56:((lldll - p)), (10.42)
which in turn implies that the fg force is
fo= =8, (200, (2)d (10.43)
@ = g e -

where z = [|g|| — p. But since 8’ (0)6,(0) = 0, at which point ¢ =0, it follows

that CBQ_ (z) = ¢ everywhere and the force term reduces to

1
ll4ll

whenever § > 0. Note that this force opposes the direction of motion and is
therefore dissipative.

For discretization, several choices are available as was described in Section 3.12.
Choosing the fully implicit discretization for the forces flgi)(qo,ql, h), leads to
the stepping equations

fo= {4, (10.44)

DYL4(qk, Qe+, k) + D3 Lig(qe—1,qr, k) — Wiy, (=0

(10.45)
0< —Wiy1(qr41— ) +p+0¢C L (>0,
with the definition:
w, L (gei—a) = v (10.46)
kbl = (k41 — Q)" = 7 Vkt1. .
llgx+1 — gxl| lvierall

For the special case where the discrete Lagrangian L 4(qo, g1, ) has the form,

1
La(g0,491,h) = oh (1 — QO)T M (g1 — q0) — hV (o), (10.47)

and approximating Wy =~ Wi41, the stepping equations in velocity form are the
solvable mixed linear complementarity problem (MLCP):
|0
X (10.48)

where the slack variable x was introduced. In practice, it is sufficient to take
Wi = Wy. Obviously, it would have been possible to define the Rayleigh function
using only parts of the velocity vector ¢, using, e.g., v = D(gq)g where D(q) is
a projection operator. This would only change the definition of the matrix W
in (10.46) but not the rest of the analysis and in particular, not the form of the

M W,;I;’ Vk41 n —Muvyg, + BV,
Wy 4 ¢ p

0<¢ L x20

NCP for the stepping equations.
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10.9 Dissipative properties of velocity limits

In addition, the velocity variables ¢ can be replaced any ghost velocity A and
thus impose a restriction on the magnitude of Lagrange multipliers corresponding
to nonholonomic constraints. In that latter case however, the sign of the Rayleigh
function must be reversed to preserve the dissipative property. This is shown
below in Section 10.9. Note finally that the §(z) function can in fact be removed
by using the restriction C > 0 with the Rayleigh function

R = gc’ + <o - 11dll), (10.49)

and using the Fourier inequality (10.35) leads directly to

To= —qu _ (10.50)
0<—fr=b+p-ldl  Lé>o0

Both the unrestricted formulation using the filter function 64 (z) and the re-
stricted formulation with ¢ > 0 have their advantages.

10.9 Dissipative properties of velocity limits

Velocity limits described in the previous section are now shown to be strictly
dissipative. It was shown in Section 3.12, particularly in (3.88), that for any
Lagrangian system with time independent Lagrangian function £(z, 2) and any
Rayleigh function fR, the energy dissipation rate is

dE .7 OR

— =T (3.88")

dt 2T
For the case at hand, the generalized coordinates z consist of z = (g, () and thus
the dissipation rate is

dB _ 9% ;9%

at % aqT "¢

—¢6% (llall = ellall + ¢fe
—Cligll +0 <0,

(10.51)

IN

since f¢ =0 and ¢ > 0 by construction, and 8. (z) > 0.

In the discrete case, given initial conditions vg and g¢q, write v; and q; for the
velocity and position that would be found without the additional term, and set
the actual computed updates as

v=wv, — M WL¢

10.52
g=q — RM'WL( ( )

Then, the difference between the energy that is found at v,q and that which
would be found at vy, ¢; if the velocity limit was not active, given the discrete
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Velocity limit on a 1D point particle
2 T T T T R
position —
velocity --
energy --

Figure 10.10: Simulation of the dynamics of a one-dimensional particle subject
to a speed constraint and a harmonic potential.

Lagrangian of (3.25) and the corresponding discrete energy (3.61), is computed
to be

AE = vT My —vT MoT — hfTWE¢

ST T (W MW+ Wb )

5 (10.53)
= dere Ty
<o,

where fo = —8V(g0)/8¢9F. Since ¢ > 0, and since the term in parenthesis on
the second line is recognized as the reduced equation for ¢ after eliminating
the velocity equation in (10.48), the expression is strictly negative when the
constraint is active and when 6 > 0.

Thus, this formulation is strictly dissipative and therefore models some form
of friction phenomena.

An illustration of the effect of this type of velocity limit constraint is provided
in Figure 10.10. Here, a point particle with unit mass is hooked to a simple
harmonic oscillator with unit frequency at position £ = 3/2 and v = 3/2, moving
away from the origin. The velocity limit imposes a speed of ||¢|| < 1. The velocity
is too high at ¢ = 0 and the constraint activates and reverses it. The particle
reaches back toward the origin with velocity ¢ = —1 until it is within a region
where [|g|| < 1 under the action of the harmonic oscillator.
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10.10 Range limits on pseudo-particle coordinates

10.10 Range limits on pseudo-particle coordinates

An analysis of range limits on position variables was presented in Sections 10.2,
10.4, and 10.5 which included details of the kinetic energy before and after im-
pacts. Such limits arise naturally from non-penetration constraints for instance.
However, it is also useful to model range limits on the coordinates of the pseudo-
particles themselves. The need for this sort of model is clear when considering
the idealization of a massless rope with finite break tension for instance. If such
a rope attaches two rigid bodies for instance, it will keep them at a distance
d < go as long as the tension A is less than the break threshold Aq but will cease
to generate any force if A(t) > A at any point in time as the rope is then broken.

As an alternative example, consider a hinge joint between two rigid bodies
made out of some metal assembly. Metals typically behave elastically under
stress up to some maximum—the yield point. Thus, hard bounds on constraints
are desirable and these can be enforced with a technique identical to standard
impacts, though with even simpler Jacobians since in general, what is imposed
is the simple constraint ||A]| < Amax OF just Amin, < Ai < Apax,, there A is the
ghost variable of a given constraint.

These additional constraints are dissipative in general using the two stage
impulse model described in Section 10.5. Adding them to the stepping model is
straight forward so it is safe to omit the full details.

10.11 Dry friction and the Coulomb model

Rayleigh dissipation functions of the form R = (1/2)¢T Dg were introduced in
Section 3.12 as the archetype polygenic force. This Rayleigh function generates
a force of the form fiw = —Dgq which is linear in the velocities ¢ and therefore,
generates no force at all when ¢ = 0. This type of friction proportional to
velocity is an example of a viscous drag which is typical of the dissipation forces
encountered when moving a solid body through a fluid such as air or water where
this is known as Stoke’s law [175]. More accurate viscous drag forces for high
velocity motion in a fluid involves higher powers of the velocity but the fact
remains that viscous drag forces vanish for zero velocity.

By contrast, dry friction forces are nearly independent of velocity and in par-
ticular, they do not vanish at zero contact velocity. The usefulness of this in
daily life is tremendous since otherwise, it would be impossible to walk, sit still
on a chair, hold a glass of wine, or keep clothing on.

10.11.1 Phenomenology of dry friction

Dry friction arises when two solids come in contact and no fluid is present at the
contact area. The exact details of the contact forces can be very complicated
especially if one accounts for elastic and plastic deformations and in fact, a com-
plete explanation of dry friction starting from molecular forces is still missing
though much progress has been made in that direction recently [231]. Not too
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surprisingly, the explanation of dry friction comes from quantum mechanics as
all other classical explanations, based on surface roughness for instance, have
proved to be wrong. Since the details of such models are not particularly rele-
vant to simulation of the macroscopic phenomena, they are not pursued further.
Good macroscopic constitutive models describing the tangential contact forces
of contacting bodies do exist as described now.

The most striking characteristic of dry friction is that it exhibits two distinct
modes. The first is know alternately as stiction, stick mode, rolling friction, or
static friction, and refers to the situation where the tangential contact forces
maintain zero relative contact velocity between two contacting bodies. Different
names are used in different branches of the literature and can be conflicting,
though static friction is universally understood. Rolling friction, in particular,
means both static friction—which allows rolling as opposed to sliding [266]—and
the additional friction forces observed when a circular object rolls steadily on
a contacting plane. Since stiction forces maintain zero relative velocity, they
produce no work. The second is known alternately as sliding, kinetic friction, or
dynamic friction, and refers to the situation where the relative contact velocity is
non-zero and where the tangential contact force has constant magnitude, directly
opposing the sliding velocity. The transition between the two modes is known as
the stick slip transition.

The principles of dry friction were suggested by Leonardo da Vinci and pre-
sented first by Guillaume Amontons in 1699 and verified by by Charles-Augustin
Coulomb in 1781. The following conclusions were reached regarding the tangen-
tial friction forces at the interface between two contacting bodies:

Area independence: the net friction force is nearly independent of the contact-
ing area;

Kinetic friction force depends on magnitude of normal: the magnitude of the
kinetic friction force is directly proportional to the normal force between
the contacting bodies;

Stick-slip transition depends on magnitude of normal: the magnitude of the
tangential force when the contacting bodies start to move is directly pro-
portional to the normal force;

Kinetic friction depends on sliding speed: the magnitude of the friction force
decreases slightly when the relative sliding speed at the contact increases;

Kinetic friction is maximally dissipative: the kinetic friction force acts in a di-
rection directly opposing the sliding velocity in the case of isotropic fric-
tional contacts. In the anisotropic case, kinetic friction acts in a direction
causing maximum dissipation.

Modern investigations of dry friction have provided partial explanations of these
observation [231]. It is reported that Coulomb did in fact suspect the velocity
dependence of the kinetic friction coefficient but his data was not accurate enough
to make the claim at the time.
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10.11 Dry friction and the Coulomb model

To formulate this more accurately, consider a mechanical system with gen-
eralized coordinates ¢ : R — @, where @ is an n-dimensional manifold. As-
sume the existence of a contact point at time tg so the contact constraint is
active: ¢(q(to)) = 0. Now, assume that D(9(g) : R” — R? is a projection op-
erator so that v(9) = D(9g is the relative sliding velocity at the contact point
q(to). Obviously, the rows of matrix D (¢) are orthogonal to the contact normal:
C = 9c(q(to)/0g. Let f,(f) be the magnitude of the normal force at the contact
point and let ft(c) be the tangential force acting in the contact plane. With this
notation, dry friction is formulated as follows

v© = DG =0 = || < 1O £, static friction

q'TD(c)T t(C) (1054)

m = -1« ”ft(C)” = /L;cc)”f,,gc)”, kinetic friction,
qilllJ¢

where ,ugc) > 0 is the coefficient of static friction, and ,u.gcc) > 0 is the coefficient

of kinetic friction. These relations are true for each contact point. In general
,u.gc) > ,uff), and the discrepancy is of the order of 10-20% [232].

The formulation (10.54) is obviously a complementarity condition as either one
of the two sets of constraint is active at any given time. The case of D(9)¢g = 0
can be handled using the methods of Section 3.14.5 and Section 4.3, but the
second condition and the transition between the two requires new analysis.

A reasonable approximation of the dependence of the friction coefficient on
the relative contact velocity v € R2, is given by either of the following two
models [103]:

analytic model: pq(v) = ps (1 — a¢> ,

VP +[vl?

us (1= all) when |jv) <7,
us(l—a) when ||v]| > n,

(10.55)

discrete model: pq(v) =

where, in both cases, the kinetic and static friction coefficients are related by:
pr = ps(l —a),a € (0,1), and the parameter n > 0 is a creep threshold. Of
course, all these parameters are dependent on the specific contact properties.
Note that the transition from ps to pg is very rapid and in fact, at the time scale
used in interactive simulations, it might be too quick to catch and thus, one can
generally use ps if the contact is in stiction, and pg otherwise. Nevertheless,
the conclusion to draw is that the friction coefficient is a velocity dependent
parameter.

The complementarity conditions described in (10.54) and (10.55) define the
friction cone in which the contact forces are constrained to be. To see this, think
of the contact plane with orthogonal directions ¢; and £5 as shown in Figure 10.11
below. Normal to that surface is the normal force of contact, fyor, pointing
upward since the contacts are assumed to be non-adhesive. The magnitude of
the normal force, || fror|| provides the budget for the magnitude of the tangential
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Figure 10.11: The Coulomb friction cone.

force according to || fran|| < fs||faor]|, which means that tangential forces are
within a disk of radius ps||fnor|]| for the isotropic case. The net contact force
is the vector sum fhor + fian Which must lie within the cone. Two cases are
illustrated in Figure 10.11, namely, one in which the tangential force fi,, lies
strictly in the interior of the cone—a case of static friction—, and one which lies
on the boundary—a case of kinetic friction.

The Coulomb friction cone poses difficulties because it is quadratic, unlike the
linear convexr cones defined in Section 16.3. Several approximations of this cone
can simplify the problem of solving for friction forces in multibody multicontact
configurations, as described below in Sections 10.11.3 and 10.12.

10.11.2 An analytic model of Coulomb friction.

A novel model for Coulomb friction using Rayleigh dissipation functions is now
derived. This model is the first instance of a standard NCP formulation which is
motivated by physics and solvable for any value of friction coefficients. Previously
known models are often restricted to a small friction coefficient near zero as
in the Trinkle, Pang, Sudarsky, and Lo model [266], or constructed directly
from the stepping equations as in the models of Anitescu, Potra, Stewart, and
Trinkle [17, 261, 19], this latter family of models being solvable for all positive
values of friction coefficient, when the problems are nondegenerate.

In its nonlinear form, the new model is rigorously isotropic but could easily be
also extended to anisotropic friction as well—fabrics such as velvet are notorious
for being strongly anisotropic. It also includes the possibility of velocity depen-
dence of the friction coefficients as described in (10.55) for instance. Finally, in
the nonlinear formulation, the number of complementarity conditions in the new
model is minimal when compared with the solvable linear formulation [19]. Nev-
ertheless, a linearization of the new model does reduce to a slight modification
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of the standard LCP model [19], which is then regularized with small positive
terms along the diagonal. This makes it solvable by the Lemke algorithm [179]
in all cases, including degenerate ones.

To make this section simpler to read, all subscripts indicating contact index
are dropped. A single contact constraint of the form ¢(g) > 0 which produces the
Lagrange multiplier ¥ > 0 is considered. The projection into the plane tangent to
the contact is the 2 X n projection operator D(q) so that v = D(gq)gq is the relative
tangential velocity at the contact point. An extension to multiple simultaneous
contacts is described at the end of this section.

First recall that a Rayleigh function of the form

R(q,d) = %nn(q)q — w(®)|?, (10.56)

eventually produces the constraint D(g)d = w(t) if the damping constant y~ 1 is

large enough. This is true for any generalized velocity, including the velocities
corresponding to the ghost variables. The driving velocity w(t) will be set to 0
in what follows but it is an interesting addition to the modeling vocabulary, as it
can be used to model a drive belt such as that found on grocery store checkout
counters. This is easily reintroduced at the end of the derivation though.

Given the phenomenology described in Section 10.11.1, a pair of complemen-
tary constraints must be imposed as follows

Zero contact velocity: impose v = D(g)¢ & 0 using ghost velocity 8 € R?;

Friction cone condition: impose ||8]| < u(¢)v where g is the friction coefficient
and v is the normal force for the given contact c(q) > 0.

For the first constraint, introduce the regularized Rayleigh function
BIF - .
Re = — (7”2” +67D(g)q | , (10.57)

which was used before to model the kinematic constraint D(g)g = 0.

To impose a limit on the magnitude of the friction force, introduce the nega-
tive of the Rayleigh function constructed in Section 10.8, using the form given
in (10.49) which restricts the ghost & > 0

% = 7 4 (vald) ~ I8]). (10.58)

As shown below, this negative sign is necessary to preserve the dissipation prop-
erty in the case where the velocity limit is applied to a ghost, the variable 8 in
this case, as opposed to the coordinates g directly.

The combination of these dissipation functions generates the following nonlin-
ear complementarity force terms on the generalized variables ¢ and ghosts v, 3,
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and o, after considering Fourier’s inequality (10.35), equations are found

!

- pT3— L_D i)
fo= D78~ D(qg P94
. A . 1 .
I8 :’Yﬁ‘f‘D(Q)Q"'Um,B:O, (10.59)
0< —fo=066— Bl +vu(@  L&>0,

f,,=0,

where it is assumed that the Lagrangian does not depend on the ghosts 8 and
o to justify fs = 0 and —f, > 0. The nonlinearity is confined to the Jacobian
matrices W and B defined as follows:

W = (1/1|D(q)4ll)D(g)¢",
B =(1/|181N6",
so that the rows of W and B are normalized row vectors.

A few observations can be made on this model at this point. First off, it is
strictly dissipative since a simple computation reveals

(10.60)

d .

o =iyt B fs+ 6f0 +0hs
= v/|ID(9)dlle — YIBI? — 18116 + & £ (10.61)
<0.

The friction coefficient derivative is non-positive, a known experimental fact, so
.2
that p' < 0. The term —v||8|| is negative for v > 0 as assumed here, and the

same goes for —&||8]|” < 0 since & > 0. Fourier’s inequality guarantees that
fo <0 but in fact here, 0 f, = 0 by the complementarity rule.

Next, the following two sets of identities are revealed using simple algebraic
manipulations on (10.59), first for the case of stiction when & = 0 the following
conditions hold

& =0,
181l < viu(d),
D(g)§ = -8 =0+ 0(7), (10.62)
0 < [|[D(q)gll < yvu(a),
B7D(q)d = 11BN D(g)dll,

and then for the sliding case when ¢ = 0 and the following conditions hold
instead

& >0,
18]l = 86 + vu(4) = vv(d) + O(8),
ID(q)qll = (1 +6)5 +yvp =& + O(7),
B D(g)d = —[I1BI1D(a)dll-

(10.63)
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Taken together, these two sets of relations exactly match the definition of
Coulomb friction of (10.54) when 6 = v = 0. In the case where v > 0, there
is no true stiction mode there is a creep velocity of magnitude ||Dg|| = v|8]|-
However since the regularization parameters are only introduced for numerical
reasons and since they are kept near v & 107, this anomaly is not a big issue and
definitely commensurate with observed creep as reported in [231], Chapter 11,
for instance. The direct opposition of the friction force to the velocity is always
exactly verified however, no matter the values of the regularization parameters.

This analytic formulation of the Coulomb friction problem is a standard NCP
formulation with a single scalar complementarity condition. Indeed, the full
equations of motion become

fe=0 (10.64)
0<c¢(q) L v>0
0<-f, L 020,

where the definitions of fq, fg and fo of (10.59) were used. The system (10.64)
is a standard NCP in the variables g, g, 1/,,3, and o. In fact, at this stage, time
derivatives for 8 and o are deleted in the notation, since they play no role what-
soever in the definition of the equations of motion, though they were essential in
finding the correct formulation via Rayleigh functions and d’Alembert’s princi-
ple. In doing this, a set of non-linear differential algebraic inequalitys (DAI) in
the dynamics variables of the physical system is recovered.

By contrast, the formulation of Pang et al. [266] and subsequent analysis by
Pang and co-workers [62, 8, 269] was never formulated as a standard NCP.

Ignoring the contribution of the derivative of the friction coefficient 4’ in the
definition of f; of (10.59), the conclusion is that the NCP (10.64) is solvable
for Lagrangians £ which have positive definite kinetic energy since for any ap-
proximation of the Jacobian B, as defined in the second line of (10.60), the
corresponding MLCP is solvable. The full solvability proof is deferred so that it
can be presented together with the equivalent result of the discretized problem
as they are similar.

10.11.3 Linearized analytic Coulomb friction model

Nonlinear complementarity problems are a phenomenal beast to wrestle and
thus, it makes sense to revise the analysis to introduce a linearized version of the
analytic friction model. The culprit for nonlinearity is the norm operator |||
that was needed to limit the tangential friction coefficient within the friction cone.
This can be linearized with the following clever trick, known as the polygonal
approximation. Consider a non-orthogonal basis in d® € R?,i = 1,2,...,nq4
such that any vector v can be decomposed as a non-negative linear combination

v=> oidi,a; >0, =1,2,...,nq (10.65)

7
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Figure 10.12: Non-orthogonal bases in R? and the decomposition of a vector v
on the basis elements. Only three vectors are needed but having
a larger basis improves the approximation of the norm of v as the
sum of the nonnegative projections.

so the Euclidean norm ||v|| is approximately

ol ~ > a: = BT, (10.66)
i
with the definitions
aq 1
Qo 1
a=1| .1, and E=]|. (10.67)
Qn, 1

This is illustrated in Figure 10.12. The difference between the exact norm de-
pends on how closely the vector v is to a basis vector. Given a large basis, this
error is small. Now, modify the definition of the projection operator D(q)g to
read D(q)g which, instead of being a projection in R? decomposed on the usual
orthonormal basis, is now the vector containing the ng projections of the tangen-
tial contact velocity—the sliding velocity—along ng4 basis vectors d(®). Let the
norm of ||,6 | be simply ET 3, which is correct when 8 > 0, the linearized Rayleigh
functions (10.57) and (10.58) defining the friction model are now replaced with

.2
% = | WL 4 57Dg)s |, (1068)

and the dissipation for the o ghost restricted to o > 0 is

5%, = 27 4 touti) - BB, (10.69)
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10.11 Dry friction and the Coulomb model

Given that both ghosts are now restricted with ,6 > 0 and ¢ > 0, the forces
satisfy the following system

fa= D B+vuW e
0< —fs =78+ D(9)d+ E¢ L B >0 (10.70)
0< —fr =66 — ETB +vu(q) L ¢ >0,

according to Fourier’s inequality (10.35). This is recognized as the Anitescu-
Potra-Stewart-Trinkle solvable LCP model [259, 262, 19, 261], with the excep-
tion of the regularization parameters -y, d, which correspond to small diagonal
perturbation. This difference is investigated further in Section 10.11.5.

10.11.4 A discretized model of Coulomb friction

As in the previous sections dealing with polygenic forces and dissipation forces,
e.g., Section 3.12, the main issue is to choose an appropriate discretization of the
integral — foh OM/0z6z, where z is the agglomerated vector of regular and ghost
coordinates. As was done in Section 4.3 in the discretization of strong Rayleigh
functions corresponding to regularized holonomic constraints, an implicit dis-
cretization is chosen for most terms with the exception of the term proportional
to the derivative of the friction coefficient, ', in (10.59). The reason is that this
term is small and that, as shown in the next section, discretizing it implicitly
breaks a symmetry in the NCP or LCP formulation, jarring with the solvability
argument.

The Rayleigh function g of (10.57) was discretized in Section 4.3 and the
same method is used here. Looking at the force terms generated by R, of (10.58),
the following discretizations are used

1
zgt'?q = §(V1 + vo) ' (v1) Wi,
524 =0,
{2,
(ff i, (10.71)
fiop=Bio1,
+ _
“Jdoo — 0,
_ ) 1 :
~fiey = 861+ 5 (1 + 10)u(v0) — Bifh,
with the definitions 6y = A~1(gy — o) and similarly for 81, as well as the
velocity v = h7!(q1 — o), and the normalized velocity projection matrices
Wy = ||ve||" "7 and By = |,61||_1,6T. The negative sign in the last two equations

are there for convenience in writing the complementarity condition. Since there
are no other terms in the Lagrangian involving o, this is purely notational.
For the linearized model of Section 10.11.3, the force terms are computed
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similarly to yield

— 1
Fioa= 500+ o) () Waa,
—(=)
fd o, —
—(+)
=0,
r (10.72)
fa a8 = Eoy,
=)
—Jdoo = 0:

—(- . 1 .
- t(icr),n =601 + 5('/1 + vo)p(vo) — BT 1,

and all terms with the exception of W3 involve only linear operators.

10.11.5 Solvability of analytic and discretized Coulomb friction
models

First introduce the notation necessary to consider multiple frictional contact

points. Consider a set of nonpenetration conditions given by n. scalar functions

c®(q) > 0, each describing a single contact with index i whenever ¢()(q) =
0. Contact surface 7 has normal C(®) = 3C(i)/ 0q and local tangent projection

operator D ()(q) or 5(i)(q). For the latter case of non-orthonormal projections,

the number of directions for each contact is n,(;). The physical properties are

given by the friction coefficient function x(® and the regularization parameters
are given by €,y and §® for the contact, zero velocity and friction cone
dissipation functions, respectively. These parameters are agglomerated in the
diagonal matrices U, &, A, and T', respectively, and have the explicit form

U= diag(,u(l),,u@), N -,,U(nC)),
X = diag(e(l),e(z),...e(”C)),
A = diag(6™,6@, ... 51, (10.73)
[ =diag(y M1,y L, ...y 1,),
T= diag(fy(l)lngd),'y@)]ngd) yens ,’)’(nc)]n;dc)).
Each active contact has a tangential velocity v® = D®g and a tangen-

tial force B8, and in the linearized formulation, a norm estimator E 6 =
(1,1,...,1)T which is an n,(;) x 1 matrix, leading to the diagonal block matrices

W =diag(W® w @ . whed),
B =diag(BM,B@) .. BM)), (10.74)
E =diag(EW, E@ . E@)),

where W and B are matrices of size n. x 2n. and E is of size ), nt(;)
Putting all these elements together, the stepping equations take the quasilinear

X Ne.
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10.11 Dry friction and the Coulomb model

form
M -DF -cI o |z 9 0
Ckl 0 % 0 v qv B b
0 —By U A o % ¢ (10.75)
0<v 0
0<oc 1 >0,
for the case of the nonlinear friction model,
M _‘Dk _Ck 0 E Qx O
Cw O x  of|v W b
o BT U Alle] |e] |° (10.76)
<B La>0
0<v L 0

for the linearized model.

Block vectors z,gg, 9, and g, have different forms depending on whether the
position or velocity formulation is used, as discussed is Section 3.15 and Sec-
tion 4.5. This leads to either using £ = ggy1 or £ = 41, and the block
components ¢, g3,y and g, vary accordingly. The ghost coordinates 8,v, and
o also include either a factor of A2 for the position formulation and A for the
velocity formulation.

The system (10.75) is quasi-linear in the sense that block matrices Dy, Chs
and By should in fact be evaluated at the solution gx41,8,v and o.

To understand the solvability of the MLCP defined in (10.75), start with the
case where all block matrices are evaluated at the beginning of the time step
so that k' = k. This introduces much symmetry in the block matrix on the
left hand side of (10.75) and leads to a solvable MLCP. Indeed, in reference to
the solvability theory discussed in Section 16.4, what is needed for either the
quasilinear or the linear formulation is an estimate of the size of 2T Hz where H
is the square matrix appearing in (10.75) or in (10.76). The estimates are

ZTHnonlinz = :ETMJE + ,BT]-—‘,@ + VTZV + O'TAO' + I/TUO'
—z7(Dy — Dp)B — 2T (Cr — Crr)v, (10.77)

for the nonlinear case, and

ZTHyZ = 2 Mz + ETﬁ +vTsv 4+ 0T Ao + v U0
—27(Dy — Dw)B — 27 (Cx, — Crr)v, (10.78)
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for the linear case. Choosing the approximation Cy = Cj, Dy = Dy, and
Dy = Dy, the conclusion is reached that unless the diagonal block matrices all
vanish simultaneously, there cannot be an exceptional family of elements, as per
Definition 16.12, for these complementarity problems and thus, they are both
solvable. The same conclusion is reached by applying the friction feasibility the-
ory of Pang and Stewart [227], which hinges also in the absence of an exceptional
family of elements, but requires also a number of additional assumptions. Since
solvability is proven already, there is no need to go over these.

A proof of the existence of a solution is hardly a solvability proof, however.
Solvability is now demonstrated for each model, starting with the nonlinear model
of (10.75). First, symmetrize by setting Cxr = Cj and similarly, Dy = Dy
in (10.75). Drop all & and k' prime subscripts in the block matrices B,C and
D, and then take the Schur complement of the first line of (10.75), solving for
z, and evaluating and evaluating the following substitutions

t=—-M1q,+ M DT+ M 1Cy,
Dz =DM DT+ DM~ Cv - DM 1q,, (10.79)
Cr=CMDTB+CMCv—-CM1q,.

This yields the following reduced system

Spp Spc B B g — DM~ g, 0

STo Scc O| |v|+ |ew—CM g | =

-BT U Al |o qo c (10.80)
0 1L b>0
0 1L c¢c>0,

where the following definitions were used
Spp =DM DT 4T,
Scc=CMCT + %, (10.81)
Spc = DM~CT.

Now, since Spp is symmetric and positive definite, it is possible to compute
another Schur complement, solving for § and substituting, to get

Hy  —HL| |v Lo - CM™'¢: — S5cSppas| _ |b
Hy;+U Hyp | |o 9- + NSppas c

(10.82)
0<v L b>0

0<oc 1L c>0,
with following definitions for the block H;; matrices

Hi1 = Scc — S5cSppSpe
Hy = BTS;LSpe (10.83)
Hy = A+ BTSphB.
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10.11 Dry friction and the Coulomb model

The problem defined by (10.82) is a pure LCP. This is solvable by Lemke’s
algorithm [179] because the matrix Hy = H + U is copositive plus, being the
sum of a positive definite matrix

Hy —HE
H = 10.84
le Hj,, ( )

and a matrix with non-negative entries, [ li; > 0, where U is defined blockwise
as

0 0
U o

: (10.85)

and the blocks of matrix U have dimensions matching the blocks of matrix H.
The proof that Hy is copositive plus is found in [69] and is used as the main
proof in [14] but for a slightly different problem which is now described.

Consider now the linear model of (10.76). The matrix appearing in this model
is nearly identical to that of the Anitescu, Potra,Trinkle, and Stewart model [17,
261, 259, 19], except for the addition of a diagonal perturbation with non-negative
elements, and the neglect of holonomic constraints. Repeating the procedure
just described for the nonlinear case but taking only one Schur complement,
eliminating only the z variables, the reduced system reads

Spp Spc E| (B gs — DM~1g, a

Ste Sce of |v|+ |aw—-CM g | = H

—-ET U Al||e % c
0<F La>o0 (10.86)
0<v L b>0
0<oc L e>0

with the definitions
Spp =DM D" 4T,
Scc=CM~CcT + 3, (10.87)
EDC =DM cT.

Now defining

Spp Spc E 0 0 O
So=|Spc Scc Ol andU=10 0 0
_ET 0 A 0 U 0 (10.88)
Sy =8,+1U,

it follows that Sy is positive definite, and since U contains only nonnegative ele-
ments, Sy is co-positive plus and thus solvable using the Lemke algorithm [179].
By contrast, the Anitescu-Potra-Stewart-Trinkle model matrix is only co-positive
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since it does not have any of the positive diagonal perturbations of the present
model. The Lemke algorithm is more robust when applied to co-positive plus
matrices since there cannot be any form of cycling then [69].

If the multibody system is subject to a mix of locally linearized, regularized
holonomic and nonholonomic constraints, as described in Section 4.5, the analysis
above holds with the replacement of the mass matrix M with the positive definite
matrix H defined in (4.32), and the vector z is replaced with (zT,aT,AT)T
of (4.29) for the position formulation or (4.31) for the velocity formulation, as
the case applies. In either case, all the conclusions just derived survive.

Solving either the nonlinear model (10.75) or the linearized version (10.76)
efficiently is a challenging task and often requires symmetric approximation and
splitting, as discussed in Chapter 17 and in Anitescu and Hart [16]. However,
having both an existence and a solvability proof is a good thing, indeed. As
shown in Chapter 11, other formulations of the Coulomb friction problem do not
enjoy a guaranteed existence proof and this allows to the existence paradoxical
configurations which do not have finite solutions for the contact forces.

10.12 Survey of numerical models of dry friction

Modeling of Coulomb friction using complementarity formulation in multibody
systems has a long history, going back to the work of Létstedt [189] in the
early 1980s, followed by Baraff [34, 33] in the graphics literature, and Pana-
giotopoulos [1, 224], Glocker and Pfeiffer [232], and Anitescu, Stewart, Trinkle,
and Pang [229, 266, 228, 262, 17, 19], in the mathematical and engineering lit-
erature. Unfortunately, these are not solvable except in very low friction. Only
the formulations of Anitescu, Stewart, Trinkle, and Potra [17, 261, 259, 19], are
actually solvable for arbitrary non-negative friction coefficients.

NCP models have also been proposed by Pang and co-workers [266, 229, 269,
62], among many others, but without any proof that the NCP was solvable,
except in the limit of very small friction coefficients. Existence and solvability
are still open problems for the case of deformable bodies.

The problem here is that dry friction produces impulses during stick-slip tran-
sition and this actually means that accelerations are not well defined. A classical
two-dimensional example due to Painlevé [223], involving a rod contacting a
plane, can be used to demonstrate the existence of configurations with no fi-
nite solutions and others with multiple solutions, in addition to regular cases
with unique solutions. However, this paradox is lifted if an implicit time step-
ping formulation in terms of velocities is chosen, and the dry friction model
is discretized judiciously, as demonstrated in the work of Stewart and Trin-
kle [261, 259], and refined by Anitescu, Potra, and Stewart [17, 19]. Existence
and solvability is established for these models but only for non-degenerate cases.
The diagonal perturbations corresponding to the regularization of the Rayleigh
functions of Section 10.11.2 remove this non-degeneracy requirement, as shown
in Section 10.11.5.
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10.12 Survey of numerical models of dry friction

Except for the work of Pandolfi, Kane, Marsden, and Oritz [225], none of the
previously cited time stepping schemes are derived from a variational principle.
The formulation of Pandolfi et al. [225] shares similarity to the present in that
it also uses Rayleigh dissipation functions. However, instead of introducing the
tangential force explicitly with Lagrange multipliers, the Rayleigh functions are
defined as

%= uOrODO(g)q, (10.89)

where the sum extends over all contacts z, each of which has friction coefficient
1@ and tangential velocity projection D ()(g). This is possible since their ap-
proach relies on a nonsmooth optimization scheme which minimizes the Rayleigh
functions (10.89) at each step. The main issue with this work is that one needs
to solve nonsmooth, nonconvex, nonlinear optimization problems. A proof of the
existence of a solution was not provided in [225].

New friction models are routinely published in the literature. The reader is
referred to the monograph of Brogliato [56] for a broad survey.

Some notable approximations of dry frictional contacts are worth mentioning
though. The simplest is to only compute the normal forces and to then apply
a force fian = —pvsgn(D(q)q) for each contact. The problem here is to decide
what to do with sgn(0). One solution for this is to replace sgn(z) with a similar
function that is not discontinuous, such as tanh(xz) for instance, with £ > 0. For
large values of k, this produces something similar to sgn(z) though it is always
the case that tanh(xz) = 0 for z = 0 and this leads to significant creep velocities
at contacts, an undesirable feature. Trying to fix this problem leads necessarily
to a nonsmooth function and this, in turn, requires solution of LCPs, as shown
in [258].

Assuming that one chooses a truly nonsmooth formulation, simplifications
come in two categories, namely, relaxing the coupling between the tangential
force budget and the magnitude of the normal force of (10.54), or decoupling the
components of the tangential force when estimating the magnitude. This leads
to the following models.

Using the usual Euclidean norm, bound the tangential contact force fia, as
[| fran|] < ¥, for some 7 > 0, such as the last known value, for instance. This
replaces the friction cone of Figure 10.11 with a cylinder. Depending on the size
of the current normal, this approximation produces an overestimate or underes-
timate of the tangential force budget, as shown in Figure 10.13. The resulting
stepping scheme for this is still nonlinear though. The main issue here is that for
a stacking problem, unless the estimates ¥ are adjusted dynamically, the tangen-
tial force budget for items at the bottom of the pile will tend to be insufficient,
whilst those at the top will be excessive.

One can also use a friction pyramid approximation to the friction cone, bound-
ing each component of the tangential force individually along the tangential di-
rections dy and ds specified by the projection operator D(g)g, so that fiani <
pv,t = 1,2 and v is the normal force of the current computation. This is done
in [228] for instance. Figure 10.14 illustrates the situation. The coupling between
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Figure 10.13: The cylindrical approximation to the Coulomb friction cone.

the magnitude of the tangential force budget and the normal survives, but there
can be excessive friction when the external forces are aligned toward the corners
of the pyramid.

Combining the previous two strategies leads to box approximation of the fric-
tion cone in which each component of the tangential force is bounded by an
estimate of the normal force, so that fi.n; < pv,2 = 1,2, and ¥ is an estimate of
the corresponding normal force. This leads to anisotropy as in the case of pyra-
midal friction above, and the absence of scaling of the tangential force budget
described in the cylindrical approximation approximation to the friction cone.
However, the MLCP describing this problem is now a simple boxed, mixed linear
complementarity problem, and the matrix defining it is now positive definite,
provided the perturbation parameters are all positive.

For both the box and cylindrical friction models, the problems to solve are
equivalent to quadratic programs, as shown in Chapter 17. It is also possible to
perform iterations so the estimate ¥ is refined, and thus the cylinder or the box
can be scaled. Such schemes have been used several times in the literature at least
in [191, 273, 236, 2, 238, 142, 143], and probably numerous other instances. The
convergence of these techniques is often assumed [77], but as shown in Chapter 17,
it is not guaranteed.

For completeness, an illustration of the polygonal approximation of the friction
cone described in Section 10.11.3 is found in Figure 10.16. The directions d; can
be chosen to reduce the anisotropy found in the pyramidal model, and strictly
scale the tangential force budget with the normal.

The cylindrical, pyramidal, box, and polygonal friction cone approximation
described above, are all solvable when discretized with the techniques of Sec-
tion 10.11.4, and moreover, they are all strictly dissipative, since they can all
be formulated as approximations of the Rayleigh functions (10.57) and (10.58),
which are dissipative analytically as shown in Section 10.11.2, and also when
discretized using a short calculation similar to that of (10.53).

In addition to the models provided above, several other models and algorithms
applicable to the quasi-static problem of deformable bodies were reviewed in
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Figure 10.14: A pyramidal approximation model to the Coulomb friction cone.
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Figure 10.15: The box approximation model of the Coulomb friction cone.
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Figure 10.16: The Anitescu-Potra-Trinkle-Stewart approximation model of the
Coulomb friction cone.

Christensen, Klarbring, Pang, and Stromberg [62, 63, 64]. Generally, these al-
gorithms are reported to work well only when the friction coefficients are very
small.

More recently, Glowinski, Shiau, LieJune, Ming, and Nasser, constructed dry
friction models and solution methods in a series of articles [101, 102, 255, 103]
based on a non-standard complementarity formulation. The idea here is to com-
pute a Lagrange multiplier A such that, stated here in one dimension for simplic-
ity,

Ag =4 (10.90)
This type of condition is not at all similar to the complementarity formulation
used here. It is not clear when such nonlinear conditions can be solved, even
though the idea itself is sound and correctly captures the physics. Whether this
formulation resolves the Painlevé paradox remains to be seen.

10.13 End notes

To get to grips with the issues related with friction, consider a classical example
of a point particle moving in one dimension subject the combined force of a
harmonic oscillator, dry friction, and a sinusoidal force. This example is found
in [113], example 6.5, for instance, and used recurrently in the literature. The
point particle has unit mass, it is attached to the origin with a spring of unit
strength, and it is subject to a viscous drag force of —yg where v > 0. The
particle is also subject to dry friction which is represented here as psgn(q),
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where p is the effective friction coefficient and sgn(z) is the signum function.
Using Newton’s law directly, the equation of motion reads

4+ 2vq + psgn(q) + g = Acos(wt). (10.91)

The dry friction force is obviously nonsmooth, producing the term +u whenever
g # 0. Resolving what happens when ¢ = 0 is the main issue when solving dry
friction problems. Since formally, the signum function at the origin can take all
values in the interval [—1,1], system (10.91) is in fact a differential inclusion,
which should be written as § € F, where F is the set of possible values of the
forcing terms. An analysis of these in the particular context described here can
be found in in [258]. A simple strategy consists of analyzing the transition and
trying to pick the right value of sgn(0) using consistency arguments.

The solution constructed in [113], for instance, requires adaptive time stepping
and switch conditions at each transition, as well as the solution of a small LCP to
pick the suitable value for sgn(0) whenever the velocity crosses zero. By contrast,
using either the smoothed nonlinear or the LCP formulation for the friction model
presented in Section 10.11.4, one can compute a solution indistinguishable from
the one presented in [113], but using a large time step A = 1/60. The solution
computed using the nonlinear model or LCP model are shown in Figure 10.17.
The data is identical though it is much faster to compute a solution to the LCP
directly, at least for this case. Also, in comparison to alternative models such
as those of Glowinski [103] and references provided therein, there is no high
oscillation in the Lagrange multiplier term.
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Figure 10.17: A one-dimensional dry friction example, integrated using both the
nonlinear formulation the linear complementarity problem reduc-

tion.
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11 Bagatelle VII:
The Painlevé Paradox

Dry friction is a non-standard force model defined as a mix of nonholonomic and
nonideal constraints. This formulation leads to paradoxical configurations where,
apparently, it is not possible to compute the acceleration of simple dynamical
systems. This paradox is easily analyzed in the case of a planar rod in dry
frictional contact with a line in the state of kinetic (sliding) friction.

Historical background of the problem is provided in Section 11.1, followed
by a kinematic description of the mechanical system. The equations of motion
are then derived for both the static and kinetic friction states in Section 11.3.
The paradox is discussed in details in Section 11.4 where numerical experiments
are also presented to illustrate that the dry friction formulation of Chapter 10
and the discretization of Section 10.11.4 successfully resolve the problem, as was
proved in Section 10.11.5. Other resolution techniques and models are discussed
in Section 11.5.

11.1 Introduction

Then French mathematician and politician Paul Painlevé observed that Cou-
lomb’s law of dry friction can be used to construct simple examples in two
dimensions which have either no finite solution, several solutions, or a unique
solution, depending on the details of the configuration, as first reported in [223].
This example is presented here in order to illustrate how the variational stepping
scheme combined with the friction model developed in Section 10.11.4 leads to a
resolution of this paradox.

The paradox is realized by a simple two-dimensional rod of length 2! and mass
m subject to downward gravity and Coulomb friction at one contact point as
described below and in [259, 232, 34] for instance. A different version of this
paradox which has more to do with differential inclusions is also found in [108].
The two formulations will be compared briefly in Section 11.5.
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11 Bagatelle VII: The Painlevé Paradox

11.2 Basic configuration

Consider a two-dimensional thin rod of length 2I, width 2w and mass m, with
uniform density. The inertia of this system is easily computed to be

w l
m
jO:[wdmglldmlm<m%+mg)
'U)2

m12+m
3 3’

(11.1)

where z1,z, are the Cartesian coordinates of the points interior to the rod. In
the limit of vanishing thickness, this reduces to

lim Jo = —. (11.2)

When the density is nonuniform and concentrated toward the center, the value of
Jo can be made smaller and, as we show in Section 11.3.2, a smaller value of Jo
allows to construct paradoxical examples for lower values of friction coefficients.
The value Jo = ml?/3 makes the algebra slightly simpler.

The coordinates of the system are the planar coordinates of the center of mass
z(t) € R? as well as the elevation angle 8. This is agglomerated in the coordinate

vector g € R3
(1)
1 @
z T
g=q®| = M = L@)] , (11.3)

q®
The 3 x 3 mass matrix for this system is
M = diag(m,m, J), (11.4)

and is constant. Introduce the unit vector u(@) € R? as

u(¢) = [ws 1 . (11.5)

sin ¢

The 2D Cartesian coordinates of the two extremities of the rod are labeled with

a = label are are found at
p®) =z + lu(g), (11.6)

and these two points have velocity:
vt = $plJru(9), (11.7)

where we introduced the 2 x 2 orthonormal matrix
0 -1
= 11.

which is a root of the identity, i.e., J2 = I, where I, is the 2 x 2 identity matrix.
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A

fi

Figure 11.1: Schematics of a two-dimensional rod in frictional contact with a
plane. The contact point is either touching or separating in the
normal direction, and either sliding or sticking in the tangential
one.

To impose non-penetration constraints at the extremities of the rod, we simply
impose that the y coordinates of the extremities p(¥) be non-negative, namely,

g®)(q) = ¢@ +1sin(¢g®) =q¢® +1sing >0, (11.9)
which produces the Jacobians

G = [0 1 :tlcos(q(a))] = [0 1 :tlcos¢]. (11.10)

For any of these constraints, the projected tangential velocity at the contact
point along the ¢ or z direction is given by D &g = (1,0)p# where

D(i):[1 0 :Flsin(q(S))]:[l 0 q:lsind)]. (11.11)

Since an acceleration formulation is used in what follows, the second time
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11 Bagatelle VII: The Painlevé Paradox

derivatives are needed. A simple computation yields the following terms

§®(g) = GHN Qi+ GH(9)d = 6P ()G +bH)(g,9),  (11.12)

bH)(q,q) = F1¢* sin ¢, (11.13)
2 [0®(@d] = D® (@) + DD (@i = DP(@)i + P, ), (11.14)
c(i)(q, q) = Fl¢? cos ¢. (11.15)

In addition, the values of the following matrices will be needed in what follows

2
A—c@yig®T 21| Em e ¢] _ 1 [1 + 3cos? ¢] , (11.16)
m Jo m
2
B=DpW®yp®T L1 Tm o ¢] 1 [1 + 3sin® ¢] (11.17)
m Jo m

2
c=D®u1¢HT Z @ u-1p®T = _ L G hcosp = — 2 singeos o,
Jo m
(11.18)

where the final expression on each line corresponds to the specific case where
Jo = mi?/3. The configuration discussed in [34, 259, 232] corresponds to a
simple case where g(~)(g) > 0 and imposing Coulomb friction at that contact
point. This is illustrated in Figure 11.1.

11.3 Equations of motion in acceleration form

Let us assume that there is a contact point so that g(*)(q) = 0, which implies
that ¢ € [0, w]. We drop the (—) superscript form now on to simplify the notation.
In fact, most of the results derived here carry over to the analysis of the other
contact point with g (H)(q) = 0, as expected from symmetry.

When the contact g(g) = 0 is active, there is net generalized normal force
fn = GTv where v € Ry, and f, € R3. This is the net effect—including the
torque—of the force f, = (0,v)T applied at point p) | ie., the generalized force
frn includes both the force and the torque. The magnitude of the contact force
is thus || fn|| = v. Likewise, the generalized tangential force produced by friction
at the contact point is f; = DT,B . Recall that the ghost velocities are used for
nonholonomic constraint forces, as shown in Section 3.14.5 and the description of
the friction model in Section 10.11.2. The magnitude of the tangent force applied
to extremity point is thus p is || fz|| = 8. The Coulomb relation thus reads

8] < p, (11.19)

where p is the friction coefficient. For simplicity, the same coefficient is used for
both static and kinetic friction here.

Assuming the only external influence is that of a constant gravitational field
producing the force fo = Mg with § = (0, g, 0)T, and g > 0 is the gravitational
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11.3 Equations of motion in acceleration form

acceleration, the equations of motion read

M§=Mj+GTv+ DTS
Di+c(g,9) =0
0<g(g) L v>0 (11.20)
0<ur—-fB L <0
Og,u.u+,5 1 o>0.

These equations are usually simplified by explicitly distinguishing two cases,
namely, the stiction case for which D¢ = 0 and the sliding case for which g = uv,
and therefore Dg # 0.

Explicit equations are now derived for each of the cases and the conditions
for transition between them are characterized. The case of stiction is analyzed
in section 11.3.1 and the case of sliding motion is covered in section 11.3.2.
The nature of the Painlevé paradox is then analyzed in Section 11.4 which also
contains a discussion of how this is resolved using the techniques of Chapter 10,
as well as a numerical example.

11.3.1 Stiction case

Assuming that Dg = 0, we keep the equation D(q)d + D(q)d = 0 satisfied and
this leads to the following MLCP

M -DT -GT| |g§ —f 0

D 0 0 | |B]+|cla,9)] = |0

¢ o o ||v] [|p@d)| |p (11.21)
0<v L p>0,

where f is the generalized external force applied on the system, including the
pull of gravity and any other force. Eliminating the variable ¢ by taking a Schur
complement reduces this system to a LCP involving only the variable v

Kv+r=
P (11.22)
0<v 1L p2>0,
where the 1 x 1 (a scalar) matrix K is the Schur complement
14+ ml? 1 4 1 1
KZ[A—CTB_lc]Z tm /\70 ) = — ) Z_>07
m 1+3sin“9 Mm143sin“¢g  m
(11.23)

using the definitions of A from (11.16), B from (11.17), and C from (11.18),
respectively, and using the definition of (11.2) for Jo. The one-dimensional
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11 Bagatelle VII: The Painlevé Paradox

vector r, also a scalar

r=b(q,4)+(G—-CB 'D)M'f —CB 'c(q,9)

12
=g|F l¢* L.azsinqb—l
9 )1tasn’¢ (11.24)

1> 4sin
() e,
g ) 1+3sin“¢

where use was made that f = (f1, f2, f3)7 = (0,—mg,0). The second line
in (11.24) elicits the general case and the third line specializes to & = 3 and a

contact at p(_).
The full solution is then recovered using

B=-B'Cv—B DM 'f—B 1l
= % (usin(;bj: mld&z) , (11.25)
g=M1f+ M 'GTv+ M1DTg,

v = max(0,—r/K)

: . cos ¢ ) ; (11.26)
= mid(—py, ——— (1/5111 +ml 2), V),
B (“1+3sin2¢ ¢+ mig® ), pv)
where the mid function is defined thus
z ify<z<zorz<z<y
mid(z,y,2) =y ifz<y<zorz<y<z (11.27)

z fe<z<yory<z<ez.

Since the 1 x 1 matrix K is in fact a positive scalar, the value of the normal
force is positive whenever r < 0

Of course, if it is found that the magnitude of the tangential force is outside
of the allowed range, |,6 | > pv, then, this solution is not valid and a different
problem must be solved as described next.

11.3.2 Sliding case

Once the magnitude of the tangential force reaches the maximum, i.e., |8| = pv,
the contact point switches to sliding mode and there is only one variable to
determine, namely, the value of the normal force v. Now, the net constraint
force is easily computed as

foe=GTv+ D73 = [GT - usgn(Dtj)DT] v, (11.28)
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11.4 The paradox and its resolution

which means that the MLCP to solve is now:

M —GT+,usgn(Dq')DT] H -1
_Gq

0<v L p>0.

G 0 v

o
e (11.29)

Eliminating the variable ¢, the pure LCP reduction is found to be

iy;js I pp “o (11.30)
with:
S =GM1GT — usgn(¢)GM~1DT
= % [1 + 3cos? ¢ + 3usgn(Dq) cos psin ¢] (11.31)

s=GM'f+Dj=—g+cF = —gFi¢*cos¢.

This LCP has a unique solution as long as S > 0 but, however, there are
infinitely many solutions for S = 0, s > 0, and no solution for S < 0,s < 0. This
can happen, for instance, with the configuration shown in Figure 11.1, where
cos @ < 0, sgn(D(q)g) = 1, choosing a large enough friction coefficient, and an
angle ¢ such that

. 14+3cos?¢ 4
p>argmin ———— = —,
¢ 3singcosgp 3
1+ 3cos? ¢
380y
3singcos ¢

(11.32)
pe{o]

To recover a solution, one would need to annihilate the finite sliding velocity
Dg — 0 instantly or let the contact separate.

This is illustrated in Figure 11.2 with the same parameters that we have used
so far in the analysis. This figure is similar to that found in [232]. Discussion for
this is provided in Section 11.4.

11.4 The paradox and its resolution

As observed in [232], for friction coefficient g = 5/3—which corresponds to the
“path” marker in Figure 11.2—, a rod contacting the plane at p(~) with angle
¢ =3r/4+6,6 € (0,7/4), sliding along towards the right is in a feasible region
so that LCP (11.31) has a unique solution with v = —s/8§,8 = —pv. Assuming
now that the rotational velocity is negative but not too large, i.e., # < 0, then
the inclination angle ¢ will increase to reach ¢ = 3m/4 at which point the LCP
defined in (11.31) has no finite solution. This will happen in finite time if the
tangential velocity v > 0 is large enough initially. The value of g = 5/3 might
seem unnaturally high but the paradox can also be reproduced for values of
friction g < 1 if one chooses a different mass distribution for the rod to yield a
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11 Bagatelle VII: The Painlevé Paradox

Illustration of the Painlevé paradox
14 T T T T T T T

12

a(¢) < 0: no solution

ie)
Q0
=
=0
T

a(¢) > 0: unique solution :
0 1 1 1 1 : 1 1 1
-3.2 -3 -28 —-26 -24 =22 -2 -1.8 -1.6

¢

Figure 11.2: The paradoxical region for the problem of a planar rod in sliding
dry frictional contact.

lower value of Jy. For instance, the paradox can be observed for Jp = ml?/32
and p = 1 as reported by Stewart [260].

The formulation of the contact problem given in (10.75) is however always
solvable and thus, no paradox is ever observed. To see this, a few frames of an
animation driven by the SPOOK stepper using the new Coulomb friction model—
which reduces to the LCP formulation of Anitescu et al. [17, 19] for the two
dimensional case—are presented in Figure 11.3. The friction coefficient is chosen
to be p = 5/3 to conform with the treatment in Pfeiffer and Glocker [232].
Since they could not simulate this problem with their methods, experimentation
produced the following set of initial conditions. The elevation angle starts at
¢ = 57 /6 and the angular velocity is ¢ = —2. This configuration puts the point
p () in contact with the plane. The linear velocity is chosen as v = (1.7, Lo cos )
so the contact velocity at p(~) is zero in the vertical direction and 0.7 in the
horizontal direction. Using a fairly large time step of h = 1/60 = 0.01667
and simulating for 120 steps, taking pictures every 20 steps, yields the sequence
of Figure 11.3. The rod is pictured with a simple line. At each step in the
simulation, the coefficients of the LCP formulation based on acceleration, which
leads to the paradox, were compute to see if the current configuration would be
soluble or not. As predicted by Pfeiffer and Glocker, the configuration is feasible
initially as the rod slides to the right and raises in altitude for a short while,
then becomes infeasible while it is near vertical and the contact velocity comes
to a halt, to become feasible again once the rod starts to fall back toward the
left. The important point to note here is that the discrete time-stepping scheme
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11.5 End notes

t= 0, single - t=0.15, single - t=0.3, none --
t+=0.45, none -- t=0.6, free - t=0.75, free --
t=0.9, single t=1.1, single - t=1.2, single -

Figure 11.3: Numerical illustration of the Painlevé paradox. Each frame is a
snapshot of the simulation, evenly spaced in time. The key on each
subfigure indicates the time and whether or not there is a classical
solution for the given configuration.

is always solvable and steps right over the problematic cases.

Part of the reason for the paradox is the acceleration formulation. Indeed, the
principle of least action leading to the differential equations of motions hinges on
the assumption that the trajectory g(t) is twice continuously differentiable. But
friction is a non-smooth process which leads to impacts, i.e., sudden changes in
g at isolated times tg, at which points the acceleration ¢ is not well defined.

However, in approximating the trajectory with discrete samples gx, we have
made no assumption on the velocity and the resulting discrete stepping equations
are well behaved and uniquely defined everywhere. In other words, the fact that
less smoothness is assumed in the derivation of the discrete stepping equations
from the variational principle removes potential singularity and non-uniqueness.

Note also that the present formulation does not require a formulation of the
equations of motion in terms of differential inclusions but enjoys the very same
benefits that were demonstrated by Stewart [259].

11.5 End notes

The configuration of [108] corresponds to fixing p(1)(g) = 0 and attaching the
other end p(~)(q) on a wire that runs parallel to the ground. This removes ¢
from the equations.
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11 Bagatelle VII: The Painlevé Paradox

For the simpler one-dimensional case of a point particle with coordinate g(t),
subject to the friction force vy sgn(g), there is a simpler paradox in that the zero
velocity mode ¢ = 0 is a trap. For this case, the differential equations of motion
can be processed correctly if one interprets the signum function sgn(0) correctly,
i.e., assigning it a value sgn(0) € [—1,1] which makes the problem consistent.
This is done in [113] and in [258], for instance. The one-dimensional example
does contain discontinuities but these are mild and limited to ¢ = 0.

By contrast, the Painlevé paradox concerns the case where a finite sliding
velocity leads to a well behaved solution at one instant and nonexistence at the
next, if the elevation angle happens to be on the boundary of the forbidden curve
shown in Figure 11.2.
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12 Rigid Bodies I:
Fundamentals

The kinematic analysis of the motion of a rigid body is presented. In Sec-
tion 12.1, the body is first considered to be composed of point particles which
are constrained in their motion so that all pairwise distances between them are
preserved. This results in identifying the configuration manifold of rigid body
motion as the product @ = R® x SO(3), where SO(3) is the Lie group of special
orthogonal transformations in three dimensions. The form of the kinetic energy
term then provided in Section 12.2 and special attention is paid to the configu-
ration dependent mass matrix in Section 12.3. Two-dimensional rigid bodies are
then described in Section 12.4 and general discussion is provided in Section 12.5.

12.1 Basic motion of a rigid aggregate

Following a strategy credited to Euler, as mentioned in [105], consider a finite
collection of point particles. Each such particle has a constant mass, m (¥, and
a time-dependent position, a:(i)(t) € R3. For such a collection of points, rigidity
means that the Euclidean distance between any two points is preserved by the
motion so that d®(¢) = ||z W) (t) — 2 (t)|| = d*)(0), where || - || is the Eu-
clidean norm. This definition implies that the motion described by the points is
an isometry of R? with respect to the Euclidean norm.

According to the Mazur-Ulam theorem [198], “every bijective isometry f :
E +— F between normed spaces is affine” (as cited in [270]). Therefore, the most
general motion of a collection of rigid points is the affine transformation

z @ (t) = z(t) + R(t)z (0, (12.1)

where z(t) € R® is some reference point, and the 3x 3 matrix R(t) is orthonormal,
so that RTR = I3. From this definition, the distance between any two point
particles 7z and 7 at time £ is

d6N(E) = 2 D) - 2D (B)]| = [ RE)@D(0) - 2 ()]

_ 469(0), (12.2)

as desired, provided RTR = I;. Assuming the motion is continuous near the
origin at ¢ = 0 implies that det (R) = +1. Thus, R is a proper rotation and so
R € SO(3), where SO(3) is the Lie group of special orthogonal transformations
in three dimensions. An introduction to Lie groups and SO(3) in particular is
found in [193] for instance. The configuration manifold of rigid body motion is
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12 Rigid Bodies I: Fundamentals

thus @ = R® x SO(3), in contrast with previous examples in this thesis where
the configuration manifold was usually R™.

Define the center of mass, £(® and the center of mass coordinates of each
particle, ¢, as follows

m= Zm(i), z© = m_IZm(i)m(i), and q® =gz® _£©) (12.3)
i i

Taken together, these definitions produce the identity ", m®q® =0. Assum-
ing that the point particles move according to an isometry as in (12.1), the time
evolution of the vectors g *)(t) satisfies

¢9(t) = (t) + R(t)g™(0), (12.4)

but since 3, m®g® = 0, for any time ¢, it follows that z(¢) = 0. Thus the
vectors z ()(¢) have the following form:

z®(t) = zO(t) + R(t)g(0). (12.5)

This defines the body or material coordinates ¢ (i)(O), which are fixed in the body
frame of reference. Any of the point particles has inertial frame coordinates
given by (12.5).

Since the kinematics of any of the point particles in the aggregate is related
ultimately to that of R(¢), the time derivative of the latter is needed to compute
velocities. Matrix R(t) is orthogonal, R(¢)RT (t) = 1 at all times ¢ and thus

0= RRT + RET = RRT + (RRT)", (12.6)

which means the 3 x 3 matrix @ = RRT is antisymmetric. Any such matrix can
be written as

0 —Wws3 [135)
W= w3 0 —Wi |, (127)
—Wsy w1 0

where @ € R3. In other word, any vector £ € R3 can be promoted to the
corresponding 3 x 3 antisymmetric matrix Z. With this notation, the time rate
of change of the rotation matrix R is then

R=0R. (12.8)

This defines the angular velocity vector w € R3, which, as seen in Chapter 13, is
an axial vector defined in the inertial frame. In consequence, any point particle
in the aggregate with position z () defined in (12.5) has velocity

v () = 2O ) = 2@ @) + Dg@(2). (12.9)

Since the velocity of any of the point particle is linearly related to that of the
center of mass as well as the angular velocity of the aggregate, it is possible to
express the total kinetic energy in terms of z (°)(¢) and w(t), the topic of the next
section.
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12.2 Kinetic energy

12.2 Kinetic energy

A simplifying feature of the motion of a rigid aggregate is the strict independence
of the kinetic energy of linear motion of the center of mass and that of rotations
about the center of mass. To see this, first recall that the kinetic energy of a
point mass is simply T () = %m(i)Ha}(i)HQ, i.e., half the mass times the squared
magnitude of velocity, and that kinetic energy is additive so that T = }~, T,
Consider the squared magnitude of velocity (12.9) for one of the point mass in
our aggregate

. 4 4 N\T .
129 = [|2© +[Jq(1)||2 - ||j3(0)||2 +2:07 540 4 (aq(l)) <aq(’)) . (12.10)

The first two terms are easily summed to yield

S m@EO ) = m)z@|®, and  (12.11)
i
S m @26 0g® = 20753 " m®g® =0, (12.12)
i i
For the last term, we use the well known identity Zy = —gz and Z7 = —7 (this

is proven as Lemma 13.3 below) to arrive at the sum
_ \NT : NN
Zm(’) (ZJq (1)> (EJq (’)) = —wT Zm(’)fj(’)&\(l) w=wlTw, (12.13)
i i

where T is the inertia tensor defined as

I=-) mglglt). (12.14)

Defining the reference inertia tensor Zyg = Z(0), and then using the identity
Rz = RTZR from Lemma 13.5 below, the inertia tensor has the form

I=-R" Y m®3"(0)g®(0) | R=R"LR. (12.15)
i
Collecting the results and summing over all the particles in the aggregates yields
the kinetic energy

1 1
T = Tians + Trot = §m||a:(°)|| + inIw, (1216)

which demonstrates that translational and rotational parts of the kinetic energy
are decoupled.

As an alternative derivation of the kinetic energy of rotation, following [178],
first note that for any two vectors u,v € R3, the following identity holds

3 U1v1 U1V2 U1VU3
ulv = E uiv; = tr(uv?) =tr | |uovy  ugus  upvs . (12.17)
i=1 U3V1 U3V U3V3
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12 Rigid Bodies I: Fundamentals

Considering the terms on the left hand side of (12.13) and noting that
2a®(t) = oR()g9(0) = Rg)(0), (12.18)

the kinetic energy can be expressed in terms of the time rate of change of the
rotation matrix R itself

1 ..

Tt = 3 tr(RKoRT), (12.19)

with the definition - o
Ko =Y m®g®(0)g™(0)" . (12.20)

i
Using the identity ZZ = zzT — 2TzI5 proved in Lemma 13.4, the following
identity relates Zg and g
o= S mOIg®©) | I - ko. (12.21)
i

Definition (12.19) for the kinetic energy was used in the first variational for-
mulation of the discrete rigid body equations in [208]. This makes the nine
coefficients of the orthonormal matrix R the configuration variables which must
be subjected to the six constraint equations contained in the requirement that
RRT = I5. A different strategy is adopted in Chapter 15 which relies on quater-
nion algebra instead, and this motivates the content of Chapter 13.

12.3 The inertia tensor

The inertia tensor is the first instance of a configuration dependent mass matrix.
Some of its properties are now analyzed.

The result of Lemma 13.4 states that given any two vector z,y € R3, then
7y = —zTyI3 + yzT. Tt follows that the inertia tensor can be expressed as

=Y m® (nq@ufs - q@q@T) , (12.22)
3

from which it is clear that T is symmetric. The same inertia tensor Zg is also
positive definite provided the rigid aggregate contains at least three point masses
which are not collinear. To see this, take a vector z € R® and evaluate the product
TT
z' Iz
27Ze = 3 m® (|leflla|| - (a7 D)?) (12.23)
i

The term in parenthesis is non-negative from the Cauchy Schwartz identity. This
term vanishes if and only if z = Ag(®) for all 4, which is not possible if the points
masses are not collinear.

Now, considering a rigid body in three dimensions occupying a finite volume,
it must be possible to find sample points g (0) which are not all collinear or
coplanar. Otherwise, the body would have zero volume. Thus, the inertia tensor
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12.4 The two-dimensional rigid body

of a rigid body with finite volume is symmetric and positive definite. Though it
can be interesting for certain applications to consider linear and planar bodies,
this is not considered further here.

Since the inertia tensor Z of a rigid body with finite volume is symmetric
positive definite, and it can therefore be diagonalized as

To =t DuaT + 1 @pT 4, OyuT, (12.24)

where the orthonormal eigenvectors u, v and w are called the principal azes of the
rigid bodies, and the eigenvalues ¢ (i = 1,2, 3 are called the principal inertiae.

12.4 The two-dimensional rigid body

It is often useful to consider two-dimensional examples to illustrate various as-
pects of the theory of multibody systems. The analysis of Sections 12.1 and 12.2
is thus repeated for two dimensions.

The observations made in Section 12.1 still apply though now, the rigid trans-
formation matrix R is a member of SO(2) which is a one-dimensional Lie group
with representation

_ |cos(¢) —sin(@)
R(¢) = Lin(q&) cos(d) ] . (12.25)

For any ¢ € R, matrix R(¢) is orthonormal and has positive determinant. The
time derivative is much simpler here

—sin(¢) — cos(9)
cos(@) —sin(¢)

:¢l(1) —1] [— sin(@) —cos(d))]

M@zél

0 cos(@) —sin(@)
= ¢JLR(¢), with:

0 -1
Jl—ll O]a

where matrix Jy is the infinitesimal generator for the Lie group SO(2).

(12.26)

With this definition, the velocity of one of the points in the aggregate is now
v ) =2 @) = 2O) + ¢J1gD (1), (12.27)

and after a simple computation, the kinetic energy derived in Section 12.2 now
reads:

1 . (0) 4112 3>
T=§M||m )|l +730, (12.28)

where the inertia scalar was introduced as:

Jo=> " mD g, (12.29)
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12 Rigid Bodies I: Fundamentals

The scalar nature of the angular degrees of freedom here greatly simplifies all the
analysis of two-dimensional rigid bodies as compared to their three dimensional
counterparts. Note in particular that the inertia tensor matrix is constant, i.e.,
independent of the configuration of the rigid body. This contrasts the three-
dimensional case where the inertia tensor is configuration dependent as shown
in (12.14).

12.5 End notes

The configuration manifold of three-dimensional rigid bodies is R® x SO(3) and
this warrants and analysis of SO(3) to find suitable parametrization of the kine-
matics variables, since these are no longer simple n-dimensional real vectors.

The kinetic energy of a three-dimensional rigid body decouples into trans-
lational and angular terms which involve the total mass as well as the inertia
tensor, the latter being configuration dependent. The consequences of this on
the motion of a free rigid body are discussed in Chapter 15.
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13 Rigid Bodies II:
Kinematics and the Quaternion
Algebra

As shown in Chapter 12, the rigid body configuration manifold is R® x SO(3) and
so the kinematics analysis requires an understanding of SO(3) and its tangent
bundle, wherein the velocities needed to express the kinetic energy terms lie.
A representation for this using a combination of quaternion and matrix algebra
is constructed in the present chapter. This representation is useful for the sys-
tematic analysis of both translational and rotational modes of rigid multibody
system. The motivation to use the four-dimensional quaternions to parametrize
the three dimensional Lie group SO(3) is that SO(3) is not a flat manifold and
thus, cannot be represented globally with three parameters only without encoun-
tering singularities. The quaternion representation is singularity free, however.

The main objectives are an explicit parametrization of proper orthonormal
3 x 3 matrices R(g) in terms of four real parameters g;,7 = 0, 1,2, 3 restricted
with )~ g2 = 1, and an explicit, everywhere invertible relationship between the
observed angular velocity vector w € R3 and the time derivatives g;, so that the
gi(t) can be integrated given known angular velocities w(t). To make this theory
useful for implementation purposes, care is taken to represent all operations in-
volving the parameters g; as matrix-vector products, treating ¢ = (go, g1, g2,93)"
either as a plain four-dimensional vector, or as a parameter defining the elements
of classes of matrices.

After introducing some historical background in Section 13.1, a number of
algebraic identities and simple theorems are derived in Section 13.2 before in-
troducing the quaternion algebra in Section 13.3, and characterizing the three-
dimensional vector subspace of it which corresponds to R® in Section 13.4. The
quaternion algebra is then represented in terms of real 4 x 4 matrices in Sec-
tion 13.5 with both left and right isomorphisms, a feature which allows reorder-
ing factors in complicated expressions. The representation of isometries in R3
using the quaternion algebra is established in Section 13.6, with special empha-
sis on the matrix representation. The special form of the rotation matrices and
factorization thereof is analyzed further in Section 13.8. After considering the
differential calculus of quaternions in Section 13.9, with special emphasis on the
consequences of the non-commutativity of the product operation, the connec-
tion between quaternion velocity and the angular velocity vector of proper 3 x 3
orthonormal matrices is established in Section 13.10. Discussion of other repre-
sentations of SO(3) is found in Section 13.11. A summary of the most important
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13 Rigid Bodies II: Kinematics and Quaternions

formulae is provided in Section 13.12.

13.1 Historical background and motivation

Quaternions are an invention of William H. Hamilton in 1845. He was looking
for a type of vectors for which a division operation could be defined, especially
in three dimensions. The aim was to find a representation of rotations, similar
to what is found in two dimensions where complex vectors of unit magnitudes
can be used to perform planar rigid rotations using the multiplication operator
of complex algebra.

Hamilton did not quite succeed with his program and in fact, he started a
controversy which has lasted to this day [4]. As a consequence, the elements of
quaternion algebra which are useful for the study of the group of rigid rotations
in three dimensions are not often found in standard texts on mechanics and for
this reason, they are presented here.

There is more to quaternion algebra than the representation of the rotation
group suitable for parametrizing rigid body kinematics, but that is not covered
here.

Contrary to what is customary in 3D graphics literature, the aim here is to
describe quaternion algebra in terms of standard linear algebra operations. This
is done so that it is straightforward to translate the relevant formulae into com-
puter code for execution, even though it is not the most mathematically elegant
presentation.

13.2 Preliminary algebraic identities

A number of elementary identities are useful in manipulating the algebra of
quaternions, especially when using the 4 x 4 real matrix representation con-
structed in Section 13.5. The reader can skip this section on first reading and
refer back to it as needed.

Lemma 13.1. For any vector z € R3, the vector Tz = 0.

Proof. Using the definition of Z and direct computation,

0 —X3 To T —Z3T3 + T2Z3 0

Tz = | z3 0 —zi| |zo| = | z3z1 —z123 | = |0 (13.1)
—Iy T, 0 T3 —ZoT1 + 122 0

O

The converse also holds namely, that

Lemma 13.2. Given z,w € R®, Zw = 0 iff w = az, aR.
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13.2 Preliminary algebraic identities

Proof. If w = az, then, since Z is a linear operator, Z(az) = aZz = 0.

For the converse, assume without loss of generality that [|z|| = 1 and construct
a right handed orthonormal basis z,v, 2, ||z|| = ||y|| = ||z]| = 1 so that Ty = 2
and Zz = —y. Decompose the vector w € R® according to this basis so that
w:am+,6y+’yz,a,,6,nyR, (132)
and then, evaluate Zw = —yy + fz. Given the assumed linear independence of
the basis vectors z, v, z, it follows that Zw = 0 if and only if ¥y = 8 = 0 which
means that w = az. O
Lemma 13.3. Given two vectors z,y € R3, then, Ty = —7z.

Proof. Using the definition of Z and computing both products directly,

0 -—-z3 =z Y1 —Z3Y2 + T2Y3
Ty=| z3 0 -—=zi| |y2| = | z3y1 —z1y3 |, and
—Ty T 0 Y3 —ZaY1 + Z1Y2
- (13.3)
0 —-vys w2 Ty —Y3Z2 + Y223
Yz = | y3 0  —y1| |z2| = | Y321 — V123 |,
=Y W 0 z3 —Y2Z1 + Y173
and the result is found by inspection. 0

Considering column vectors as n X 1 matrices and using the standard multipli-
cation rules, the outer product zy” can be formed for any two vectors z,y € R3.
Definition 13.1 provides the explicit form of the resulting rank 1 matrix.

Definition 13.1. Given two vectors, z,y € R3, the products zyT and yT'z are
defined as

ZT1Y1 T1Y2 T1Y3 Y1Z1 Y1T2 Yi1Z3
myT = |Z2Y1 T2Y2 T3Y3|, yffT = |Y2Z1 Y2T2 Y3ZT3| . (13-4)
I3Y1 T3Y2 T2Y3 Y3T1 Y3Tz2 Y2ZT3

This notation is used for the next identity on products of the form Zy.

Lemma 13.4. Given two vectors z,y € R3, the following identity holds:
7y = —zTyls + yz’.

Proof. Using the definition and direct computations,

0 —Z3 To 0 —Ys3 Ya
Y= | z3 0 -z Y3 0 -wu
_—332 T1 0 —Y2 Y1 0
—(z2y2 + z3y3) Y1Z2 Y1Z3 (13.5)
= Y2T1 —(z1y1 + z3Y3) YaT3
| Y3T1 Y32 —(z1y1 + 22y2)
= —2Tyl; +yzT.
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13 Rigid Bodies II: Kinematics and Quaternions

The last line is obtained by noting that each term on the diagonal is of the form
—zTy + z;y5,1=1,2,3. O

The identification of an antisymmetric 3 x 3 matrix A = —AT with the vector
a via A = @ is slightly misleading in view of Lemma 13.5 below. Indeed, trans-
forming a coordinate system via a 3 X 3 orthonormal matrix R, the vector a is
not transformed to a — Ra like any other vector but rather, it is transformed to
an axial equivalent, the exact orientation of which depends on the handedness
det(R) of the orthogonal transformation R.

Lemma 13.5. Given a vector £ € R® and a 3 x 3 orthonormal matriz R, then,

RZRT = det(R)Rz.

Proof. Without loss of generality, assume that ||z|]| = 1. Now, Z is matrix of size
3 x 3 and thus, it defines a linear transformation Z : R® — R®. Change the basis
according to the orthonormal transformation R. The matrix representation of
this linear operator then becomes X = RZRT, using the change of basis theorem
and observing that R~! = RT.

Next, observe that matrix X is antisymmetric since

_ T _
XT = (R&:‘RT) — R#TRT = —RzRT = - X7, (13.6)

which means that X = @ for some vector a € R3.
Observe however that for w = ARz, we have X = RZRT(ARz) = ARZz = 0,
which, using Lemma 13.2, that w = aa = ARz. Combining these two relations,

X =1, a = oRz, for some scalar o € R. (13.7)
Computing the product XX,
XX = —||a||’I + aa” = —0?||z||? + 0> Rzz" RT
=0°’R (||1:||213 + mmT) RT
= 0’RzZR" = 0’ RZR" RZR"
=0?XX

(13.8)

?

which means that 02 = 1 and so ¢ = +1.

To compute o, consider the natural right handed basis with z = (1,0,0)%,
y=(0,1,0)T and z = (0,0,1)7, and its transformation u = Rz,v = Ry,w = Rz.
The vectors u,v,w are obviously the columns of matrix R. Given that for any
3 x 3 matrix A with columns a,b,c € R3, the determinant is the triple product
det(A) = cTab,

T3y = 1= det [u v w] , (13.9)

and after transforming each vector, this implies
1=2"RTRZRT Ry = w(oU)v = o det [a: Y z] = o det(R), (13.10)
Therefore, 0~! = 0 = det(R), and the proof is complete. O
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Lemma 13.6. Given any two vectors z,y € R3, then, 5:15 =yzT — zyT.

Proof. First, write v = Ty so that

I3Y2 — T2Y3

U= | =Z3y1 +Z1Y3 |, (13.11)
—Z2Y1 + T1Y2
and then build the matrix
. 0 oY1 — ZT1Y2  T3Y1 — T1Y3
Ty=7= |z1Y2 — Zoy1 0 Z3Ya — ZaYs3 | - (13.12)
T1Y3 —Z3Y1 Z2Y3 — T3Ya2 0
The result is found by inspection using the definitions in (13.4). O

Since Tz = 0, the matrix Z is singular and therefore, the determinant vanishes
so det(Z) = 0. Likewise, matrices of the form zy” are singular since all the
columns are scalar multiples of the vector z. In fact, these latter matrices have
rank one for any dimension though the former have rank 2. This rank deficiency
allows to compute the determinants of matrices with related forms.

Lemma 13.7. Given z € R® and A € R, the matriz A(A) = X3 + T has
determinant det(A(X)) = A3 + AzTz.

Proof. The determinant of A(A) is computed by expanding the minors down the
first column

A —I3 T2
det(AM +Z) = | z3 A -z
—T2 T1 A

- A —T1 =z —T3 T3 =z —I3 To

Az A 3z, A 2 —z (13.13)

= AA? 4+ 22) — z3(—23)\ — 2123) — z2(2321 — AZ3)

=X\ + A(z? + 22 + z2)

=X+ 227z

O

Lemma 13.8. For any two vectors z,y € R™ and A € R, z is a right eigenvector
and yT is a left eigenvector of the matriz A(A) = M, +zyT, both with the same
eigenvalue A + zTy.

Proof. Direct computation shows that A(A)z = (A+zTy)z and yTA(X) = yT (A +
zTy). O

For z,y € R™ and X € R, the matrix Al, + zy” has non-zero determinant as
computed in Lemma 13.9 below.
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13 Rigid Bodies II: Kinematics and Quaternions

Lemma 13.9. Given A € R and z,y € R, the matriz A(\) = A\, + zyT has
determinant det(A(X)) = A"~ (A + zTy).

Proof. We proceed by induction, first noting the result for n = 2 where

det(AL + :cyT) = At 21y I1¥2

T2y A+ 22y (13.14)
=N+ Az1y1 + T292) = A + Az y.
Next, partition the matrix A(A) as follows
xngT A+ zpyn|’ .

where the bar signifies projection by truncation of the last element, e.g., 4 =
(w1, Uz, ... Un_1)",u € R*. Matrix A()) can be factored as

- | D Of||In-x Z| | D Dz
AX) = BC = o7 a] [ 0 1] et @Tz4o0|’ (13.16)
with the definitions
D=, 1+Zy zZ= In__ 2
' A+zTy
W= 2Tnh¥ and o }\a:Ty + A 1

The result from of Lemma 13.8 was used in computing Z. Now, det(BC) =
det(B)det(C) for any square matrices B,C, and since det(C) = 1, because
matrix C is upper triangular with unit diagonal,

det(A(\)) = det(B(X)) = o det(D(X)). (13.18)

Now, by the induction hypothesis, det(D(X)) = det(Al, 1 + zyT) = A»~1 +
A"=2zT§ and therefore, we find that

AzTy + 22
det(A(X)) = %;g (A"‘l - A"—25:Tﬂ) = A" 4+ A" 1Ty, (13.19)
proving the result holds for any n > 2. O

Another useful identity concerns 4 x 4 real antisymmetric matrices of the fol-
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13.2 Preliminary algebraic identities

lowing forms

0 aj as as
—a1 0 —as ao lO aT]
A+: = -~ )
—as asg 0 —a1 —a a
—as —as ai 0
and (13.20)
0 ai as as
A = —az 0 az —aj :[O ar‘i],
—ay —as 0 a; —a —a
—as as —ai 0

where a € R3 is a real vector. The minimum polynomial of these matrices is
computed explicitly in Lemma 13.10 below.

Lemma 13.10. Given a real vector a € R3, the antisymmetric matrices A4
defined in (13.20) have the minimum polynomial:

m(A) =A% +aTa. (13.21)

Proof. The computation is carried out explicitly only for A, since it is similar
to that for A_. Expanding the determinant det A, — Al along the first column,

ai %) as
det(A+ — )\14) =—-A det(" - )\13) + a; det as —-A —a

—Q2 ai -
a1 a2 az a az as
—agdet | =\ —a3 ay | +aszdet |-\ —a3z ay
—as ai —>\ as —>\ —ai

(13.22)
After using Lemma 13.7 for the first term and simple algebraic manipulations,
det(AL — AI,) = (A% + aTa)?, (13.23)

and therefore, the minimum polynomial is m(X) = A2 + [|a||2. Repeating the
computation for A_ produces the desired result. O

The Cayley Hamilton theorem can be used to compute any power of the ma-
trices A%,n > 1, by recursively substituting A3 = —|la|*I4, leading to Corol-
lary 13.11 below.

Corollary 13.11. Given a vector a € R3 and the matrices Ay defined above
in (13.20), the following identities hold
AL = —[lall*Is,
AT = (=)"la|?m, (13.24)
AP = (=) la)* Ax.
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13 Rigid Bodies II: Kinematics and Quaternions

Proof. The Cayley-Hamilton theorem states that any complex matrix A satisfies
it’s minimum polynomial equation. For matrices Ay, this is m()) = A2 + [|a||?,
meaning that A% = —||a*I. O

This can in turn be used to look at matrices of the form By = agly + Ay
since for these, the minimum polynomial is simply n(A) = (A — ag)? + [|a||*.
Agglomerate ag and a € R® into a four dimensional vector b = [ag, a1, az,a3]’ €
R%. For unit b vector, the minimum polynomial simply reads: A2 — 2bgA + 1.
And for this case, we can compute the powers of B} in terms of the Chebyschev
polynomials of the second kind, Uy, (7) for some 7 € R, |7| < 1, defined as

sin([n + 1]¢)

Un(1) = sng with the definition cos¢ = T, (13.25)

as is done in [21], or for instance. These observations prove Lemma 13.12 below.

Lemma 13.12. Given a unit vector b = [bg, by, b, b3] € R*, the matrices

bo b1 bo b3 bo by by b
_|=bi bo bz b _|=bi bo bz =D
Bzt b b -b|" P T b by b b | (B0
—b3 —=by b bo —b3 by —=by —bo
satisfy:
BSL: = Un,]_(bo)B - Un,2I4, (1327)

for any integer n > 2.

Proof. From the Cayley-Hamilton theorem, B3 = 2bgBy — I;. Proceeding by
induction, assume for the moment that B} = pp_1B4+ + gn—2ls where pp,gn,
are polynomials in bg. From the definition of the Chebyschev polynomials [21],
Uo(z) = 1,Us(z) = 2z. Write ¢ = by and verify that p; = Ui(bg) and go =
—Up(bo). Now, BT can be computed as

BY™ =pp 1B} + g0 2B = Pn1[260Bs — Li] + dn 2 Bu

(13.28)
= (2b0Pn—1+ qn-2)B — pn_114.
From this, it follows that the recurrence relations are
= —pnp_1, and
qn Pn—1 (13.29)

Prn = 2bpPr_1 — Pn_2.

This is precisely the recurrence relation which applies for the Chebyschev poly-
nomials of the first and second kind. Since the result is valid for n = 2, the
recurrences (13.29) validate the result by induction. O

If vector b is not normalized, simply set z = bg/||b|| and recompute the recur-
rence to find the following.
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13.2 Preliminary algebraic identities

Corollary 13.13. For a non-zero real vector b € R* and the matrices By con-
sidered in Lemma 13.12, setting = bo/||b|| yields

B% = ||b)|" *Un_1(z)Bx — ||b]|"Un_2(z)I4. (13.30)

Proof. Since b = (1/||b]|)b and By = (1/||b]|) Bz satisfy all the conditions of
Lemma 13.12, the result follows by direct substitution. O

When manipulating the rigid body equations of motion, some matrices of the
form X + A, (a), where & = diag(o1,02,03,04),0; > 0,2 = 1,2, 3,4, is a positive
definite diagonal matrix, and the antisymmetric 4 x 4 matrix A4 (a) was defined
in (13.20). Of particular interest are the eigenvalues of such matrices which are
computed in Lemma 13.14 below.

Lemma 13.14. Given an antisymmetric nxn matriz Ay (a) as defined in (13.20)
for some real vector a € R3, and a diagonal positive definite 4 x 4 matriz
Y = diag(oy,02,03,04),0; > 0,1 = 1,2,3,4, the four eigenvalues of the 4 x 4
matriz C = ¥ + Ay (a) are given by the following formulae

2
Mg =1 %W + (o +wl % v - w]) - 207w, (13.31)

where the following definitions were used

Y. = 0, diag(o2, 03,04),
v =52, (13.32)
w = det(X)/25"/2q.
Proof. First note that Z=Y2BX~1/2 = [, + £-1/24%-1/2_ Applying this trans-
formation to the determinant of B — Al yields
det(B — AI,) = det(2) det(T—1/2(B — M, 2~/2))
= det(E)det(2—-1/24, 572 — (A= 1)I,), (13.33)

and therefore, if y is an eigenvalue of A, = B—1/24,%~1/2 then, A = p+1 is
an eigenvalue of matrix B = ¥ + A,. Now, a simple computation yields

T
A=3n"124n-1/2= lg ’iﬁ] , (13.34)

with the definitions of (13.32). Repeating the computation of Lemma 13.10 with
the vectors v, w instead produces the principal polynomial
p(u) = p* + p? (|l + [[w]|?) + (vTw)?, (13.35)

and after some simple algebraic manipulations, the roots At 1+ of (13.31) are
found. Note that at least one of the roots of p(x) in (13.35) is positive and so at
least two of the eigenvalues of matrix B are real. O
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The final type of special matrices we consider is the case of 3 x 3 real matrices
of the forms B = I; + A and C = I3 + BA?, where a and B are scalars and the
3 x 3 matrix A has either the form HZ or ZH for some real vector z € R® and
a symmetric positive definite 3 x 3 matrix H. These matrices frequently appear
in the analysis of discrete stepping equations for the free rigid body problem.

Observe first that since H is symmetric, it can be diagonalized as H = QDQT,
where the real 3 x 3 matrix D is diagonal and real 3 x 3 matrix @ is orthogonal
so that QTQ = QQT = I3. Define the vector vector y € R3, y = QTz and
so according to Lemma 13.5, § = QTZQ. Using A = HZ, it follows that A =
QDQTz = QDyQT. Matrix A is thus the similarity transform of a 3 x 3 matrix
of the form G = DYy, where D = diag(d;,da,ds),d; > 0,7 = 1,2, 3, is diagonal
and positive definite. The same holds if using A = ZH instead.

Under the same similarity transformation by an orthogonal 3 x 3 matrix @,
the scalar k = det(H)zTH 1z is invariant since det(QDQT) = det(D) and
QD 'QTz = y"D~'y. Combining these observations yields Lemma 13.15
below.

Lemma 13.15. Given a symmetric, positive definite 3 x 3 matrix H, a vector
z € R3, and real scalars o, B € R. Define the matric A = HZ and the scalar
k = det(H)zT H='z. Then, the following two identities hold

1
(1 +ﬁA2) =11 fﬁnA2’ and (13.36)
2
-1 _ (o] o 2
(I+ad)y  =I- T+ or + 1+ o (13.37)

Proof. Consider first a positive definite diagonal 3 x 3 matrix of the form D =
diag(dy,ds,d3) with d; > 0, and a real vector y € R®. The matrix D7 has the
following characteristic polynomial, as found from a short computation

m()) = det(DF — Al3) = A (v n det(D)yTD—ly) . (13.38)

From the Cayley-Hamilton theorem, it follows that matrix M = D7 is a matrix
root of m(X) so that M3 = —kM, where k = det(D)yT D~ 1y. Since D is diagonal
with positive entries, the inverse is D~! = diag(1/d;,1/da,1/d3). Since the
characteristic polynomial of a matrix is invariant under similarity transforms,
and since the scalar k is also invariant under similarity transforms, the result
applies to any positive definite 3 x 3 matrix H and real vector z € R® using the
observations preceding this lemma. O

This completes the set of identities needed to construct the matrix represen-
tation of the quaternion algebra.

13.3 Elementary quaternion algebra

The quaternion division ring H, is a four-dimensional algebra over R* in which
non-zero elements have a multiplicative inverse.
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13.3 Elementary quaternion algebra

To construct the ring H, start with the elements ¢ € R* with the standard
vector addition, subtraction, and scalar multiplication operations. Therefore,
given two elements p, g € H, define addition and scalar multiplication as follows

do Po qo + apo
4l p1 Q1+ oapr
= = +ap=ap+qg= for any a € R.
q % y P s , q 54 P4 & + aps ) y
q3 p3 g3 + aps

(13.39)
The addition operation is commutative.

For the multiplication operation, consider four basic elements, h,i,j,k € H,
and define the following multiplication rules

h*=h=1, hi=1i, hj=j, hk =k,
?=i?=Kk*=-h=-1 (13.40)
jj=-ji=k, jk=-kj=1i, ki=-ik=]j.

These multiplication rules are summarized Table 13.1 below.

h 1 ] k
h|h i ] k
i1 -1 k —j
il -k -1 i
k| k j -1 -1

Table 13.1: The quaternion algebra multiplication table.

Clearly, the element h is the multiplicative unit and it will sometimes be writ-
ten as h = 1 as there is little chance of confusion.

The vector representation of these elements is defined as:

1 0 0 0
h:g,i:é,jzcl),k:g, (13.41)
0 0 0 1
which implies the following representation for any element ¢ € H
g = goh + q1i + 2] + g3k, (13.42)

where ¢; € R,z € {0, 1, 2,3}.

To avoid confusion with regular vectors, we introduce the operator % to denote
multiplication between arbitrary quaternions and this operation is now defined
by distribution over the basic elements h,i,j, k. Given two elements p,q € H,
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defined as p = poh + p1i + p2j + p3k, and ¢ = goh + q11 + g2] + g3k, we find
pxq = (poh + p1i + paj + pak)(goh + @11 + g2j + gsk)
= poh(goh + q1i + g2j + g3k) + p1i(goh + g1i + g2j + gsk)
+ p2i(goh + q1i + g2 + gsk) + psk(goh + qii + g2j + g3k) (13.43)
= (pogo — P11 — P2g2)h + (Pog1 + P10 + P2gs — P3g2)i
+ (Pog2 + P290 + P3q1 — P193)j + (Pogs + P3go + P1g2 — P12 )k.

The complex conjugate of ¢ € H is denoted as ¢ and is defined as follows

hT:h) lT = _i) JT: _j) kT: _ka

P (13.44)
9" =qo] — 1l — g2j — qzk.
From these definitions, it follows that

gxq' =@+ + a5 +a, (13.45)

so that g g is real and non-negative. In fact, g x gt is the same as the squared
Euclidean norm of ¢ € R*. For any quaternion g € H, we write ||g||> = g *q'.
It is often convenient to partition quaternions into scalar and vector parts as

follows
q q1
g= lqs] y 8s=3o, Q= |q2]- (13.46)
v
a3

Alternately, g5 is called the real part and g, is called the imaginary part. This
nomenclature makes sense from the definition of the complex conjugate and the
observation that q;r =g, and ql = —qy.

Using this partition, the quaternion product can be rewritten in terms of stan-
dard vector operators as follows

Dsqs — pf‘}u

. . (13.47)
PsQu + 9sPv + DuQu

p*xgqg=

Now, since gt € H, and since gx¢" > 0 for ¢ € H, q # 0, it follows that

g% <ﬁq*) =1 (13.48)

This means that any non-zero quaternion ¢ € H has a unique multiplicative

-1

inverse in H, written ¢~*. In particular, for an element ¢ € H with unit norm,

lg]] = 1, the inverse is the complex conjugate ¢! = qf, as is the case for complex
numbers.
However, as can be seen from the multiplication table, since ij = —ji = k,

quaternion multiplication is non-commutative (though it is associative), except
for the case of scalar multiplication, i.e., for ¢ € H,q = goh + 0i + 0j + Ok.
Therefore, H is a division ring but not a field [138], since fields must have a
commutative multiplication operator.
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13.4 A three-dimensional subspace

The following two identities are easily verified using elementary algebraic ma-
nipulations:

xq)" = ¢t xp! 13.49
' =q"*p
(pxq) =g txp . (13.50)

The second of these follows from the first and the definition of the multiplicative
inverse.

13.4 A three-dimensional subspace

Consider a set V € H containing all quaternions ¢ € H such that qf = —q.
Obviously, since 0 = —0, we have 0 € V. Now, given ¢ = ¢11 + ¢2j + g3k where
¢ € R, then, gt = —q. Likewise, given any scalar ¢ € R and ¢ € V, og € V.
Finally, given ¢,p € V and 0,7 € R, oqg + 7p € V. Therefore, we conclude that
the subset V € H with the addition operator forms a three-dimensional vector
space over R isomorphic to R3.

This consideration is in fact what motivated Hamilton originally to associate
vectors in R® with pure imaginary quaternions, and persists to this day in the
notation £ = z;i+z,j+x3k, for z € R?, which is common in vector calculus [195].

13.5 Matrix representation of quaternion algebra

A matrix representation of the quaternion product defined in (13.47) can be read
off directly producing either

Po —P1 —P2 —DP3 qo

T
b1 Po —P3 P2 q1 Ds —Dy gs
*q = — = . 13.51
pxq = Q(p)e P2 P3P0 —Pi| |2 Lou Dsl3 + Dy qu]’( )
b3 —pP2 P Do g3
or

Po —P1 —P2 —P3 do
T
b1 Po b3 —p2 q1 gs —4qy Ps
*xqg=P = = s , (13.52
pxq (@)p P2 —-p3 Po DP1| |@ [qu QSIS_Qv] LDU] ( )
ps P2 —Pp1 Do a3

where the first form defines a right ordered product, and the second defines a left
ordered product. In addition, the complex conjugate operation can be expressed
as
do
T = e = s =
e —112 [_qv]

—qs

=Cq. (13.53)
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where 4 x 4 matrix C is defined as

1 0

C=1lo _Is

(13.54)

Using the definitions for Q(q), P(¢) and C, two isomorphisms can be con-
structed between H and GL4(R), so that H is represented as a sub-algebra of the
set of 4 x 4 matrices over R with the usual addition and multiplication rules.

Consider first the right ordered product defined by the map @, : H — GL4(R)
with the definition

#-(9) = Q(9),

(13.55)
¢ (gxp) = Q(9)Q(p) = Q(g *p).

The second equality will be demonstrated in what follows.

It is clear from the definitions of matrices @ and P in (13.51) and (13.52) that
that Q(q)+Q(p) = Q(p+q) and therefore, ¢, defines a representation of H using
standard linear algebra.

Remains to show that Q(p*q) = Q(p)Q(g). First, compute directly the matrix
product

bs _p;I;
Q@)Q(Q) Py DPslz+ Dy

as —QZ
@ I3+

— Dsqs _p’zI;Qv —PsQZ - QSPE —Pfffv
PsQu + qsPv + DuQu  PsqsI3 —qu:‘f + Doy + Psqu + g5y
_ —a —'UT
“lv B |’
(13.56)
with the definitions
a=(px and
(P*q),, (13.57)
v = (p*q)y)

as per (13.47). Remains to show that matrix B satisfies the identity B = r I3 —7,
for r = pxgq. This follows from the two tensor identities of Lemma 13.4 and
Lemma 13.6, leading to

B = psqs13 — Pqu + Puly + Psqu + 45Dy
= (pSQS _puTQv) IS - (Pqu - vauT _psa\v - qsﬁu) (1358)

=al3 -V =73 _?’Uy

as required. This completes the proof and therefore, the mapping ¢, is an iso-
morphism from H into a subgroup of GL4(R)
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13.5 Matrix representation of quaternion algebra
Next, consider the map ¢; : H — GL4(R) with the definition

#u(q) = P(q)

(13.59)
¢u(p*q) = P(q)P(p) = P(g*p).
As in the case for the map ¢,, the map ¢; preserves the additive structure of
H. However, the map ¢; reverses the order of the product and that feature will
be useful in the definition of rigid rotations in what follows. The proof that
P(q)P(p) = P(g*p) is almost identical to the one above for the ¢, isomorphism
so it is omitted.

Note also the following identities which follow directly from the definition

Q(g") = Q" (q), and

(13.60)
P(q") = P"(q),
and the useful order exchanging formulae
T T
=C ,
Q (9p=CQ" (p)g (13.61)

PT(q)p = CP"(p)g,

for any two quaternions p, q € H.

To simplify computations, matrices P(g) and Q(g) are often partitioned

T
_ gs —qy _ T
Qlg) = o ah+d| " [q g (q)], (13.62)
and
P =% T = ¢ €7, (13.63)
Qv QSIS_Qv_

which defines the 3 x 4 real matrices £(g) and G(q):

E(q) = [_Qv asI3 + Ev] )

(13.64)
G(q) = [—Qu gsI3 — ql] .

It is easy to verify that £(q)g = 0, and similarly, G(gq)g = 0. This fact will be
used extensively.

The matrices P(q) and @(p) actually commute with each other for any ¢,p € H
as proved in Theorem 13.16 below.

Theorem 13.16. The matrices P(p), @(q) defined in (13.62), commute for any
quaternions p,q € H.
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13 Rigid Bodies II: Kinematics and Quaternions

Proof. Explicitly computing the product in both order, the result is

I T T
Ds —Py qs —4qy
P = N N
P)Qlg) Pv Psl3 —pv] [qu gsI3 + Qo
— Psqs — puTQ'v —Psq:‘f - QSva - PUTZIL
_QSPU +psq‘31 — Doy —qug + psqsl3 + PsTv — 4sPv — Puu
_ [o o7
Tl A
(13.65)
and similarly
[ T T
gs —4y Ds —Py
P = . .
Q(9)P[F) @ 9sl3+qu| [Py Psl3 —pv]
— gsPs — quv _QSPZ - psq:‘f + qzﬁv
Ds@y + QsPy + Qobv  — Py + 4sPsIz — qsPu + PsGu — oo
_[s wT
|z B
(13.66)

Inspection yields ¢ = B, u = w, and v = z. By inspection as well, matrices A
and B are equal as the following identity holds

Py + PuGy = quPs + P, (13.67)
as per Lemma 13.4. O

This fact is very interesting since it allows reordering quaternion product ex-
pressions.

Finally, the determinants matrices P and ) matrices are computed to be
det(Q(g)) = det(P(q)) = |lg||* as seen from (13.23) with A = go. This means
that as long as ||g|| = 1, all products involving @Q(g) or P(gq) are well behaved.

13.6 Length preserving transformations

Consider an element ¢ € H with unit length, ||g|| = 1, and the isomorphism
g : H — H defined with

Yq(p) = g xp. (13.68)

The norm of the transformed element is ||14(p)||> = gxp*p' xq' = ||p||?||q]|* =
|lp||?, and is thus unchanged by the action of 4. However, the subspace V is not
invariant under the action of ¥4 since for p =i € V and ¢ = —i € H, ||q|| = 1 and

Pe(p) =1 ¢ V. As reported in[4], this is what caused controversy. The correct
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13.6 Length preserving transformations

formulation which leaves V invariant is the map ¢, : H — H, for an element
g € H such that [|q|| = 1, defined with

¢q(p) = gxp*4q'. (13.69)
This is length preserving since
ll¢g®)II” = gxp*q' *xgxp' xq" = q(xpxp") * " = ||p|IPg x ¢" = ||p||*. (13.70)

In addition, this transformation leaves the linear sub-space V invariant since for
any p € V, the conjugate of the transformed element is

;
¢q(p)! = (q*p*qT) =gxpixgl = —gxpxqgl = —¢4(p). (13.71)

Therefore, if p € V, then, ¢q(p) € V for any ¢ € H and the transformation is
length preserving when ||g|| = 1.

The matrix representation of the map ¢4 is computed using the matrices
Q(g), P(q) defined above. First, note that the left-most part of the product
can be represented as the left product: 7 = px gt = P(q")p = PT(q)p, and then,
grxpxgt =qgx*r

$e(p) = 4% (p*a") = Q(a)(P(a")p) = (Q(2)P()) p- (13.72)

Given the definitions for matrices @(g) and P(q), the following explicit formula
for the product is found

Q@P™(@ = PT(@Qle) = [g‘-’;)] o (@)

_ | d"¢  4¥G%(q)

€@ E(q)QT(q)] 18.73)
1 0 oo

|0 E(@9T(@)| [0 R(g)|’

with the definition R(q) = £(q)GT (¢), and where the facts that £(q)g = G(q)g =
0 and ¢¥'q = 1, where used. Expanding this further,

_QUT

R(q) = €(q)G"(q) = [_Qv qsIs+q7,] ol b @

~ (13.74)
= (qf — qZ"qv) Is + 2quq, + 243y

= (ZQE - 1)13 + ZQUQZ' + 2‘157121,

where ¢7q = 1 was used again. The last expression in (13.74) is a useful definition
when performing algebraic manipulations, but it can also be simplified further
by using Lemma 13.4 to yield

R(q) = I3 + 2¢5qy + 2qu0v- (13.75)
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13 Rigid Bodies II: Kinematics and Quaternions

Using this form makes it easy to verify that R(q)g, = Ag, with A = 1.
Also from (13.75), one can easily recover the limit of small rotations in which
gs =1 — O(€?) and g, = eu, where u € R3 is a unit vector, yielding the limit

R(€) = I3 + 2¢u. (13.76)

Given the known fact that dR/de — @ as € — 0 and where w is the angular
velocity vector in the inertial frame of reference, it is already possible to deduce
that 2e7'g(e), — w as e = 0.

For implementation purposes and to provide for explicitly computing a qua-
ternion g which corresponds to a given orthonormal matrix R, the components
of either (13.75) or (13.74) can be resolved further in terms of the elements of ¢
as follows

(2¢3 — 1)+ 297 2(q192 — 20a3)+ 2(90%2 + 9193)
R(q) = | 2(g09s + 3291) (265 — 1) +2¢5  2(g295 — Qo) | - (13.77)
2(195 — 092)  2(q0q1 + 9392) (203 — 1) + 243

The properties of the result of two consecutive transformation are established
in Theorem 13.17 and Corollary 13.18 below.

Theorem 13.17. The transformations ¢q : H — H defined with ¢4(p) = gxpxgq'
form a group so that ¢r © Ps = Prxs-

Proof. We start with the quaternion representation of the transformation and
evaluate the map ¢, o ¢ on p € H

¢r(¢s(p)) = T*(S*P*ST)*’I"T
(r %) *xpx (st xrl)
=(r *s)>\—p~k(r~ks)Jr (13.78)
= Gres(P)-
O

Corollary 13.18. The matriz representation of the map ¢q : H — H given by
Q(q)PT(q) satisfies the group property.

Proof. Compute the action of the map ¢, o ¢s on p € R*
8:(9:(p) = Q)P ()(Q(5)P" (5)p)
=Q(r)Q(s)PT(r )PT(S)p
=Q(r *s)(P(s) ) (13.79)
=Q(r*s)(P(r*s )
= $ris(P),

where use was made of the identities Q(r)Q(s) = Q(r x s) and P(s)P(r) =
P(rxs). O
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13.7 Properties of the rotation matrices

The representation of the rotation matrix given in (13.74) can be reformulated
in terms of a unit vector n = g,/||gv|| and an angle ¢ with cos(¢/2) = g,. This
representation implies that ||gy|| = sin(¢/2) and so we have the following identity

R(q) = (2cos?(¢/2) — 1)I5 + 25in®(¢/2)nnT + 2 cos(¢/2) sin(¢/2)A. (13.80)
Using trigonometric identities, this can be rewritten as

R(q) = cos ¢I3 + (1 — cos p)nnT + sin 7

. (13.81)
= I3+ (cos¢p — 1) (I3 - nnT) + sin ¢n.

This is a well known formula for a rotation by ¢ about a unit axis n € R3, ||n|| =
1. This representation makes it clear that n is an eigenvector of R(g) with unit
eigenvalue. The other two eigenvalues are generally complex conjugates.

The effect of the transformation on a given vector is to rotate the component
orthogonal to the normal vector n by the angle pht in the orthogonal plane. To
see this, define a right handed coordinate basis u,v,n € R3, with ||u| = ||v|| =
[[n|| = 1 and Wv = n, Aiu = v, and fiv = —u. Then, decompose an arbitrary
vector z € R? according to this basis so that £ = au + Bv + yn. Applying the
transformation (13.81) to this yields

R(q)z = au + fv + yn + singp(av — Bu) + (cos ¢ — 1)(au + [v)

. . (13.82)
= yn + a(cos ¢u + sin ¢pv) + B(— sin pu + cos ¢v),

which is easily recognized as a plane rotation by angle ¢ in the u — v plane.

This is illustrated in Figure 13.1 where the axis of the cone is collinear with
the vector n. The same axis is the normal of the orthogonal plane which lies at
the top of the cone. The tip of the original vector &, showed with the dashed
line, is rotated in the plane by the angle ¢ to result in the final vector y = R(q)z
showed with a solid line. The projection onto the normal plane, shown with a
dotted line is what gets rotated by the angle.

13.7 Properties of the rotation matrices

The set of matrices {R(q)|g € R*,||g|| = 1} defined in (13.74) is the restriction
on V of length preserving linear transformations on H. They form a group under
multiplication as per Corollary 13.18.

The correspondence between unit quaternions and the rotation group is not a
bijection however, since R(q) = R(—¢) which is clear from (13.77). The quater-
nion group therefore provides a double coverage of SO(3) Theorem 13.19 below
establishes the direct correspondence between any given real orthonormal 3 x 3
matrix @ of unit determinant and unit quaternion =+gq.

Theorem 13.19. Given any real 3 X 3 orthonormal @, there are two g € H with
llgll = 1 such that R(q) = Q.
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13 Rigid Bodies II: Kinematics and Quaternions

Figure 13.1: A three-dimensional rotation by an angle ¢ about an axis n.

Proof. Direct computation yields the following formulae

1 1
%= Z(tr(R) +4), Q0q = Z(Raz — Roy3), (13.83)

1 1
qoq2 = Z(R13 — Ray), doqs = Z(R21 — Ria),

which can be solved for qg, q1, g2, ¢3 provided gg # 0. There are two solutions to
this system depending on the sign of gqq.
If go = 0, the value of the diagonal elements becomes

Rll + 1= 2qf,
Ry + 1 =242, (13.84)
Rys+1= 2q§.

Now, if go = 0, at least one of these must be non-zero since y_, g2 = 1. Assume
that Rgx + 1 = 2¢2 # 0 for some k € {1,2,3}, then, the other two elements can
be recovered from the relations

Rii = 2qxq: (13.85)

where 1 € {j € {1,2,3}|7 # k}. There are two solutions to this system corre-
sponding whether the plus or minus sign is chosen in solving gx from Rgg.

This cover all cases. Note that for any g € H, ||g|| = 1, the following identity
holds: R(q) = R(—q) and therefore, the multiplicative group of unit quaternions
is a double coverage of the group SO(3). O

13.8 Algebraic identities of rotation factors

The factor matrices £(g),G(g) of (13.62) obey a number of identities which are
useful in the construction of kinematic constraints and so they are presented
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13.8 Algebraic identities of rotation factors

here.

Lemma 13.20. For any two vectors p,q € R*, the following identities hold

G(g9)p = —G(p)a, E(9)p=—E(p)g- (13.86)

Proof. First look at the expression involving €(gq)

S(q)p = [_Qv qsI3 + z]\v] Ps]
Dy
= —PsQv + @sPy + TPy
= 4sPv — PsQu _ﬁv%) (1387)

as
Qv

A nearly identical computation yields the companion identity G(q)p = —G(p)q.
O

- [_pv psIS +ﬁw]

= —€(p)g-

Corollary 13.21. For any vector ¢ € R*, G(q)qg = 0 and £(q)q = 0.

Proof. Since £(q)g = —€(q)q as per Lemma 13.20, all components of r € R3,r =
&(q)g, must vanish. O

The converse result holds as well now shown.

Lemma 13.22. Given unit quaternions p,q € H,||q|| = |lp|]| = 1, G(p)g =
E(p)g =0 if and only if ¢ = *p.

Proof. Concentrate on £(g) matrices since the corresponding result for G(g) has
an identical proof. The “if” part is given from Corollary 13.21. For the “only if
part”, note first that if gs = 0, then, £(q)p = —psqy + Gup = 0. But since p, is
orthogonal to the cross product g, p, it must be that p, = 0 as well. In turn, this
implies that g,p = 0 and therefore, g, = Ap,, A € R. Since ||g.|| = |lpo]] = 1,
A= =+1.

Likewise, if g = 1, then, g, = 0 since [|g|| = 1. Therefore, we have £(q)p =
Py = 0, since the other two terms are linear in g, and thus vanish. This implies
that ps = £1 since ||g|| = |ps = 1. So, again, ¢ = +p.

Now, assuming that both g5, ps € (0, 1), then, the scalar products of g, and p,
with £(q)p yield the two relations

as||po||® = psar P, and gsqr Py = ps|lau||. (13.88)

Since [|gu||*> = (1 — ¢2) and ||py||> = (1 — p2), a simple manipulation yields the

relation
2 2

g Ps
1-¢ 1-p3 (13.89)

s
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13 Rigid Bodies II: Kinematics and Quaternions

Given that the scalar function f(z) = z/(1 — z) is monotone increasing on the
interval z € (0, 1), since f'(z) = 1/(1—=z)?, we have f(z) = f(y) = z = v, for all
z,y € (0,1). Therefore, g2 = p? and so g; = £p,. This implies that ||p,|| = ||gw]|
as well.

Writing pI'q, = ||py]|||gu|| cosd for some angle 8, the first identity of (13.88)
now reads

1 = +cosé. (13.90)

Now, assume that p; = +¢; and p, = +'q,. The product £(g)p now reads
E(@)p = +'qsqv — £459 =0, (13.91)
which means that + = 4/, which completes the proof. U

Lemma 13.23. For any vector ¢ € R*, the following identities hold
ET(9)€(q) = 67 (9)9(a) = ll4l*La — qa”, and
E(@ET(9) = 6(0)9" (a) = llal* 15

Proof. The algebraic manipulations are performed for £ matrices only since the
results are easy to verify for G matrices. Expand the products as follows

5T(q)€(q)=l 0 M—qu q513+q2] = [434v —gsq7 ]

(13.92)

3513 — —9sQu quS — Qv
_ |- -aq (13.93)
0% 970 0ay
= llgll*la — qq",
and likewise for the other ordering
T —q5
E@ET(@) = [~a aTs+G)] v
()€ () W Gltn|| o o
=@y + G-
= llall?,
where use was made of Lemma 13.4. The same algebraic identities carry over for
the case of G(g) matrices. O

Lemma 13.24. For any vector ¢ € R*, the following identities hold

£(a) =E1)PT(a), G(a) =9(1)Q"(a), (13.95)
with the shorthand 1 = [1,0,0,0]7 = h.

Proof. From the definitions (13.64), £(1) = G(1) = [o 13] , where 0is a 3 x 1

zero block here, and therefore, the result follows from the definitions of P(g) and

Q(q) since
T

EMPT(g) = [0 I [gq(q

and similarly for G(q). O

)] = £(9), (13.96)
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13.8 Algebraic identities of rotation factors

Lemma 13.24 produces yet another useful identity.

Lemma 13.25. For any vectors p,q € R*, the following holds

E(9)ET (p) = E(1)ET (p*q")

9(a)97 (p) = G(1)G7 (" p). (13.97)
Proof. For the & matrix, using Lemma 13.24 yields
E(9)€7 (p) = E(1)PT(q)P(p)ET (1) = E(1)P(¢")P(p)ET (1)
= E(1)P(p*qMET (1) = £(1) <£(1)PT(p* qT))T (13.98)
— E(ET(px ).
O

Another interesting point is that the action of matrix R(q) = £(q)G7 (g) con-
verts G matrices to £ matrices and vice versa.

Lemma 13.26. Given any unit vector, ¢ € R4, ||q||> = 1, matrices £(q),G(q) as
defined in (13.62), and R(q) = £(q)GT (q), then

R(q)G(q) = €(q), and RT(q)€(q) = G(a). (13.99)

Proof. Direct computation yields

R(9)9() = £(@)9™(0)9(a) = £(a) [llall*Ls — aq” |

= £(q) ~ £(9)aq” = £(q) — (€(2)q) ¢" (13.100)
=£&(9),
since £(g)g = 0 as shown in the corollary Lemma 13.20, and since ||g||2 = 1 by
hypothesis. A similar computation yields the other result. O

The value of the product determinant det €(q)GT (p) for two different quater-
nions p,q € H can also be computed explicitly, and so is that of matrices of
products of the form PT(q)@(p). This will be useful in analyzing joint Jacobians
later on. The result is as follows.

Lemma 13.27. Given p,q € H, the matriz B = £(q)GT (p) has determinant
det B = [|g]|°[Ip|I*¢" p.

Proof. First note that matrices P(q), @(p) defined in (2.29) are square and there-
fore, det PT(q)Q(p) = det P(q)det Q(p) = ||g||*|lp||* as per (13.23). Now, the
product PT(q)Q(p) can be partitioned and factored as follows

T _| 9 4E(p)
Paer) = [Q(q)p Q(q)ST(p)]

auT

v A

(13.101)

0 A

[a —uTA 1y T

1 0
Ay I3 !
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13 Rigid Bodies II: Kinematics and Quaternions

with definitions @ = ¢¥p, u = E(p)g, v = G(q)p, and A = G(q)ET (p). Set
w=A"1=—(1/p"q)€(p)g = —(1/pTq)u as it is verified with
Aw = —(1/p"9)G(9)€7 (p)E(p)g
= —(1/p"9)9(@llplI* I — pp"]a = G(a)p (13.102)

=

)
)
where the Lemma 13.23 was used for the product £T(p)€(p). Then, set o —

uTA v = pTqg — vwTw = ¢Tq + (1/¢Fp)uTu, and finally, this simplifies to
lalll2ll/ (" q).- Therefore,

det PT(9)Q(p) = llal|*|lpl|* =

2 2
% det A (13.103)

and thus, det A = pTq||p||?||q]|?. =

13.9 Differential calculus of quaternions

Because quaternion multiplication is non-commutative, many of the important
results of differential calculus do not carry over. For instance, using the matrix
representation of the quaternion algebra for instance, the following sum and
product rules apply to quaternions functions g(t), p(¢) € H

d ..
7 (g+p)=q+p
(13.104)

* = Qq % *
dt(q P) =q*p+qgxp.

However, the chain rule does not hold because of the non-commutative quater-
nion product.

Analytic functions of quaternions can also be defined in terms of known power
series, though the results are sometimes surprising. For instance, using Lemma 13.12
to compute the powers of matrix Q(q),q € H yields

Q™(9) = gl 'Un—1(2)Q(q) — llg||"Un2(2)1s, (13.105)

where z = go/||g||]- An analytic function f : H — H, can be evaluated using
the coefficients of the power series of f on @ and (13.105) for the powers @™,
summing the results in matrix f(@), and map the result back to quaternion
space. This procedure yields Lemma 13.28 below.

Lemma 13.28. Given an analytic function f : Cw— C, defined over the complex
plane with the series expansion f(z) = ),_oanz™, then, the function can be
extended to f : H — H wvia the series

£@ = 1= ansallal™?Un(@) | B+ |3 ansallalUnla) | ¢ (13.106)

n=0 n=0

where © = qo/||ql|, and Un(z) is the Chebyschev polynomial of the second kind.
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13.9 Differential calculus of quaternions

Proof. Using (13.105) yields the result in terms of matrix @(g). From the defini-
tion of matrix @(g) in (13.62), it follows that a matrix of the form aQ(q) + 814
corresponds to the quaternion aq + Gh, for real scalars, a, 8 € R. O

Example 13.1. To get an idea of how this works, consider a quaternion q € H
with go = 0 so that z = go/||g|| = 0, and the exponential function exp(z) =
S>z™/nl. This will keep the illustration simple. Using the trigonometric defini-
tion of the Chebyschev polynomials

sin([n + 1]6)

Un(z) = sn@) where z = cos(8), (13.107)
explicitly compute
i if n is odd
Un(0) = SR(n o m/2) _JO s odd (13.108)
sin(m/2) (=) formn=2j.

Applying (13.106) with an = 1/n! yields

exp(q) = |1=[1gl* D ans2llgl*Un(0) | D+ | > ani1llgl*Un(0)
n=0 n=0
_ 1+i(_)n+1 llg|*+2 Z _yn gl llg||>"** (13.109)
o (2n +2)! ||f1|| (2n+1)!
sin(q)
— cos(q) + 228y
llall

It follows that for any scalar o € R,

sin(allal)

ll4ll

In particular, if a =t and q is constant, the time derivative is evaluated as

exp(aq) = cos(a||g|)h + (13.110)

d .
5; exp (tg) = —||gll sin(tllq]]) + cos(tllall)q

dt (13.111)
= gxexp(tg) = exp(tq) xq
since for a pure imaginary quaternion g we have g x q = —||q||. This is the
familiar rule for the exponential function.
Taking a time-dependent pure imaginary quaternion such as
0
sin(at)
t) = 13.112
at) = | )| (13.112)
0
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13 Rigid Bodies II: Kinematics and Quaternions

then, exp(q(t)) = sin(1)h + cos(1)g and we find that 2 exp(q) = cos(1)q. How-
ever,

g*xq=a , (13.113)

— O O O

and so

exp(g)g = sin(1)g + e cos(1) # cos(1)g = d—d; exp(q). (13.114)

— O O O

This example demonstrates that simple quaternion differential equations can-
not be solved using well known analytic methods such as integrating factors.

13.10 Angular velocity

The connection between the time derivatives of the quaternions and the angular
velocity of the corresponding rotation matrix R(g(t)) is now established. Con-
sider a time dependent quaternion q(t) € H, ¢" xq = g% qf = 1. Since gt xg=1
for all times t, assuming that g(¢) is a differentiable function of time, it follows
that

d . . . .
OZE(‘I*QT)ZQ*qT+q*qT=q*qT+(q*qT)T, (13.115)
and similarly for g« gt = 1. Define r,s € H, with r = g+ qf, and s = ¢" % ¢. It
follows from (13.115) that both 7 and s are pure imaginary, i.e., 7T = —r and

st =s.

Next, consider the 4 x 4 matrix product A(q) = Q(q)P7T(q) for a time depen-
dent unit quaternion g(¢) € H,t € R. The time derivative of A(g(¢)) is computed
as follows:

A=QPT +QP"
=QQTQPT + QPTPPT
= (0Q" + P"P) 4
= (Qaxa" + PT(dxah) Ala),
using QQT = QTQ = PPT = PTP = I, for a unit quaternion g, the result of

Theorem 13.16 to commute matrices P and @, as well as (13.55) and (13.59) in
the last step. Now, given any quaternion r € H,

(13.116)

T

Q(r) + PT(r) = L’? o

v T3+ Ty

Ts ’I';‘F
—Ty TSIS +?'u
(13.117)

_|2rs 0
Tl 0 2rs + 27,
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13.11 Other representations of the rotation matrices

Specializing to the case where r; = 0 which is the case for r = ¢ % ¢' as shown
in (13.117), the result is

1 0

0 geT

o 0
|0 27,R(q)

0 O

A=
0 27,

(13.118)

and this can be processed further to read R = 27, R, where 7 = ¢* gt and R(q)
is defined as before. This gives the immediate identity 2r, = w, where w € R3 is
the angular velocity vector, and this is expanded further to yield the differential
equation

g=g*r=0Q(g)r

— gs —q:‘f
@ QI3+ T

0 (13.119)

Ty

1
] = QST(Q)“’-

Observe now that with r = g% gt and s = gf x4, we have r = g% s % g, which
corresponds to having w = R(q)w’', where w' is the angular velocity as seen in
the body frame. Simple manipulations yield

g=s%qg=P(q)r = %QT(q)w’. (13.120)

The content of (13.119) and (13.120) is the main result of this section es-
tablishing a vector differential equation relating a quaternion with the angular
velocity vector.

Example 13.2. A simple example of the use of the previous equation is to solve
for the motion of a rigid frame rotating at fized angular velocity w € R3,w =
const. Writer € H so that rs = 0,7, = w. Set ¢ = exp|[(¢/2)r] so that according
to (13.111),

.1 1
q=3 exp|[(t/2)r]*r = Eq*r
(13.121)

1 1

= EQ(Q)T =3 [q ST(q)] m = %8T(q)w-

13.11 Other representations of the rotation matrices

Rotation matrices are often represented with a set of 3 angles—the Euler angles.
As shown in this section, there are 24 possible conventions for these angles, each
of which having singular configurations so that multiple angles define the same
rotation matrix. This prevents integration of the differential equation R = @R
in terms of Euler angles unless the convention is changed near when approaching
a singularity.
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Starting from (13.81), the cases where n is a basis vectors are easily computed
to be

1 0 0 cos(¥) 0 sin(¢)
Ri(¢) = |0 cos(¢) —sin(¢)|, R2(¥)= 0 1 0 )
0 sin(¢) cos(q) | —sin(¥) 0 cos(9)

[cos (8) —sin(8) 0]
R3(8) = |sin(f) cos(d) O
0 0 1

(13.122)

A general rotation matrix R can be expressed as the product of three rotation
matrices either as R = Ry, (¢)Ri, (8)Ri, (¥) with three different 25,7 = {1,2, 3},
or R = R;,(¢)Ri,(6)R;, (). There are 3 x 2 x 1 = 6 possibilities for the case
with three different axes and 3 x 2 = 6 more for the case with the repeated axes.
There are also two sign conventions for the angles corresponding to whether they
are measured with respect to the fixed or rotated frame, bringing the total to 24
different conventions.

Next, given that R=®R, and given that R is a function of the time dependent
angles, @(t),0(t) and 9(t) say, expression of the form

$
T(¢,6,¥) |0 =w, (13.123)
(4

is anticipated, where matrix T'(¢, 8,4) has size 3 x 3. Of course, when matrix T
is degenerate, it is not possible to integrate the angles.

To construct matrix T'(¢, 8, ¢) in (13.123), fist note that for the matrices R;(¢),
the time derivatives are

Ri(¢) = ¢&; Ri(¢), (13.124)

where e; € R3 is the unit vector with a one in position ¢ and zero everywhere
else.
Write a general rotation matrix as R = R, (¢3)Ri, ($2)Ri, (¢1) so that

R = Ri3 Ri2 Ril + Ri3 Riz Ri1 + Ri3 Riz Ril

= [R’taRz;] Ri, Ri, R, + [R13 (Riz Rz;) RZ;:| Ri, Ri, R;,

(13.125)
+ {RQRQ (Rz-lRf:) RT Rz;] Ri,Ri,Ri,
= [433@;-3] R+ [4}2121-331-2 Rz;] R+ [d'nRis R;,&, RY R?;] R,
and the antisymmetric matrix @ is extracted as
W= (053’613) + (ézRisazR?;) + (¢3Ri3Ri2a1R£R£) . (13.126)
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13.12 End notes

Using Lemma 13.5 again, the angular velocity vector w reduces to
w= (].5361‘3 + ¢2R¢3€,’2 + ¢1Ri3Ri2€il- (13.127)

Rewriting this as a matrix equation, w = Ta, using @ = (¢1,¢2,¢3)T, the
columns of T' are easily identified

T.l = €43, T.g = Riseiz, and T.3 = Ri3R‘ige‘i1' (13128)

As an example, consider the 3-1-3 convention used in Goldstein [105] for in-
stance, where 1; = i3 = 3,13 = 1, and the angles are denoted ¢, 8 and 1 respec-
tively. This yields

0 cos(y) sin(9)sin(f)
T =10 sin(¢) —cos(y)sin(§)| . (13.129)
1 0 cos(f)

Matrix T is degenerate when 8 = 0 as it reduces to

0 cos(¢) O
Tloo= |0 sin(y) O], (13.130)
1 0 1

which has two identical columns. This means that & cannot be recovered using
& = T 'w to integrate the angles as function of angular velocities. All the 24
Euler angle conventions suffer from this type of singularity, though at different
locations. The reason is that the group of rigid rotations SO(3) is a manifold
which is curved, i.e., it is not isomorphic to R®, and therefore, there is no global
three-dimensional chart for it.

Given one of the Euler angle conventions of Section 13.11, expressed in the
general for R(¢,0,v%) = Ri,(¥)Ri, (0)Ri, (P), there is a corresponding quaternion
q($,8,v%) = qi, (V) * ¢i,(8) * ¢, (@), and it is therefore possible to recover the
angles for an arbitrary convention but this is not pursued further here.

13.12 End notes

A brief analysis of the quaternion representation of SO(3) is found in Haug [118]
but this book is long since out of print. In addition, it concentrates on the
analysis of the rotation factors £(q),G(q) and the formulae R(q) = £(¢)G%(q),
g =(1/2)ET(q)w, and ¢ = (1/2)GTw’, specifically in order to use the variational
principle on the rigid body Lagrangian. The complete representation of the
quaternion algebra with the @(q) and P(gq) matrices is not provided.

Tasora [263] is well aware of all this algebra when exploring quaternion-based
formulations of kinematic constraints, as is also done in Chapter 14, but it seems
that his reference on the topic are course notes in Italian, according to his refer-
ence list.
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13 Rigid Bodies II: Kinematics and Quaternions

Goldstein [105] does provide a long chapter on rigid body kinematics covering
several alternative representations. However, his comments on quaternions are
limited to the snide remark: “The connossieur [sic] of somewhat musty mathe-
matics will recognize in [...] a representation of @ as a matrix quaternion, ...”.
He proceeds with a representation relying on the Cayley-Klein parameters orga-
nized in 2 X 2 complex matrices, instead of the explicit 4 x 4 real matrices used
herein. In addition, he only provides formulae connecting the rate of change
of the Euler angles to the angular velocities but he does not provide the similar
computation for the Cayley-Klein parameters, though he does provide the matrix
representation (13.77).

Euler-Rodrigues parameters are well covered by Angeles and Kecskeméthy [10],
but these parameters, even though there is four of them, much like the quater-
nions, have singular points in their representation. In fact, the relationship is

1+ gs 1

= —Qp- 13.131
5 Ty 27_0%) (3 3)

’f'o::l:

There does not seem to be a specific advantage to this, especially since there is
a problem when g is near —1, since rg — 0 then, and 7, becomes ill-behaved.
In the graphics literature, one often sees the equation

.1
= jwe, (13.132)

without any comment as to what is meant by w or the product wq, except that
both w and ¢ are quaternions. The exact formulae (13.119) and (13.120) with
complete definition of the matrices £(q) are G(g) are found in lecture notes here
and there but one has to dig.

The relation ¢ = (1/2)€(g)"w is in fact a description of the tangent bundle
TQ for @ = H. Indeed, for arbitrary w € R3, the velocity ¢ defined in (13.119)
makes ¢ tangent to H at the point g € {p € H | ||p|| = 1.

The identities developed in this chapter are very useful in the analysis of rigid
body rotational constraints. Some examples are provided in Chapter 14.

It is hard to say which of the results of this chapter are new and which are
not. Since no literature could be found other than the short section in Haug’s
book [118], everything was derived from scratch and that process required the
derivation of the various lemmata. The final expressions for the rotation matrix
found in Section 13.6 and the angular velocity in Section 13.10 are well known.
The specific representation of the quaternion algebra with the Q(g) and P(q)
matrices is obviously known to Tasora [263] but the results above were derived
before any knowledge of that paper and textbooks or articles were of little help.
In fact, all formulas presented in this chapter were derived out of necessity be-
cause the literature was insufficient.

The explicit evaluation of analytic functions of quaternions is probably related
to the Baker-Campbell-Hausdorff formula and the calculus of Lie derivatives [112]
but none of these techniques were used in the derivation. Novel or not, what is
certain is that a collection of the results and identities needed for the analysis
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13.12 End notes

of rigid body kinematics is not easily found. This motivated the inclusion of the
present chapter.
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14 Rigid Bodies llI:
Constraint Kinematics

As discussed in Section 3.14 and in Chapter 4, kinematic constraints are restric-
tions on the motion of a mechanical system which account geometrically for the
net effect of physics occuring at time and length scales which are not essential
to the analysis.

Several mechanical assemblies can be realized to attach bodies together. These
are known as joints. Though a complete mathematical description of the usual
joints is not provided here, several rotational joints are analyzed in details us-
ing the quaternion algebra of Chapter 13. After motivating a quaternion-based
strategy and introducing the main concepts in Section 14.1, a full rotational lock
joint is described in Section 14.2. The reason for this is that individual constraint
equations can be removed to produce joints which do have some rotational de-
grees of freedom. This is done in Section 14.3 where a hinge or revolute joint is
defined, in Section 14.4 where a Hooke’s or universal or Cartan joint is defined,
and in Section 14.5 where a homokinetic joint is defined. All these representa-
tions use the same quaternion-based formulation. An alternative representation
of constraints is discussed in Section 14.6 and general remarks are provided in
Section 14.7.

14.1 Quaternion-based rotational constraints

Assuming a decoupling between the translational and rotational degrees of free-
dom connecting two rigid bodies (or two frames in general), there are several
constraints which can be expressed directly in terms of the quaternion which
expresses the relative rotation between the two frames.

The framework described below is very general and can account for certain
types of rheonomic constraints in which attachment points are moving, for in-
stance, though this is not done here.

The advantage of the quaternion representation is that it is free of certain
singularities as explained in Section 14.6.

First express the relative quaternion between bodies two bodies labeled 1,2,
in terms of the rotational coordinates of each rigid body and an joint attachment
frame which may or may not be fixed in the body frame. In the case where it is
not fixed, it is assumed that the motion of the attachment frame is fully specified
kinematically, i.e., the angular velocities are known for any given time.

Let ¢),¢®) € Hand (M, z(3) € R® represent the quaternions of body 1, 2,
respectively, relative to an inertial frame of reference. Let p(),p(3) € H, and
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14 Rigid Bodies III: Constraint Kinematics

y(1 y@ e R3 describe the orientation and position of attachment frames of
body 1, 2, respectively, expressed in the frame of reference of body 1,2, respec-
tively. With our conventions, the quaternion ¢ xp®) corresponds to transfor-
mation from the attachment frame of body 1 to the inertial frame. Therefore,
the transformation which goes from body 1 to body 2 is given by the expression:

14.1)
T (1) ) (
g=(gWxpM) * (@@ xp@) =p'" " xgt T xg@ xp®.

In addition, we write the quaternion velocities r®,s(®) ¢ H so that ¢(¥ =
%q(i) %7 @) and p() = %p(i) * s, We will project the equations down to the
more familiar 3D angular velocity vectors later on.

Now, any holonomic rotational constraint can be expressed as some function
g:HxT — R™, g(q,t) = 0. Note that since ||g|| = 1, ¢ describes 3 degrees
of freedom and so 0 < m < 3. To find the Jacobian of g(g,t) in terms of
the generalized coordinates ¢, q(®), it suffices to find J (), J 3 such that ¢ =
JWy® 4 7@y where ¢ = %S(q(i))w ), w® € R3. For more complicated
expressions, we use the chain rule to get:

dg(g,t) _ 99 (J(l)w(l) +J(2)w(2)) L9
9q

dt ot (14.2)

W@ 4 g@y® 4 %
t’

- , 0
so that G®) = GJ® where G = a—z Note that ¢ € H is treated strictly as

a four-dimensional vector here and all quaternion operations are understood as
matrix-vector operations in R*.

Lemma 14.1. Given two quaternions q,p € H, with inertial frame angular
velocities r, s € H, respectively, the product

u=q"xp=(qM % fD)x(g® x ), (14.3)

has the following time derivative:

i = 507(@P()s - 59" P (14.4)

2
Proof. Using quaternion algebra and the chain rule, noting first that ¢t = %(r * q)Jr =
—1g" %, since 7T = —r as we showed before in (13.115). Therefore, we have:

u=q"xp+d"xp
:EqT*s*p—qu*r*p. (145)
2 2
Now, using the matrix representation of Section 13.5 for the quaternion prod-
uct, select the left ordered product (13.51) for g factors and the right ordered
product (13.52) for factors involving p yields the result. O
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14.1 Quaternion-based rotational constraints

For a more general case, we introduce the notion of attachment frames on each
body. These frames have orientation quaternions f (¥} € H in the frame of body 1,
respectively, and they have a prescribed angular velocity, i.e., 2v () (t) = f (@) ft ©
is given. Now, body z has orientation quaternion q® with quaternion angular
velocity 2r () = g3t (z). The quaternion which relates the frame on body 2 to
that on body 2 is given simply by:

t W O
P=(@ % fD) % (@@ xfE) = 17w gh T w g x £ @), (14.6)

The time derivative p can then be expressed as a function of v ®,r® using
the following;:
Lemma 14.2. Given four unit quaternions ¢, f & € H,4 = {1,2} which have
angular quaternion velocity 2r () = ¢ x gt © and 20 = f.(i) * f1 (i), respec-
tively. Write p® = g® 5 O and p@ = ¢® x @ and put g = pt P 5 p@.
Then, q is given by:

i= — 3 P@QT(F P D)™ — 2T pM)P(p@)r ) .
14.7
227 (pM)PEP )@ + Q@) (fP)P(F P,

or using vector angular velocity vectors defined asw® = r, ® and w© =y, O,
and using the previous definition for R(q) in (13.73):

.1 1

§=—5ET(@RT(f @) - ~QT(pM)ET (p@)w® as)
14.8

1 1

+ 59T M)ET(PP)w® + 26T (@) RT (f P)w 2,

and finally, the same relation can be expressed using the body frame angular
velocities w' @ = R(g®)w ® and w' @ = R(f @)w ©:2)

. 1 1
§=—5€" (g ) — €T @R(f V)

) 0n 1 (2) (14.9)
+ 507w © + 2 g7 (@R (F O @),

Proof. Starting from q = fT - qt ™, 7@ % £ ), the product rule yields four
. (1

terms. The first one reads: fT( )>\—qJr ) %) % () Using the definition of v (1)

and the fact that fT(l)f(l) =1, this term becomes:

. 1 ]
fT(l) *qf(l) xg@ % @) = _§fT(1) *v® % FD)yq (14.10)

and using matrices P, Q of (2.29), this yields the first term of (14.7). Similar
simple algebraic manipulations apply to each of the four terms and the result
follows. O

It is interesting to note here that the natural frame of reference for the angular
velocity of attachment frames is not the world coordinates but the frame itself.

We now proceed to apply this simple result to compute Jacobians of non-trivial
kinematic constraints for rigid bodies.
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14.2 A full kinematic control constraint

Using the result of t